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Abstract. The paper presents some applications of 2-D systems theory to the problem of modeling the river 
pollution processes and the associated selfpurifieation phenomena. The dynamical evolution of the biological 
oxygen demand (13OI)) and the dissolved oxygen (DO) in a one-dimensional river model is discussed under various 
physical assumptions. 

1. Introduction 

The unquestioned success of the estimation and regulation procedures in 1-D theory mainly 
relies on state space methods, that allow for efficient and explicit synthesis algorithms. 
Along the same lines, it is expected that the introduction of state space models that depend 
on two independent variables will eventually display concrete applications of the rich body 
of 2-D theory. 

The aim of this paper is to point out how 2-I) state space models apply in representing 
the process of pollution and selfpurification of a river. The results we present have a 
preliminary character. Further research will, it is to be hoped, do much to clarify advan- 
tages and drawbacks of different 2-D models, but we may feel confident that the outlines 
at least are broadly visible. Many results, already available in 2-D literature, offer prom- 
ising applications in monitoring and control of river pollution, once a 2-D state model 
has been validated. 

To keep the paper within an acceptable size, we found it impossible to give a detailed 
account of unidimensional continuous time Streeter-Phelps models. Thus we only selected 
from the current mass of literature some references [Rinaldi, Soncini, Sessa, Stehfest and 
Tamura 1979; Fair and Geyer 1965] that seem well suited for our modelling purposes. 

Relevant features of 2-D systems are outlined in Section 2, but the development of 2-D 
theory has been carried out only to the extent necessary for the subsequent sections. Thus 
many important topics had to be omitted and the reader inclined to pursue the subject fur- 
ther is referred to [Bose 1985; Fornasini and Marchesini 1983; Eising 1979; Bose 1990; 
Bisiacco, Fornasini and Marchesini 1989], which contain a large bibliography up to 1989. 
Section 3 is devoted to a fairly detailed analysis of the problem of representing pollution 
dynamics via 2-D state space models, when longitudinal dispersion can be neglected. Finally, 
in Section 4 a number of 2-D models that incorporate the diffusion process are discussed. 
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2. 2-D State Space Models 

The first contributions [Attasi 1973; Roesser 1975; Fornasini and Marchesini 1976] that 
discussed the problem of defining dynamical systems with input, output, and state func- 
tions depending on two independent variables appeared nearly 15 years ago. 

From the beginning, deep and substantial differences from the theory of dynamical systems 
in one variable have been evidentiated. These are due to the mathematical tools to be used 
and, above all, to the structure of state updating equations. In this case, there is no canonical 
algebraic construction that provides an intrinsic meaning to a finite dimensional state. Thus 
several state models have been introduced, with different recursive structures, although 
they are generated by the same same underlying idea that a recursive computation is made 
possible by a finite dimensional local state and that the complete information on the past 
is kept by an infinite sequence of local states, called global state. 

The support of a 2-D dynamics is constituted by the discrete plane Z × Z. Usually, 
a partial order is introduced in it, by taking the product of the orderings of the coordinate 
a x e s .  

Remark. Sometimes we found it convenient to refer to different coordinates in Z × Z, 
using a transformation as 

Ia] [h I  21, b = M  k ' 

where M is a unimodular matrix in Z 2×2. In these cases the partial order in Z × Z often 
consists of the product of the orderings of the new coordinate axes (see figure 1). 

We associate with each point (h, k) in Z × Z a local state x(h, k) E R',  that deter- 
mines the output value y(h, k). The local states updating is given by a linear recursive 
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equation, that invoh, es local states and input values at some points that precede (h, k), 
according to the partial order. 

Depending on the delay structure of the updating equations, there are essentially two 
different kinds of 2-D state space models. 

First order models (that include also Roesser's models) are characterized by the follow- 
ing state space equations: 

x(h + 1, k +  1) = 

+ 

y(h. k) = 

A~x(h, k + l) + A2x(h + 1, k) 

Blu(h, k + I) + B2u(h + 1, k) 

Cx(h, k) 

(2.2) 

and second order models (that include also Attasi's models) by the equations: 

x(h + 1, k + 1) = 

+ 

y(h, k) = 

Alx(h, k + 1) + A~x(h + 1, k) 

Aox(h, k) + Bu(h, ~) 

Cx(h, k) 

(2.3) 

Slight modifications are sometimes useful, as in a couple of models in the next sections, 
where we deal with a first order state updating structure and the input-state map has sec- 
ond order: 

x(h + 1, k + 1) = Alx(h, k + 1) + A2x(h + 1, k) 

+ Bu(h, k) 

y(h, k) = Cx(h, k) 

(2.4) 

Note that, however, (2.4) can be also viewed as a particular case of (2.3), with A0 = 0. 
The local state in the above equations does not exhibit the separation property, in the 

sense that the knowledge of a single local state at (h, k) is not sufficient for computing 
the local states that follow x(h, k) according to the partial ordering. Actually, obtaining 
the whole evolution of a 2-D system requires to know all local states that below to a suitable 
infinite subset (separation set) of Z x Z. Some examples of separation sets for systems 
having equations (2.2) are shown in figure 2. 

The linear structure of equations (2.2)-(2.4) allows to compute the state dynamics in 
the future of a separation set as the superposition of the free evolution, induced by the 
local states assignment on a separation set, and the forced evolution, induced by the input 
values on a separation set and in its future. 

Whatever model we refer to, both evolutions involve, via linear combinations and two- 
dimensional convolutions, the knowledge of the system response to a single local state. 
As an example, assuming x(0, 0) = :~ and u(', ") -~ 0 in model (2.2), the local states in 
the positive orthant are given by 

x(h, k) = Af  ~ L~_2 k A22 (2.5) 
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where the matrices At h ~_2 h A2 E R n×n a r e  def'med recursively as follows 

A h I_L_L 0 A 2 : =  A h 

A 0 ~_2 k A 2 : =  A2 k 

A~ LL2 k A 2 : =  AI(A h-1 I t t  k A2) + A 2 ( A  h J_2..~ k - I  A2) , i f  h > 0, k > 0 

(2.5) 

When convolutions are involved, we found it useful to use the two-dimensional formal 
z-transform, that associates with a 2-D sequence {Sh,k } the formal power series 

S(Zl, z2) Z h k = Sh,kZl Z~. 

h,k 

The convolution of two sequences in the space/time domain corresponds to the Cauchy 
product of the corresponding power series in the transforms domain. If one of the sequences 
is the impulse reponse of  a 2-D system, the associated power series is (the expansion of) 

C ( I  - Alz  1 - A2z2)-I(Blzl  + B2Z2) (2.6) 

in case of  model (2.2) and 

C(I  - A l z  1 - A2z 2 - AoZlZ2)-  IBzlZ2 (2.7) 

in case of model (2.3). 

3. 2-1) Streeter-Phelps Model 

In this section we aim to introduce and discuss 2-D state space models that describe the 
natural self-purification process of  a river. The underlying biochemical hypotheses are the 
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same as in the classical continuous Streeter-Phelps model: modifications only account for 
the discretization of both space and time variables. 

Most river quality problems are generated by pollutants which are discharged into the 
river as a consequence of human activities. Discharged matters and river organisms, such 
as bacteria, algae and fish, interact in a very intricated system of nutritional relations between 
the species. The food compounds included in polluting materials are thereby oxidized and 
eventually converted into abiotic substances (like carbon dioxide, nitrate, etc.) and heat. 

Obviously, one of the first steps in building a mathematical model of the above process 
is the selection of the variables relevant to the problem. The only variable which occurs 
naturally in the selfpurification models is the dissolved oxygen (DO) concentration, which 
also provides an important criterion for water quality. Besides that, it is clear that one can- 
not introduce a state variable for each pollutant and each living species. So the problem 
arises as to what extent one has to proceed in aggregating variables in the model. 

The simplest approach is to reduce the variety of compounds to one class of oxidizable 
substances, and to measure the concentration of these somewhat fictitious reactants by the 
amount of oxygen needed for their complete biochemical oxidation (BOD = biological 
oxygen demand). Differently form ecological models, where living organisms are lumped 
together in a number of compartments, associated with specific state variables, here we 
postulate only the existence of a chemical reaction, induced by living organisms, between 
dissolved oxygen and oxidizable matter, without worrying about an explicit description 
of the organisms. Consequently, the only variables taken into account remain DO and BOD 
concentrations. 

We shall assume throughout that the variations of BOD and DO concentrations on river 
cross sections are much less important than the longitudinal ones. So we may confine 
ourselves to one-dimensional river models. One further hypothesis, that will be relaxed 
tater on in this sectien, is that hydrological variables, and in particular the stream velocity 
v, are constant all over the river stretch. 

Finally, longitudinal diffusion and dispersion will be neglected in this section. Models 
where these processes are taken into account will be discussed in Section 4. 

3.1. Model Stntcture 

The first stage in constructing a 2-D model is to divide the river into elementary reaches 
of length A 1. The time step A t and the elementary reach A l are connected through the 
stream velocity v 

z~t - AI 
v 

so that the water element centered in l at time t will be centered in 1 + Al at time t + At. 
Let/3(t, l) and 6(t, l) denote BOD concentration and DO deficit (w.r. to the saturation 

level) that exist in the elementary river reach centered in I at time t. BOD and DO values 
at (t + At, l + z~l) are computed on the basis of a discretized balanced equation account- 
ing for 
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• the self-purification process, due to the degradation of the originally discharged pollutants 
by bacteria. We assume that BOD concentration is decreased by the same amount 

all3(t, l)At 

the DO deficit is increased 
• the reaeration process, taking place at the water/atmosphere interface. The simplest 

hypothesis we may assume is that DO deficit is reduced of an amount given by 

a2a(t , l)At 

• BOD sources (effluents, local runoff, etc.) and, possibly, reoxygenation plants, denoted 
by in ~ (., .) and in a (', ") respectively. 

When using intensive variables, like/3 (., .) and 6(-, -), the addition and extraction of 
water require to keep also track of hydrological variables, such as the water volume of 
the elementary reaches, in order to be able to update the resulting concentration of dissolved 
materials. In this paper, however, our discussion is confined m inputs of BOD and DO 
that do not involve variations in the flow rate of the river. 

Since longitudinal diffusionand dispersion are not taken into account, the values of the 
variables at the point (hAt, kAl) of the discrete plane 

{(hAt, kAl) I (h, k) ( Z × Z} 

only affect the values at 

{((/~ + i)At, (I~ + i)Al) I i ~ Z+}, 

i.e., along the diagonal line passing through (/~At, /~Al). 
The balance equations are easily obtained and have the following structure 

~((h + 1)At, (k + 1)AI) = (1 -- alAt) [~(hAt, kAl) + M in ~(hAt, kAl)] (3.1) 

a((h + 1)At, (k + 1)AI) = alAtt3(hAt , kAl) 

+ (1 - a2At)[6(hAt, kAl) - Nina(hAt, kAl)l (3.2) 

Letting 

~(hAt, kAl) u(h, k) := = 
x(h, k) := 6(hAt, kAl) ' ua(h, k) ina(hAt, kAl) ' 

equations (3.2) are easily rewritten as a 2-D second order model 
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x(h + l ' k  + 1) = t t - alAtalAt t -0 1 

+ I (1-atAt)MO - (1 -0 I u(h,k (3.3) 

= Aox(h, k) + Bou(h, k) 

Remark. The above 2-D model can be thought of as the juxtaposition of infinitely many 
copies of the same 1-D system, each copy being associated with a different diagonal of 
the discrete plane. The elementary volume of water that at time 0 is in the position kAl 
is characterized by a state 

I~(0,  k/,t) ] = x(0, k) (0) : = ~ (0, kAl) 

At time iAt its position along the river is (k + i)Al. Once the corresponding state has been 
written as 

I ~(iAt, (k + i)AI) 1 
~(i) :=  6(iAt, (k + i)AI) = x(i, k + i) 

and the forcing input as 

[ u~(i, k + i) 1 
~/(i) := u~(i, k + i) ' 

BOD concentration and DO deficit, as seen by an observer that moves along with the elemen- 
tary volume of water, are modeled by a 1-D system of the following form 

~(i + 1) = Ao~(i) + Bo~l(i). (3.4) 

If a 2-D first order model is adopted, it is necessary to increase the dimension of the 
state space. This is easily seen, since the impulse response support of a 2-D system of 
dimension one is either the whole positive orthant or one of the coordinate axes, while 
the BOD and DO impulse responses exhibit a diagonal support. Therefore two components 
are needed in the local state vector for representing the dynamical behavior of just one 
single variable. 

Consider first the BOD evolution, and let 

I ~(hZxt, kZ~t) ~ (3.5) 
x~(h, k) :=  ~(hAt, (k + 1)A/) ] 

be the local state vector at (h, k). Using (3.1), one gets 



240 n. FORNASINI 

I 0 0 ] k + 
x~(h + 1, k + 1) = 1 - alAt 0 x~(h, 1) 

+ 0 0 (1 - alAt)M 

= Alex,(h, k + 1) + A2~x~(h + 1, k) + B~u¢(h, k), 

where a second order delay appears in the input/state map. 
Next, assuming 

[ 6(hAt, kAl) ] 
x~(h, k) :=  6(hAt, (k + I)A/) ' 

ua(h, k) (3.6) 

we obtain 

(3.7) 

E o o]x~(h~+l,+Eo,]x~(h+,k , x~(h + 1, k + 1) = 1 - a2At 0 0 0 

[oo]x~(~+l ,+  I o l + alAt 0 -N(1  - a2At ) u~(h, k) (3.8) 

= Al~x~(h , k + 1) + A2~x6(h + 1, k) + A~x~(h, k + 1) + B~u~(h, k) 

Tying together (3.7) and (3.8) we get the following model 

A1 

[x~(h+l~+~,] [AI~ o i [x~(h~+l, ] 
x~(h + 1, k + 1) A~ Al~ x~(h,k + 1) 

a2 B 

+[~ o] [x~(~+l,~,] [~ o]Eu~(~) ] 
0 A2e, x~(h + 1), k) + 0 B~ ua(h, k) 

(3.9) 

Both matrices A~ and A 2 are nitpotent, with nilpotency index 2. Thus 

Ail ~ J  A2 = O if ] i - j ] > 1, 

which in turn implies that the evolution of system (3.9) takes place along discretized diagonal 
lines, as shown in figure 3. 
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Figure 3. 

There are other methods by which one can proceed to build up a 2-D state space model. 
It would be tedious and unnecessary to discuss here all of them; we confine ourselves to 
a first order model, with local states of dimension 2, which illustrates some advantages 
one gets when the coordinates (h, k) of the points in the discrete plane are not directly 
identified with time and space values in the physical model. This approach will prove to 
be fruitful in next section, where diffusion will be taken into account. 

We assume that the pair (hAt, kAl) is associated with the point (a, b) E Z x Z that satisfies 

a = h - k, b = k (3.10) 

So, the points of the separation set 

C # : =  { (a ,b )  I a + b = /7} 

represent locations kAl along the river stretch at the same time instant/TAt. On the other 
hand, the points of the set 

{(a, b) I b =/~} = {(a,/~)} 

represent time instants hat = (a - l~)At at the same location/~At. 
Letting 

[ ~(hAt, kAl) 1 
6(hAt, kAl) :=  x(h - k, k) = x(a, b) 

f in~(hAt, kA1) ] 
in~(hAt, kAl) :=  u(h - k, k) = u(a, b) 
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a , h  

Figure 4. 

equations (3.1) and (3.2) give 

0 [,, 
alAt 1-a2At  - ( 1 - a 2 A t ) N _ J  u(h -k , k )  

or, equivalently 

O 
alAt 1 - a2At -- (1 -- a2At)N J u(a, b) (3.11) 

In figure 4, the characteristic lines of the system are the vertical axes a = const. 

3.2. Initial Conditions 

Since model (3.3) is the juxtaposition of infinitely many independent 1-D systems evolving 
along the diagonals of Z × Z, the most general structure of initial conditions consists in 
assigning exactly one local state on each diagonal line of the discrete plane. Any one of 
the above sets of conditions is reachable, since it can be thought of as produced by the 
application of suitable space/time distributions of BOD and DO sources. 

The assignment of initial conditions in model (3.9) deserves a more detailed investiga- 
tion. First of all, the local state components specify the values of BOD concentration and 
DO deficit at the same time instant in two consecutive spatial locations. Therefore, when 
initial conditions are given on some straight line 

{(h, #) I h ~ Z } 
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or along the boundary of the positive orthant, the second and the fourth component of 
x(h, k) must coincide with the first and the third component ofx(h, k + 1), respectively. 
This amounts to say that the physical meaning of local states allows to consider only reachable 
arrays of admissible conditions. 

One more aspect of the dynamical structure of the system, however, must be considered 
if the assignment of the initial states is to be meaningful. Namely, the state updating opera- 
tion must not modify the original values of the initial conditions on the boundary. When 
some boundary points are in the future of some others, it is patently inconsistent to com- 
pute the free state evolution by superposing local state values, as determined by rule 

x(h, k) = Aha 1._1.2 k A2x(O, O) (3.12) 

In fact, this would possibly modify the boundary values themselves. In this connnection 
we shall compute here the formal power series associated with the doubly indexed sequence 
of states in two cases, seemingly the most significant ones. 

Suppose first that the initial conditions have been assigned on the boundary 

{(h, 0) ] h E Z+} tO {(0, k) I k ~ Z+} (3.13) 

and the input values on 

{(h,k) t h  >_ 0, k _> 0, h + k >0}) (3.14) 

Due to the recursive structure of (3.9), the computation ofx(h,  k), h > 0,/~ > 0 only 
involves the initial local states {x(h, 0), 0 < h < /~} tO {x(0, k), 0 < k < /~} and the 
input values {u(h, k), 0 < h < h, 0 < k < /~, h + k > 0}, as shown in figure 5. 

h 

k 

0 0 o 0 o 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0  

0 0 0 o 0 o 0 0 0 0  

0 0 o o 0 0 0 0 o o  

0 0 0 0 0 o 0 0 0 0  

0 0 o 0 o o 0 0 o o  

0 0 o 0 o 0 0 0 o 0  

0 0 o 0 o o 0 0 0 o  

0 0 0 o o o 0 0 0 0  

Figure 5. 
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Consider the formal power series 

X(ZD Z2) := Z x(h ,  h k k)ZlZ2 (3.15) 
h>O,k>O 

associated to the double indexed array of local states {x (h, k)} h,k> 0 and let X e (Zl, Z2) be 
the corresponding free evolution induced by the assignment of local states (3.14) on the 
boundary (3.13). Xe(z 1, z2) can be computed according to 

z2) = Z x(h, k)zhz  
h,k>O 

= ~ {A,x(h - 1, k) + A2x(h, k - 1)}zlhz k 
h,k>O 

Z Alx(i, k)z~+lzk2 + Z A2x(h, j)zhzJ2+I 
j->0 h>0 
k>0 j-->O 

(3.16) 

= (I - Alzl - A2z2)-I f zIAt Z x(i, O)z~ + z2A2 ~ x(O, j)zJ21 
i>0 j>O 

On the other hand, forced evolution is easily obtained as 

Xf(Zl, z2) = ( I  - A l Z  1 - A2z2) - IBz l z2U(z l ,  z2) (3.17) 

where 

U(Zl, z2) :=  Z u(h, h k k)Zl Z2 (3.18) 
h,k>_O 

is the formal power series associated with the input sequence. 
The second case we discuss is the discrete analogue of assigning BOD and DO values 

at some point of the river (e.g. at l = 0) for all t in R. This corresponds to specifying 
in model (3.9) local states on the line 

{(h, o) t h z} 

and output values on the half plane 

{(h, k) I k >- 0}, 
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and in computing x(h,  k)  on the half plane 

{(h, k) t k>  0}. 

An obvious role of the nilpotency of A1 and A 2 is to guarantee that a single local state x(h,  
k) does not influence local states on the diagonal lines that do not intersect the set { (h, 
k), (h - 1, k), (h + 1, k)}. The following equations reveal the importance of this property 
in determining the free evolution of the system (see figure 6): 

x(h,  1) = 

= 

x(h,  2) = 

= 

x(h,  k) = 

A~x(h - 1, 1) + A2x(h, O) 

A1A2x(h - 1, O) + A2x(h, O) 

A~A2x(h - 1, 1) + AEx(h, 1) 

A1A2A1A2x(h - 2, O) + A2A1A2x(h - 1, O) 

• ( 3 . 1 9 )  

A1A 2 . . .  A1A2x(h - k, O) + AzAIA 2 . . .  AEx(h - k + 1, O) 

2k terms 2k-  1 terms 

(A~ L.L2 k-1 A:)A2x(h - k, O) + (A~ -1 12_3 k- t  A2)A2x(h - k + 1, O) 

As a consequence, when we use the formal power series notation, we have 

X(Zl ,  z2) = 

k>_l 
h~Z 

Z 
k>--I 
hEZ 

(A k i_L_ik- 1 A2)A2x (h - k, O)zhzk2 

+ Z 
k_>l 
hEZ 

( a  k -1  LL2 k-1  a2)A2x(h - k + 1, O)zhz k (3.20) 

Z [ a k  I ] Ik-I a2zhzk -It- z k - 1  ' k - t~  k-1 k L_I_L za2Z 1 Z2 A2 Z x(h,  O)z~ ~ 
k_> 1 hEZ 

= I Z [A~.+I LL2r'A2ZlZ2 -'1- A~'----VA2z2]A2z~z~ I ~.ax(h,O)Zhl 
v>-O h~Z 
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Making the assumption that the BOD and DO levels on the 0-th fiver stretch are inde- 
pendent of time, that is 

x(h, O) = ~, ¥h ~ Z, 

it is straightforward to obtain from (3.20) at steady state solution, given by 

Xe(Zl, z2) = ~ [A~ +1 LLZ A2ZlZ 2 + At ELI ~ A2z2]A2xzhz~ (3.21) 
v_>l 
hEZ 

The state vector in the k-th fiver stretch is the coefficient of any monomial Z*lZ~ in (3.21), 
i.e. 

x(h, k) = [A k-1 L_L_[ k-1 A 2 + A k I I I  k - I  A2]A2.~ (3.22) 

0 0 0 0 0 0 0 0 0 0 0  

" " " " I b l "  " " h 

0000 ~ 
OO00 
0000 
Ooo0 
OO00 
0000 

k 

Figure 6. 

The assignment of initial states and the formal power series description of local states 
dynamics in model (3.11) are similar to those for the model (3.9), but simpler because no 
constraints are needed among initial states. We leave the details to the reader. 

Remark. As an alternative way for introducing a reachable set of boundary conditions, we 
may use an input sequence that forces the boundary conditions in a 2-D system originally 
at rest (i.e. on a river that is perfectly clean and aereated). Substituting forced dynamics 
for boundary conditions is a matter of taste and computational convenience. 
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3.3. Space-Dependent Dynamics 

Our original assumption in this section was that all river parameters do not depend on 
the space abscissa l. It is often the case, however, that certain parameters of the one- 
dimensional model are strongly influenced by the geometrical and physical attributes of 
the underlying three-dimensional real model. Relaxing that assumption can certainly enhance 
our capability of modelling river phenomena. So in the remaining part of this section we 
suppose that the river velocity v as well as the coefficients al and a2 possibly depend on t. 

It is not difficult to figure out situations where a dependence on I may arise. Apart from 
the obvious ones, that refer to velocity variations, the dependence of al on l may be 
adscribed to an inhomogeneous bacterial oxidation (due, e.g., to thermal variations or to 
some bacterial species that locally prevail on some others), while the dependence of a 2 
may be connected with turbulences, falls etc., that induce some variations on the reaera- 
tion process. 

While the time quantization interval At is kept constant, the length Al of the elementary 
reaches will vary so as to satisfy in all cases the condition 

A t -  Al 
v(1) 

More precisely, the river stretch will be divided into elementary reaches A lk = [/k, lk+l], 
with 

Alk = V(Ik)At (3.23) 

so that an elementary volume of water in position lk at time t wilt be in position lk+l at 
time t + At. After introducing the families of/h-dependent coefficients a t (lk) and a 2 (lk) , 
we are in a position to rewrite model (3.3) as follows 

x(h + 1, k + 1) = I 1 - al(k)At 0 1 al(k)At 1 - a2(k)At x(h, k) 

+ IM[1-a~(k)At]  0 7 Iu~(h,k) l 
0 - N [ I  - az(k)At] ] u~(h, k) (3.24) 

= ao(k)x(h, k) + Bo(k)u(h, k) 

where the local state vector is defined by 

I [3(hAt, tk) l x(h, k) :=  6(hAt, lk) " 

Note that - aa  (k)A t~ (hA t, Ik ) and -a2  A t6 (hA t, Ik ) represent the decrement of BOD con- 
centration and DO deficit when crossing the elementary reach [l k, lk+d. 
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The I-D model (3.4) we associated with (3.3) becomes now 

~(i + 1) = I I - al(i)At 0 1 
al(i)At 1 - a2(i)At ~(i) 

+ I M [ 1  - -a l ( i )At]M 0 t 
0 - N [ I  - a2(i)At] ~l(i) (3.25) 

= Ao(i)~(i ) + Bo(i)~(i) 

Given any time instant hat, ~ (i) is the state vector at abscissa li and time (h + OAt, pro- 
duced by the assignment of a state vector ~ (0) at abscissa 10 and by the input values 
~(j) = u((h + j)At,  lj), j = O, 1 . . .  

Free evolution of ~ (.) satisfies 

~(i + 1) = Ao(i)Ao(i - 1) . . .  Ao(1)Ao(O)~(O ) = ¢(i)~(0) (3.26) 

with 

• (i) := 

i i 

g=0  # = g + l  

[1 - az(iz)At]al(e)Atrl  [1 - a l (v)ht]  

i 

H [1 - al(u)At l 
v = 0  

g--1 

v = 0  

0 

i 

IX  [1 - a2(v)ht] 
g=O 

(3.27/ 

The asymptotic behavior of (3.26) can be deduced from the absolute convergence criterion 
for infinite products [Knopp 1956]. Actually, because of the inequalities 

0_< al(v)At < 1, 0 < a2(v)At < 1 

a necessary and sufficient condition for having 

i i 

lim I X [ I  - a l(v)At] = 0 and lim I X [ 1  - a2(v)At] = 0 (3.28) 
i--+ +oo t--+ + o0 

p=O v = 0  

is that both the following series 

+oo +oo 

al(v) and Z a2(v) 
u=0 v=O 

(3.29) 

diverge. 
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Therefore, the divergent character of (3.29) constitutes a criterion for guaranteeing 

1. a complete bacterial oxidation of any BOD load injected at the/0-section 
2. a complete reareation of a deoxigenated river, if the BOD load is assumed to be zero. 

We shall prove now that, when (3.29) diverge, the term in position (2, 1) in the transition 
matrix cI,(i) converges to zero as i ~ co. This shows that the divergence of  both series 
(3.29) constitutes a necessary and sufficient condition for the selfpurification of the river. 

First of all, note that A0(v) can be viewed as the 2 x 2 left top diagonal block of the 
3 x 3 stochastic matrix. 

1 - a l (v)At  0 0 ]  
A(a)(v)  = a l ( v ) A t  1 -- a2(v)At 0 (3.30) 

0 a20,)z~t 1 

Therefore 

~(a)(i) :=  A(a)(i)A(a)(i  - 1) . . .  A(a)(1)A(a)(o) 
(3.31) 

I °1 E°11 i  ° °! = ai'(i) 0 = q~Z}a(1) ~bz2(i) 0 
8~)( i )  ~b~)(1) 1 031 ~ ) ( i )  t 

is a stochastic matrix for all i ~ Z+.  
Next, apply the recursive equation 

6(a1~i, 31" + 1) = a2(i + 1)At~b21(i) + q~)( i )  (3.32) 

to obtain the following identity 

~b~)(i + 1) = a2(i + 1)At4~21(i) + a2(i)zXt4~21(i -- 1) + . . .  + a2(1)At~b21(0 ) (3.33) 

Because of (3.33), the sequence {~b~] ) } monotonically increases. Moreover, the stochastic 
character of o(a)(v) implies 

¢ ~ ( v )  __. 1, uv ~ Z+. 

This shows that the above sequence converges to a limit ~31 E [0, 1]: 

~)31 = l im ~b~/(v)  (3 .34 )  
r)-~ q-lzo 

Now, taking the limit as i, ~ + co on the right side of 
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1 = q~ll(P) + ~21(P) + ~ ) ( p )  (3.35) 

and recalling that the sequence {~b u (v)} converges to 0, we see that the sequence {421 (P)} 
converges to ~21 = 1 - ~b31. 

Finally, we have to prove that ~21 = 0. Assume, by contradiction, ~zl > 0. Then there 
exists an integer v 0 such that 

4~21(v) > ~ ,  ¥i >_ v o 

and therefore 

~b~])(i + 1 + Vo) >-- 

vo+i 

g=v 0 

az(v + 1)At~b21(v) 

(3.35) 

V0+I 

_> ~2--!At Z a2(v + 1) 
2 

V=.o 0 

Taking into account that the series ~pa 2 (v) diverges,we see that the sequence {~b~])(v)} 
would diverge too, which is a contradiction, since 4~31 was finite. 

We therefore have 

@21 : 0 and ~b(i) --+ 0 as i ~ oo 

4. 2-D Diffusion Models 

The 2-D models considered in Section 3 do not incorporate longitudinal diffusion and/or 
dispersion phenomena. As well known, introducing diffusion in the Streeter-Phelps equa- 
tions gives rise to partial differential equations that include the second derivative w.r. to 
the space coordinate. 2-D analogs of continuous diffusion models may be obtained using 
a suitable discretization procedure; however, we prefer to start here directly from a discrete 
representation of the diffusion mechanism and to set up a first principles derivation of 
2-D models. 

4.1. BmTding an Elementary Model 

Perhaps the simplest representation of  the diffusion mechanism can be obtained by intro- 
ducing in model (3.1) additional terms that account for BOD and DO diffusion between 
two contiguous elementary reaches. 
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Diffusion is therefore modeled by assuming that the BOD content of the elementary water 
volume centered on l at time t undergoes variations in At that are proportional to the 
differences 

/ 3 ( t ,  l - d x l )  - / 3 ( t ,  l )  

t3(t, l + AI) - /3(t, l) 

Therefore, equation (3.1) has to be modified as follows: 

/3((h + 1)At, (k + 1)AI) = [1 - alAt]13(hAt, kAl) 

+ [1 - alAt]Min~(hAt, kAl) 
(4.1) 

+ D#[~(hAt, (k - 1)AI) - ~(hAt, kAt)]At 

+ D~[{3(hAt, (k + 1)AI) - 13(hAt, kAl)]At 

Similarly equation (3.2) becomes now 

3((h + 1)At, (k + 1)AI) = alAtt3(hAt, kAl) 

+ [1 - a2At]6(hAt, kAl) 

- [1 - a2At]Nin~(hAt, kAl) 

+ D~[b(hAt, (k - 1)AI) -- 6(hAt, kAl)]At 

+ D~[~(hAt, (k + t )AI)  -- 6(hAt, kAl)]At 

Letting 

x~(h' k) = [ [3(hAt ' (k-  1)Al) kAl) 

and assuming 

x(h, k) = x#(h, k) (~ x~(h, k) 

one gets 

x ~ ( h ,  k) = 

x(h + 1, k + 1) = 

f ~(hAt, (k - I )A/)  ] 
6(hAt, kAl) 

(4.2) 

0 0 0 0 -] 
D~At 1 - ~lAt 0 0 ] x(h, k) 

0 0 0 0 
0 alAt D~At 1 - azAt 
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+ 

0 0 0 0 
0 D~At 0 0 
0 0 0 0 
0 0 0 D~At 

[0  1 0 
x(h ,k  + 1)+ 0 0 0 

0 0 0  
0 0 0  

0] 
0 x(h + 1 k) 
1 
0 

(4.3) 

+ 

0 0 
M(1 - alAt) 0 

0 0 
0 - N ( 1  - a2At) 

I ua(h, k) 
u~(h, k) I 

with 

t~ 1 = a 1 + 2D~, 82 = a2 + 2D~, (4.4) 

which is a 2-D system in form (2.3). 
Assume now that a unitary BOD pulse at (0, 0) constitutes the forcing input to a river 

that is perfectly clean and aerated. This gives rise to a spatially symmetric distribution 
of BOD, that extends at t ime hat from the abscissa Al up to the abscissa (2h - 1)A/, 
having kA t as a center of symmetry. 

The general local state response can be described by a formal power series 

X(fl)(Zl, z2) ~ h k = Xf lZ lZ2  

h,k 

= ( I  - A~I ) z l  - a~  ~) z2 - a~o ) z l z2 )  -~ B ( ~ )  z lz2 

with 

o I ° ° 1  D~/~t 1 - 81At 0 D~At 

I011 [ 0 1 
0 0 M(1 - a lAt  ) 

Letting 

L# = M[1 - alAt] 

b(z2) = D~At + [1 - 81At]z2 + D~Atz 2 
(4.5) 

the BOD impulse response, provided by the second component of the vector X (~) (zl, z2 ), 

can be rewritten as 
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X(2/3)(Zl, z2) -" ZlZ2Z3 - Laz lz2  Z ~b(z2) h 
1 - Zlb(Z2) h=0 

(4.6) 

The distribution of the BOD concentration at t ime hat  can be found by considering the 
polynomial in R [z2 ] that constitutes the coefficient of the monomial ~ in the above series, 
i.e. 

L3 z2 b (zz)h- 1 

The power series representing the DO deficit distribution can be obtained along the same 
lines. Letting 

A ,=io o I I ° ° l  D~At 1 - a lAt  A~e) = 0 D~At 

E0ll i0 01 
A(a) = 0 0 0 aaAt 

one gets f rom (4.3) 

X(~)(zl, z2) = ZlZ2(I - A~)zl - A(2~)Z2 - A(o~)ZlZ2) -1 A(~) X(a)(ZI, Z2) 

= alAtZlZ2 ( I -  A~)Zl -A(6)"  I 0 1 2 ~2 - A(o~)zlz2) -1 x ~ ) ( z ~ ,  z : )  

After introducing the following shorthand notations 

d(z2) = D~At + (1 - a2At)z2 q- O~Atz 2, 

L~ = (1 - alAt)MalAt 
(4.7) 

the distribution of the DO deficit is represented by 

X(2~)(Zl, z2) - zlz2alAt X(2~)(zl, z2) = ZlZ2L~ (4.8) 
1 - zxd(z2) (1 - Zld(Z2))(1 - zlb(z2)) 

4. 2. Steady-State Distributions 

Suppose that a t ime constant unitary input of  BOD is applied at the 0-th reach of the river. 
Using the superposition principle we represent the BOD distribution as given by a power 
series in Zl, with coefficients in the ring R[[z2]] off  formal power series in z2: 
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z2L  = Z z2  z2) i 
X~)(Zl, z2) - 1 --~lb(z2)  h = - ~  h = - ~  i=0 

Accordingly, it can be inferred that a stationary BOD distribution settles down along the 

river, represented by the series 

-~-Oo 

Gz2~b%)~= Gz2 
/=0 1 - -  b ( z 2 )  

(4.9) 

The same reasonings also show that the space/time distribution of the DO deficit is 
represented by the formal power series 

X(~)(Zl, Z2) ~--- z22L6 ~.d zh 
(1 - zlb(z2))(1 - Zld(Z2)) h=-oo 

= L~Z2(I + [zl(b(z2) + d(z2)) - ~b(z2)d(z2)]  + [ ...... ]2 + ...) 

-FOO 

h ~ - o o  

and the steady state DO distribution by the series expansion of the rational function 

(1 - b(z2))(l - d(z2)) 
(4.10) 

The long term behavior of  the above steady-state distributions is determined by the root 
locations of  the polynomials 1 - b(z2) and 1 - d(z2). Stability issues, in particular, are 
connected with root locations w.r. to the unitary complex circle. These roots are therefore 
of  special interest to the analyst. 

The roots o f  

1 - b(z2) = (1 - D:~At) - (1 - alAt)z2 - D ~ A t ~  

are clearly the same as of 

1 - blZ 2 - b2z 2 : =  1 
1 - f i~At  D ~ A  t 

z2 z 2 (4.11) 
1 - D 3 A t  1 - D 3 A t  

It is well known [Mullis and Roberts 1987] that 1 - b ( z2 )  i s  a stable polynomial if and 
only if 

1 + b2 > 0 and - (1 - b2) < - b l  < 1 - b 2 
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Since DaAt  is negligible w.r. to 1, the first condition above 

1 > D~At 

1 - D~At 

is clearly fulfilled. The second condition reduces to 

- 1 + 2DMAt < - 1 + fi iAt < 1 -- 2D~At (4.12) 

The right hand inequality above holds, since 61At ~ 1. On the other hand, rewriting the 
left hand side of (4.12) as follows 

2D~At < a l A t  + 2D~At 

one sees that the inequality holds true, because al is positive. Therefore 1 - b(z2) and, 
by similar reasonings, 1 - d(z2) are stable polynomials. We conclude that, according to 
our physical intuition, stationary distributions of BOD concentration and DO deficit con- 
verge to zero as l goes to infinity. 

We aim here to make a comparison of BOD and DO steady-state regimes, with and without 
diffusion. In order to get a detailed information on the shapes of BOD and DO distribu- 
tions along the river stretch, it is convenient to introduce first a partial fraction expansion 
of (4.9) and (4.10), and then to expand each fraction into a geometric power series. 

4.2.1. BOD Distribution. Rewrite (4.9) as follows 

X(2 ~)(zz) = G~z2 (4.13) 
1 - blz 2 - b2z 2 

with 

G ¢ -  La , b l _  1 -  ?qAt , b z _  D¢At (4.14) 
1 - D~At 1 - D~At t -- D~At 

Moreover, let 

/~1 := 1 - alAt ,  

2 2 
/~1: = , vl := (4.15) 

b2bl I -  1 + ~ 1  +4b-~21b 2 b2b! I1 + ~ J l  +4b21bl 2 
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If b2 = 0, and therefore polluting materials do not undergo diffusion, the denominator 
of (4.13) is the first order polynomial 1 - Pzz. Otherwise, the denominator of (4.13) fac- 
torizes as (1 - {zlz2)(1 - ~1z2). 

Our first concern is to show that, if Da is small enough, then/Zl is smaller than 121. 
Using the binomial series expansion, one gets form (4.15) 

1 _ 1 2 b z  b~ + . . .  
/21 b l b--~l + 4 b-~l 

On the other hand we have 

1 _ 1 - D~At 

bl [ D3At ] 
#~ 1 - 2 

tzl 

_ 1 - .D~At [ 

tzl 

D3At (D#At) 2 q 
1 + 2 + 4 + . . .  / 

//'1 112 d 

so that 

1 +bterms I 

Since/zl, bl, 1 - DaAt are very close to 1, the difference 

1 1 _ D ~ A t  I _  2__+_1 + 2 1 1 
Ill ~1 ~21 tZ 1 1 - D#At b 3 

+ h.o.terms (4.17) 

is positive if D# is small enough. 
Consider now the partial fraction expansion of (4.13) 

x(2a)(Zz) = Z2 ~ G~, + G~ ~ 
1 - z2[~l 1 + z2~ 

(4.18) 

with 

1 + ffl 1 + /21 

/21 ~1 

Geometric series expansions give 

• q- t:~ q-et~ 

i = O  i ~ O  
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so that the BOD concentration at the abscissa (i + 1)AI is 

g/(', (i + 1)A/) = G~u t2~ + G~(-1)iff~ (4.18) 

which reduces to 

/3(', (i + 1)a l )  = G#/~ (4.19) 

when BOD does not undergo diffusion phenomena. 
Some interesting conclusion can be drawn from these simple calculations. First, since 

G ~  >> G~v, the BOD regime with diffusion can be viewed as represented by a decreas- 
ing geometric sequence with ratio/21, perturbed by an oscillatory term, whose amplitude, 
infinitesimal as i goes to infmity, is everywhere negligibly small. 

Second, when the model does not incorporate diffusion, the above geometric sequence 
converges to zero more rapidly (since #2 < /2i) and the oscillatory perturbation dis- 
appears. 

4.2.2. D O  Distribution. The comparison of the DO regimes with and without diffusion 
requires to introduce some more notations. Rewrite first (4.10) as 

x~(z2)  = °az2 (4.20) 
(1 - blz2 - b2z22)(1 - dlZ2 -- d2z 2) 

with 

a• 

and let 

L~ , d l _  1 -  a2At , d 2 -  D~At (4.21) 
(1 - D~At)(1 - D~At) 1 - D~At 1 - D~At 

/2, 2 : -~  1 - a 2 A t  , 

2 2 
/22 : = , if2 :=  (4.22) 

d22 - 1 + + 4d-~ d22 d~l 

Suppose now that the diffusion phenomena are negligible. Then we have b 2 = d 2 = 0 
and the denominator of (4.20) is a second order polynomial 

(1 - ~ l Z 2 ) ( 1  - /z2z2) (4.23) 

In that case the partial fraction expansion of (4.20) is 
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X~)(Z2)= Gfz2( _//,1 _P'2 ~ (4.24) 
/~ - ~2 1 z2#j 1 z2~2 

and the DO deficit at the abscissa (i + 2)AI is: 

~(', (i + 2)A/) = G~ /~+1i _ /~z+l/ 

# 1  - /x2 
(4.25) 

If (4.25) is viewed as a function of the real variable i, its maximum value is attained when 

g~+l In/z t = ~+1 In /~2 

Denoting by LxJ the integer part of the real number x, the maximum value of the se- 
quence (4.25) is attained either at 

/M = In ~ In ~z2 ~ 
L In/Zl -) ln/Zl 

#2 

(4.26) 

or at i M + 1. Note that i M is a nonnegative number, as we may expect from the physical 
assumption that the river is perfectly aerated at the abscissa t = 0 and therefore any pollutants 
injection will increase the DO deficit at the subsequent river reaches, until the bacterial 
oxidative processes are balanced by the natural rearation. This leads to the important 
qualitative conclusion that the DO behavior given by (4.25) is a discrete analogue of the 
sag profile of DO concentration in the continuous Street-Phelps model. 

Finally, suppose that diffusion is not negligible, so that the denominator of (4.20) fac- 
torizes into the following factors: 

(1 - 121z2)(1 + ff~z2)(1 - 122z2)(1 + v2z2) (4.27) 

where 121 < 12'2 and/22 < ~2 if the values of Dts and D~ are small enough. In the partial 
fraction expansion of (4.20) several cases should be considered, depending on the possibility 
of multiple roots of the denominators. Here we confine ourselves to the case when there 
exist only simple roots, i.e. when 

bl dl ~ +_ fbl J b~ d~l l  +4d2 1 
b2 dl ~ 1 + 4 b 2  d2 

(4.28) 

Keeping this restriction in force, we have 

1 - z2121 1 - z2122 1 + z2ffl 1 + z2ffa 
(4.29) 
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with 

G~ 

Q 

- Q  1 

(/71- f f 2 ) [ 1 +  ~_-~1; Q1 + ~  /21/22 

-%  1 

Since ~i/~j are negligible w.r. to 1, we introduce the approximations 

that give the partial fraction expansion (4.29) a simpler structure 

X2(~)(z2) ~" ~ ~1 -- ~ 1 --  Z2/~l 1 - -  ?2ft.2 

~l/~2(ffl --  ~2) 1 "+" Z2~l 1 q- Z2/$2 J 

(4.30) 

and express the DO deficit at the abscissa (i + 2)Al as 

8(% (i + 2)2ii) = G~ + ( - 1 )  i+1 (4.31) 

Eqn. (4.31) is very convenient for a quick discussion of the steady-state DO profile. First 
of all, the second term constitutes and oscillatory perturbation of the first, that goes to 
zero a i ~ oo. The negligibility of this perturbation is due to the fact that ~1 and ~2 are 
approximately 1; so for all i's we have 
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Q 

#1/~2 
(4.32) 

The first term in (4.31) has the same structure of the DO profile in models without diffu- 
sion. However, the DO deficit dies out more slowly, which agrees with a parallel result 
on BOD behavior. 

4.3. Modelling Diffusion Velocity 

An implicit assumption in equations (4.1)-(4.2) as well as in the corresponding state model 
(4.3) was that the diffusion velocity is equal to the velocity of the riverstsream. 

This is clearly seen from the support of the impulse response shown in Figure 7. A BOD 
injection at time t = 0 on the origin of the space coordinates gives rise, for any t, to a 
spatially symmetric distribution, in which the maximum point lies on the diagonal of the 
first orthant (i.e. on the support of the impulse response when diffusion is neglected) and 
the initial point is steadily at the abscissa Al. This implies that the backward propagation 
of the diffusion wavefront exactly balances the advection velocity of the river. 

There are several ways for introducing 2-D models where diffusion and advection velocity 
do not coincide. Here we shall only sketch a sampling of these methods, and outline two 
conceptually different approaches to the problem. 

I 
o o • . o o o . o on ~=~ime) 

0 0 o o 0 0 0 0 0  

0 0 0 0 0 0 0 0 0  

0 0 o 0 0 o o o  

o o 0 0 0 0 0  

o o  0 0 0 0 0  

o o  0 0 o 0  

o o  o 0 o  

0 0 0  O 0  

o 0 0  0 

k (= s p ~ e  

F/gure 7. 
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The first approach is based on the intuitive assumption that more complex dynamics 
require in general higher order systems to be represented; the second one exploits a suitable 
reinterpretation of the integers grid Z × Z, along the same lines we followed in the third 
state model of Section 3.1. 

For sake of simplicity, we deal here only with BOD diffusion equation. Assume that 
the elementary volume of water, centered on the abscissa l at time t, attains the abscissa 
I + 2AI at time t + At, so that the advection velocity is 

2Al 
V - -  

At 

We still keep in force the BOD degradation scheme considered at the beginning of this 
section, assuming in particular that diffusion in At only affects contiguous elementary 
reaches. Thus BOD updating takes the explicit form 

/3((h + 1)At, (k + 2)A/) = [1 -- alAt]t3(hAt, kAl)  

+ D~(13(hAt, (k - 1)AI) -- t3(hAt, kAt) )At  + [1 - alAt]Min~(hAt, kAl) 

+ D~(fl(hAt, (k + I)AI) - ~(hAt, kA1))At 

(4.33) 

After introducing the local state vector 

x#(h, k) = 
/3(hAt, (k - 1)AI 1 

{3(hAt, kAl)  
#(hAt, (k + 1)zXl 

one gets a second order model with structure (2.3) 

x~(h + 1, k + 1) = A~o ~ x~(h, k) + A~  ~ x~(h, k + 1) 

+ A(2 ~) xB(h + t, k) + B (~) uB(h, k) 
(4.34) 

with 

u#(h, k) = int~(hAt, kAl) Io o 
A (o ~ ) = 0 0 

D~At 1 - alAt -- 2D~At 

0 1 0 

A~ t~) = 03 A~ ) = 0 0 1 

0 0 0 

0 

0 

D~At 
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Assuming as system output the BOD concentration, i.e. 

y (h ,  k )  = ~ ( h A t ,  k A l )  = [0 1 0] x~(h, k ) ,  

the impulse reponse is given by the power series expansion of the following transfer function 

W(Zl, Z2) = C(]  - a ~ ) z  1 - a(2~)z2 - a g ) z l z 2 )  -1 nzlz2 
(4.35) 

= ZflZlZ~2 = Z~ZlZ 2 [1 q- ZlZ2b(z2) q- z2z2b(z2) 2 + . . . ]  
1 - Zlzzb(z2) 

where b(z2) and L~ have been defined in (4.5). The support of (4.35) is represented in 
figure 8, which clearly shows that the diffusion wavefront progresses with a velocity which 
is different from (actually, smaller than) the river advection velocity. 

The second approach is reminiscent of the philosophy that underlies model (3.11). The 
interpretation of the grid Z × Z given in figure 4 with reference to model (3.11) is well 
suited also for representing the diffusion model (4.1). In fact, letting 

13(hAt, k A l )  = x~(h - k,  k )  = x~(a,  b)  

in~(hAt, k A l )  = u~(h - k, k )  = u~(a, b)  

equation (4.1) becomes 

x~(h - k,  k + 1) = [1 - alAt] x~(h - k,  k )  + [1 - a l A t ] M u ~ ( h  - k,  k )  

+ D , A t x ~ ( h  - k + 1, k - 1) + D~Atx~(h  - k - 1, k + 1) 

Figure 

- : . . . . . . . . .  h ( ~  t i m e )  

k (---- s p a c e  
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or equivalently 

x~(a, b + 1) = [1 - itlAt]x~(a, b) + D~Atx~(a + 1, b - 1) 

+ D~Atx~(a - 1, b + 1) + [1 - alAt]Mu~(a,  b) 

In figure 9 we dashexl the causality cone of the point (a + 1, b),  i.e. the set of points 
of the discrete plane that contribute to the BOD concentration at (a + 1, b). 

Consider now the equation (4.33) and associate with the space/time pair (hAt, k AI) 
the point (a, b) E Z × Z, whose (integer) coordinates satisfy 

a = 2h - k, b = k -  h (4.36) 

In this way the points of  the separation set 

CA = {(a, b) l a + b = f~} 

represent different locations along the river stretch at the same time instant/~At, while 
the points of  the set 

z~ = {(a, b) ] a + 2b = fc} 

correspond to the location/~A 1 and to different time instants. 
Letting 

~(h,Xt, k A l )  = x~C2h - k, k - h)  = x~(a, b)  

u~(hAt, kA l )  = u~(2h - k, k - h = u~(a, b) 
(4.37) 

• 0 

0 0 0 

o 0 o 

C 

b~ l • , o . . o , . , . 0 o o o o 0 ~ 0 • o 

Figure 9. 
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(4.33) becomes now 

x~(2h - k, k - h + 1) = [1 - h~At]x~(2h - k, k - h)  

+ O#Atx~(2h  - k + 1, k - h - 1) -t- O~Atx~(2h  - k - 1, k - h + 1) 

+ [1 - a l A t ] M u , ( 2 h  - k,  k - h )  

or, equivalently 

x , ( a ,  b + 1) = [1 - ~lAt]x~(a ,  b)  + D~Atx~(a  + 1, b + 1) 

+ D~Atxo(a  - 1, b + 1) + [1 - a l A t ] M u ~ ( a ,  b )  
(4.38) 

Clearly system (4.38) only constitutes a reformulation of (4.33), where the maximum 
delay associated with the elementary updating steps amounts to 3, instead of 4, and initial 
conditions can be arbitrarily assigned along a diagonal separation set C~ instead of a ver- 
tical line h = const. A possible advantage of (4.38) is that the equations provide a 2-D 
weakly causal system in standard form (i.e. the local state at any point depends on a finite 
number of local states along the closest diagonal line that precedes that point). 

Causal state space models like (4.34), or first order models with structure (2.4) that 
could be obtained thereout, cannot be derived without paying some price in terms of state 
space dimension. On the other hand, using causal state models makes it available the whole 
body of standard 2-D theory in control and state estimation. 

5. Conclusions 

This paper makes a first attempt to introduce 2-D systems methods in the analysis of the 
selfpurification process of a river. Several models have been considered, that take into ac- 
count physical phaenomena of increasing complexity; it is clear, however, that our investiga- 
tion is still far from complete. 

Further investigations should take into account more refined models and their capability 
of coping with a larger class of phaenomena, such as sedimentation, photosynthesis, etc. 
Nonetheless, 2-D theory already provides a fairly large amount of results on state reconstruc- 
tion and feedback control. It is to be hoped that the application of these results to pollution 
monitoring and control leads eventually to new interesting problems in 2-D systems and 
indicates directions of further research also in the theoretical field. 
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