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Abstract 

The purpose of this paper is to analyze the stability properties of one-step collocation methods for the 
second kind Volterra integral equation through application to the basic test and the convolution test 
equation. 

Stability regions are determined when the collocation parameters are symmetric and when they are 
zeros of ultraspherical polynomials. 
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I. Introduction. 

The purpose of this paper is to investigate the stability properties of the one-step 
collocation methods for the second kind Volterra integral equation: 

(1.1) y(t) = k( t ,s ,y(s))ds + f(t); t e [ t o ,  t]. 
o 

Collocation methods for (1.1) have been discussed by numerous authors (see, for 
example, [4], [5] and [6]); however, the stability analysis is still very poorly 
developed. 

For the sake of completeness, we recall briefly the basic idea of the one-step 
collocation method. 
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Let 

H N = t o  < t l . . .  < t N =  T 

be a par t i t ion of the integrat ion range and let us consider the subintervals: 

% = [to, t1]; a i = (ti, t i+l];  i = 0 . . . . .  N - 1 

of size h. 
Let n,, be the space of polynomials  of degree at most  m and let 

S(~ ~={u:u( t )  l ~ : = u i ( t ) ~ n m ,  i = O  . . . . .  N -  I; 

u~J~ l ( t l )  = uli~(tl), j = 0 . . . . .  d}  

be the space of polynomial  splines of  degree m > 0 and continuity class d > - I. 
Define the set of col locat ion points: 

Xi= l~ij=ti+cjh; O<c  1 ~C2...<¢'rn~ l} 

where cj are the collocation parameters .  
The collocation method  approximates  y(t), the true solution of(1.1), by a function 

u{t) ~ S ~d~ d > 1, such that: m - l *  

£ ~, ,a 

(1.2) ui(~i,j) = k(~i , j , s ,  ui(s))ds 
r 

+ k(~ ,  j, s, u~(s))ds .I'~L,~)- 
k = O  d t  k 

If the integrals in (1.2) are calculated analytically the col locat ion me thod  is called 
exac t ,  if they are calculated with a quadra tu re  formula  the collocation method is 

called discrete.  

Moreover  if c~ = 0, c,, = 1, u(t) is cont inuous  in [0, T]. 
This paper  concerns the stability analysis of the exact collocation method with 

c~ = 0, c,, = 1, following the approach  which uses part icular  test equations.  
Among  the most  frequently used we quote  the basic test equat ion [3], [8], the 

convolut ion test equat ion [7], [ t4 ] ,  [19], [20], and the equat ions  with degenerate  

kernel [8], [11]. 
In this paper  we restrict our  a t tent ion to the first two above ment ioned test 

equations.  
In Section 2 we consider the basic test equat ion and we prove that, if the 

collocation paramete rs  are the Loba t to  abscissas, the related me thod  is A-stable, 
and,  if the col locat ion parameters  are symmetr ic ,  the me thod  is both  Ao-stable and 
/-stable. 

Then we consider  the convolut ion  test equation;  in Section 3 we derive a recur- 
rence relation for a vector  containing the values of  the numerical  solution and we 
give stability conditions. 

In Section 4, using this recurrence relation, we prove  that, if the collocation 
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parameters are symmetric, the method has stability regions in the plane (h2, h2#)  

which are infinite along the direction of the 2-axis but are bounded along the 
direction of the #-axis. Moreover, if the collocation parameters are 0,1 and the zeros 
of the ultraspherical polynomial P~'_~ (t), we give a lower bound, depending on ~ and 
m, for the size of the boundary of the stability region along the vertical axis. 

In Section 5 we carry out numerical experiments in order to test the sharpness of 
this bound. Moreover we calculate numerically some stability regions in the plane 
(h2, h2/~) and we present their plots. From the analysis of the theoretical and 
numerical results, we deduce a conjecture about the stability regions. 

2. The basic test equation. 

In this section we study the stability of the method applied to the basic test 
equation: 

f0 (2.1) y ( t ) = y o + 2  y(s)ds; te [0 ,  r ] ,  Re2_<0. 

As is known, for this integral equation the exact collocation method is equivalent 
to the discretized collocation method using an m points interpolatory quadrature 
formula, based on cl,...,cm. 

Moreover this is, in turn, equivalent to an extended m stage implicit Pouzet 
Runge-Kutta method, whose coefficients are: 

Cl a l l  . . .a im 

Crn aml '"amm 

a m l  . .  , a m m  

where 

COJ aji = [V*'(ci)] ' [V*(t)/( t  - ci)] dr; V*(t) = 1-~=, (t - c i ). 

From the known result on the Runge-Kutta method it follows: 

THEOREM 2.1: I f c ~ are the Lobat t  o abscissas, then the related collocation method is 

A -stable. 

Let R(z) be the stability function of the method under consideration. We recall 
that a method is said/-stable when its stability region contains the imaginary axis, 
that is when ]R(iy)] <<. 1, Vy ~ R. The following theorems hold: 

THEOREM 2.2: A collocation method with symmetr ic  collocation parameters  is 

I-stable. 
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PROOF. In  this case the me thod  is its own reflection [9, p. 245] and  therefore 
]R(iy)l = 1, V y e R .  • 

THEOREM 2.3: A collocation method with symmetr ic  collocation parameter  is 
Ao-stable.  

(2.2) 

where z = (ti+ 1 - tl)2 and 

PROOF. It  can easily be proved tha t  R(z) can be writ ten as [17]: 

R(z) = U(z)/D(z) 

(2.3) N ( z ) =  ~ v*(k+l)(1)Z m - I - k  
k = O  

m - 1  

(2.4) D ( z ) =  ~ V*(k+l)(O)z m-1 a 
k=O 

On the other  hand,  if V*(t) is symmetr ic  in [0, 1], then v*(k)(o) = (--  1)" kv*(k)(1). 
Let us put: 

Lm/2J 

~(z) = ~ V*(~>(l)z m-2~ 
s = 0  

[m/2J 
fl(~) : E v*(~'+"(l)  = ' - t  2, 

S : 0  

then, if z is a real negative number,  we find ~(z) > O, fl(z) > O. 
Moreover ,  since 

we find 

Therefore  the method  is Ao-stable. 

N(z) = ~(z) + fl(z) 

D(z) = ~z(z) -- fl(z) 

IN(z)/D(z)t < 1. 

3. The convolution test equation. 

In this section the convolut ion test equat ion 

1) y(t) = yo + f i  [2 + t¢(t - s)]y(s)ds: ) o < 0 ,  I~ <<_ 0 (3. 

is used for the stability analysis of  the col locat ion method.  The method  is stable 
when the numerical  solution has the same behavior  as the true solution of (3.1), 
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which is a linear combinat ion of exponential functions with negative argument. 
In order to determine the behaviour of the numerical solution, we construct 

a recursive relation for the collocation method applied to (3.1). 
First of all, we observe that  the collocation method furnishes in each interval cr~ 

a polynomial u~(t) of degree m - 1, satisfying the equation (3.1) in the collocation 
points, that is solving the equation: 

(3.2) ui(t)  = Yo + [2 + It(t - -  s ) ]u i ( s )ds  
i 

i~l  ~tk + i 
+ [2 + It(t - -  S)]Uk(S)ds -}- [aio + a] ( t  - -  ti)] V~(t ) 

k = O J t  k 

where t o = 0 

v,(t)  = I-L"--1 (t - ¢ ,9  

and i a 0, al are unknown parameters. 
Differentiating the equation (3.2) and putting 

ftt '~1 f t  k+ ' (3.3) qi(t)  = tt  u i ( s ) d s  q- It Uk(S)ds 
i k=O k 

we obtain the following system of first order differential equations: 

(3.4') u'i(t) = qi( t )  + 2ui( t )  + d o V / ( t )  + a ] [ ( t  - t i )V[( t )  + Vi(t)] 

(3.4 'I) q'i(t) = Itui(t  ) 

(3.4 In) u i ( t i )  = U i _  l(ti) 

(3.4 ~v) q,( t , )  = q ,_  l(t,). 

(3.5) F ( t , x )  = ~ [(1 + k)V*(k)( t )  + t v * ( k + l ) ( t ) ] x  k 
k - O  

m - 1  

(3.6) ~b(t,x)= ~ v * ( k+I~ ( t ) x  k. 
k=O 

Let % i = 1, 2 be the roots of the equation ~2 _ 2~ - # = 0 and z~ = h~. Last 
let S = (sij), i , j  = 1, 2, be the matrix whose elements are: 

1 
(3.7 l) s i l  - A(z2  - -  z l )  {[ZlF(0, 1/z2)  - -  zzF(0, 1/z0][~b(1, 1 / z O  - qS(1, l/z2)] 

+ [zz~(0, l / z 1 )  - -  zt4)(O, 1 / z z ) ] [ F ( 1 ,  l/z2)]} 

h 
(3.7 n) s12 - A(z2  - z l )  {[F(0, l/z2) -- F(0, 1/Zl)][~b(1, 1 / z O  - -  q~(1, 1/z2)]  

"t- [1~(0, l/Z1) -- ~(0, 1 / Z 2 ) ' ] [ F ( 1  , l/Z1) -- r (1 ,  l/z2)]} 
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(3.7 m) s~ hA(~-z0 [ z f (O ,1 / zg -  L z~ 

+ [zeq~(O, 1/z,)--zlc~(O, 1/zz)][ -F(l ' l /z ')  F(I"!/z2)-]~ 
L zl zz A) 

z,z { I (3.7 TM) sz2 - A(~ -2 z~) Er(0, tlzz) - r(o, i/zO] 4(1,z,1/z0 

+ [~b(O, l / z 1 ) -  q~(O, 1/z2)][ F(l:I/zO F(1,1/z2)1t 
~1 Z2 _ ] )  

with A = F(0, 1/z~)q~(0, l/z2) - F(0, 1/z2)q~(0, 1/zO. 
Then the following theorem holds: 

49d, 1/~) ] 
z2 l 

~( 1,_ 1/z2)] 
Z2 d 

THEOREM 3.1: The exact collocation method applied to equation (3.11 leads to the 
recurrence relation: 

qi(ti+ \qi l(ti)J 

PROOF. The proof is computationally laborious and we give here only a short 
outline of the logical steps. 

We solve the system (3.4) by variation of constants, and calculate by repeated 
integration by parts the integrals involved. Then we calculate a~, ai~ solving a linear 
system obtained by imposing that u~(t), qi(t) are polynomials. 

Then the result follows substituting the expressions ofa~, ai~ into those of ui(t), q~(t) 
and calculating those functions in the point t~+ 1. • 

Now we can prove the following: 

THEOREM 3.2: The stability region of the method is the set of values ~h2, h21ll such 
that the eigenvalues of the matrix S, given in (3.7), have modulus less than 1. 

PROOF. From the above theorem and the theory of linear difference equations 
with matrix coefficients it tbllows that ui(ti+ tt satisfies the recursion: 

(3.8) det(EI S)ui(ti+ 1) = 0 

where E is the forward shift operator and I is the identity matrix. 
Then the result follows observing that the zeros of the charactcristic polynomial of 

(3.8) are the eigenvalues of S. 
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4. Stability regions. 

In this section a characterization of the stability regions for some choices of the 
collocation parameters c j, j = 1 . . . . .  m, is given. Here we report only a brief 
indication of the proofs, that can be found in [10]. 

The first result we have is: 

THEOREM 4.1: The stability region of the one-step collocation method whose collo- 
cation parameters are c 1 = 0, c 2 = 1 is the followin 9 strip of the plane {h2, h2N}: 

{ - - ~  < h 2 _ < 0  
(4.1) - 1 2  < h2# < 0. 

PROOF. (4.1) follows directly from the characteristic equation. 

REMARK 1: The above collocation method applied to the convolution test equa- 
tion is equivalent to the trapezoidal direct quadrature method of product type. 
Therefore also this method has the strip (4.1) as stability region. 

Hereafter we made the hypothesis that the collocation parameters are symmetric 
in [0, 1]. 

From theorem 2.3 we can immediately deduce the following: 

REMARK 2: If the collocation parameters are symmetric in [0, 1], the horizontal 
semiaxis 2 < 0, p = 0 always belongs to the stability region. 

Let us now consider the intersection of the boundary of the stability region with 
the vertical axis 2 = 0. 

We define the polynomials: 

L(m - 1 )12J 
(4.2) d l  l ( t ,  z)  = Z v*(Zk + 2)(t) 2L(m - 1)/2J-  k 

k=O 

L(m - l)/2J 
(4.3) dl2(t,z) = ~ [(2k + 2)V*(2k+l)(t) + tV*(2k+2)(t)]z]-(m-l)/2Jk 

k = 0  

Lm/2J 
(4 .4 )  d21(t,z ) = ~ r*(2k+lI(t)z [m/2j-k 

k=O 

Lm/2] 
(4.5) d22(t,z) = ~ [(2k + 1)V*(2k)(t) + tV *(2k+l)(t)]zkm/2j-k 

k = 0  

(4.6) R(z) = dlx(1,z)d21(1,z)[2d12(1,z) - dll(1,z)][2d22(1,z) - d21(1,z)]. 

The the following theorems hotd: 

THEOREM 4.2: Let r be the largest negative zero of R(z) with odd multiplicity. I f  the 
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collocation parameters are symmetric, the boundary o f  the stability region contains the 
range: 

h2 = 0 
r < h2# _< 0. 

PROOF. Put t ing  2 = 0 in the stability matr ix  (3.7) and using the symmet ry  hypo th-  
esis, it follows, with e lementary  algebraic calculations,  that  the characterist ic poly- 
nomial  of  S is: 

x 2 + 2(--1) ' ' - 1  d 1 1 ( l ' z ) d 2 2 ( l , z )  + d12(1,z)d21(1,z) - -  d11(1,2)d21(1,2) 
dll(1,z)d22(1,z ) -- dl~(1,z)d21(1,z ) 

x + l = 0 .  

The roots  have modulus  1 if and only if the discr iminant  of the above  equat ion is 
less than or equal to zero, and this, in turn, is true if and only if R(z) < O. 

As R(z) is negative in a ne ighbourhood  of  the origin, the theorem is pro-  
ved. • 

An analogous  theorem has been proved by K r a m a r z  [15] for the study of the 
stability of the col locat ion methods  for periodic differential problems.  However ,  his 
result is not applicable to the collocation me thods  for Volterra  integral equations.  

THEOREM 4.3: I f  the collocation parameters are symmetric, the boundary of the 
stability region cannot contain the whole vertical semiaxis ~o = O, it < O. 

PROOF. The coefficient of the leading term of R(z) is positive, and therefore, for 
z large enough,  R(z) is positive and the result follows: • 

Now let us impose the further hypothesis  that  the collocation parameters  are 
Cl = 0,c,, = 1,andes, j = 2 . . . . .  m 1,are thezeros  of  the ultraspherical polynomial  
p ,~ ,  ~)~,~ , , - z  ~L/, c~> - 1 ,  shifled in [0,1].  

In this case the result of the theorem 4.3 can be improved,  if wc derive an upper  
bound  of r, depending on m and c~. 

To  this purpose,  let us premise some properties,  which will be useful later: 

PROPERTY I. 

-1 m(m + 2~ + 1 ) - j ( j + 2 c t +  1) 
(4.7) .(~, ~)(k) P,. (1) = P*.,(:'~)(l) l-I 

S=0 j + c ~ + l  

This follows, using induction on k, f rom the differential equat ion satisfied by 
P . , '  (t). 
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By algebraic calculation it follows: 

PROPERTY II .  

(4.8) 
p*(~, ~)(k+ z)(1 ) p*(~,~)(k+ 1)(1 ) 
p,,,~.~)tk+ 1)(1) < P,,*~'~)(~)(1).. 

Now let us put 

(4.9) g(e ,m)= 

12 if m = 2  

9.6 if m = 3 
8 m  3 q- m2(8~  - -  12) + m(24ct + 52) + 405 

m 3 + m 2 ( a -  2) + m(3ct + 6) + 2 -  2ct 

Then the following theorem holds: 

if m_>4. 

THEOREM 4.4: I f  the collocation parameters are cx = O, cm = 1 and c j, 

j = 2, . . . ,  m - 1, zeros OfPm,(Ct._ 2~t)(t), the boundary o f  the stability region of  the one-step 

collocation method contains at least the range: 

h2 = 0 
- g ( e ,  m) _< h2# _< 0. 

PROOF. From property II we derive that the ratio between successive coefficients 
of each polynomial of R(z) is decreasing. Applying a theorem on the localization of 
the roots [2], and using the properties I and II, the theorem follows. • 

THEOREM 4.5: I f  the collocation parameters are c 1 = 0 ,  % =  1 and cj, 

j = 2 . . . . .  m - 1 zeros o f  P*~'~)(t), the boundary o f  the stability region o f  the one-step 
collocation method contains at least the range 

h2 = 0 
- 8  <_ h2p <_ O. 

PROOF. For  every a, g(e, m) is a sequence decreasing with respect to m, and its limit 
is 8. 

5. Concluding remarks and numerical results. 

From the results of the previous section we deduce that, if the collocation 
parameters are symmetric, the stability regions of the related one-step collocation 
methods are regions of the third quadrant of the plane (h2, h2p) which are infinite in 
the direction of the horizontal axis, but bounded on the vertical axis. 

We have also computed numerically these regions for some collocation methods 
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and we present their plots for the following cases (figures t-3): 

m = 3  c 1 = 0 ,  c 2 =  1/2, c 3 =  1 

m = 6  Cl = 0 ,  c 6 =  1, cj, j = 2  . . . . .  5 zeros of the 
Legendre polynomial P*(x). 

m = 6  cl = 0 ,  c 6 =  1, Q, j = 2  . . . . .  5 z e r o s o f t h e  
Chebyshev polynomial T*(x). 

m = 6 c~, j = 1 . . . . .  6 Lobat to  abscissas. 

We recall that in this case the one-step collocation method is superconvergent. 

From a numerical observation, also of cases not reported in this paper, we 
conjecture that all the gaps of the stability region touch the vertical axis, and that the 
stability regions are bounded in the lower part. 

Moreover, in order to test the sharpness of the expression (4.9) of g(~, m), we have 
evaluated numerically the zeros of the polynomial R(z) given in (4. 5). We found that 
R(z) can have multiple zeros, so that the expression (4.9) of 9(~, m), which is a bound 
for the first zero, is pessimistic. 

Therefore, we report in Table 1 the numerical values of the largest negative odd 
multiplicity zero of R(z) in the cases of most interest, that is ~ = -- 1/2, 0, l/2, 1 and 
for m = 3 to 20. 

Table 1. Largest negative odd multiplicity zero of the polynomial R(z) given in (4.6). 

"m• -1/2 

3 - 9 , 6 0 0 0 0  

4 - 9 . 8 9 1 3 6  

5 - 9 . 8 5 8 9 5  

6 - 9 . 8 6 8 6 9  

7 - 9 . 8 6 9 5 4  

8 - 9 . 8 6 9 6 0  

9 - 3 9 . 4 7 7 3 6  

10  - 3 9 . 8 7 4 3 5  

11 - -  3 9 . 4 7 8 4 1  

12  - 8 8 . 8 2 6 2 1  

13 - 8 8 . 8 2 6 4 2  

14  - 8 8 . 8 2 6 4 3  

15 - 1 5 7 , 9 1 3 6 3  

16  - - 1 5 7 . 9 1 3 6 6  

17  - - 2 4 6 . 7 4 0 0 4  

18  - 2 4 6 . 7 4 0 1 0  

19  - 2 4 6 . 7 4 0 1 0  

2 0  - 2 4 6 , 7 4 0 1 0  

- 9 . 6 0 0 0 0  

- 9 . 8 5 3 0 9  

- 9 . 8 6 2 6 0  

- 9 . 8 6 8 9 5  

9 . 8 6 9 5 7  

- 3 9 . 4 7 2 7 6  

- 3 9 . 4 7 8 0 2  

- 3 9 . 4 7 8 3 9  

1 / 2  

- 9 . 6 0 0 0 0  

- 9 . 8 3 3 5 6  

- 9 . 8 6 5 0 9  

- 9 . 8 6 9 2 4  

- 3 9 . 4 4 4 8 6  

- 3 9 . 4 7 5 8 2  

3 9 . 4 7 8 3 3  

8 8 . 8 2 1 4 6  

9 . 6 0 0 0 0  

9 , 8 2 1 7 1  

9 . 8 6 6 9 0  

9 . 8 6 9 5 2  

3 9 . 4 6 4 1 8  

3 9 . 4 7 7 5 4  

3 9 . 4 7 8 3 7  

8 8 . 8 2 4 2 5  

- 8 8 . 8 2 5 2 6  

- -  8 8 . 8 2 6 3 5  

--~ 8 8 . 8 2 6 4 3  

- -  1 5 7 . 9 1 3 4 9  

- 1 5 7 . 9 1 3 6 5  

- - 1 5 7 . 9 1 3 6 6  

- 2 4 6 . 7 4 0 0 8  

- - 2 4 6 . 7 4 0 1 0  

- - 2 4 6 . 7 4 0 1 0  

- 3 5 5 . 3 0 5 7 5  

- -  8 8 . 8 2 6 0 4  

- -  8 8 . 8 2 6 3 9  

- 1 5 7 . 9 1 2 7 7  

- -  1 5 7 . 9 1 3 6 0  

- - 2 4 6 . 7 3 9 0 6  

- - 2 4 6 . 7 4 0 0 5  

- - 2 4 6 . 7 4 0 1 0  

- - 2 4 6 . 7 4 0 1 0  

- -  3 5 5 . 3 0 5 7 4  

- - 4 8 3 . 6 1 0 4 6  

- -  8 8 . 8 2 6 6 3  

- -  8 8 . 8 2 6 4 3  

8 8 . 8 2 6 4 3  

- 1 5 6 . 9 1 3 6 5  

- 1 5 6 . 9 1 3 6 6  

- - 2 4 6 . 7 4 0 0 7  

2 4 6 . 7 4 0 1 0  

- - 2 4 6 . 7 4 0 1 0  

- 3 5 5 . 3 0 5 7 5  

4 8 3 . 6 1 0 5 7  
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The numerical values have been obtained using the routine RPOLY [12], based 
on a three stage algorithm of Jenkins and Traub [13] on a computer VAX 750; we 
have considered two zeros equal when the first five decimal digits are equal. 
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