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ON THE DEGREE OF APPROXIMATION OF A CLASS
OF FUNCTIONS BY MEANS OF FOURIER SERIES

P. CHANDRA (Ujjain)

1. Definitions and notations. Let f be 2n-periodic and L-integrable on [, x].
The Fourier series associated with f at the point x, is given by

1 a
(1. 5 a0t 2> (a,cos nx+ b, sin nx).
n=1

A function feLipa (x=0) if

(1.2) fGe+h)—f(x) = O(hl*) (h—~0)
and if f'is defined on [—=, 7] then the expression
(1.3) 0(0) = (S, f)= sup |fOe)~f(xD)l,  [x—xe] =6

is called the modulus of continuity of f (Zygmund [5], p. 42).
Let A=(a,,) (k,n=0,1,...) be a lower-triangular infinite matrix of real
numbers. We denote by 7,(f) the A-transform of the Fourier series of f given by

(1.4 T.(f; x)= kgnoa,,ksk(x) n=0,1,..),

where s,(x) is the n-th partial sum of the series (1.1).
Suppose A=(a,,) is defined as follows:

_[p/Py; O0=k=n
(1.5) A = {O; k= n,
where (p,) is non-negative and that P,=py+p;+...+p,#=0 (n=0). Then the matrix
is called Riesz matrix and the means are called Riesz-means or (R, p,)-means. In
this case we write R,(f;x) for T,(f;x). Also if

—_ pn—-k/Pn; O=k=n
(1.6) Ay = {O; k=n,

The matrix (a,,) is called Norlund matrix and in this case we write N,(f; x)
for T,(f; x). Throughout (a,;) will denote a lower triangular infinite matrix.
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We use the following notations in this paper:

(17 8,() = 5 e+ )+ (=)~ 2 (),
(1°8) bnk = Zk, Ay bnk = bn(k)n
r=0
(1.9 T = [n/t], the integral part of k/t in 0 <t=m,

(1.10) C*[0, 2], the space of all 2r-periodic continuous functions defined on [0, 2z].

Throughout, the norm | -|| will be the sup norm on 0=x=2z and w(¢) will
be the modulus of continuity of feC*[0, 2x].

2, Introduction. By employing Riesz matrix, we [1] obtained the following
result concerning the degree of approximation:

THEOREM A. Let fEC™*[0,2n] and let fcLipa (O<a=1). Then the degree of
approximation of f by (R, p,)-means of its Fourier series is given by

O{(pu/ P)Y}; O<a<l1
O{(p/P)log (P,/p,)}; a=1,

where (p,) is positive and non-decreasing with n=n,.

IR(N-11 =1

Recently this result was extended to the lower triangular matrix in the Holder
metric (see [4]).

In this paper we first extend Theorem A by using the modulus of continuity of
f in the following form:

THEOREM 1. Let (a,) sdtisfy the following conditions:

Q.1 4x=0 (mk=0,1,.), Sag=1,
k=0
(2'2) Ak = An,k+1 (k = O; 1’ sees n—ls h= O; 1; ')
Suppose w(t) is such that
(23 [ o@dt =0(H®W) (u—~0+),
where H=0 and that
2.4 tH(H) = o(1) (¢ ~0+)
and
t

(2.5 [ H@wdu=O{tH(®} (t—~0+).

0
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Then
(26) ﬁ T, n (f) ——f “ =0 {ann H (aml)}°

We also prove

TueoreM 2. Let (a,;) satisfy (2.1) and (2.2) and let w(¢) satisfy (2.3). Then

2.7 IT.(N—f1 = O{o(a/n)}+0{a,, H(x/n)},
where H is non-negative. If, in addition to (2.3), w(t) satisfies (2.5) then
(2-8) ”Tn(f) '_fu =0 {(lm,H(TC/I’l)}-

Lastly, we intend to investigate some results, one of which is analogous to
Theorem A in the case when (p,) is non-negative and non-increasing. In fact, we
first obtain general results for a triangular matrix by using the modulus of con-
tinuity of f from which the desired results may be obtained. Precisely, we prove the
following:

THEOREM 3. Let (ay,) satisfy (2.1) and let

(2.9) Au Z ay 41 (k=0,1,..,0-1,n=0,1,..).
Then
(2.10) IT.(N-fl=0 {w(ﬂ/n)+k§; k=t (x/k) b, (k+1)}.

THEOREM 4. Let (a,) satisfy (2.1) and (2.9) and let w(t) satisfy (2.3), (2.4) and
(2.5). Then

(2.11) IT.()—f] = OlawH(a,)}
3. We shall use the following lemmas in the proof of the theorems:
LemMa 1. Let w(2) satisfy (2.3), (2.4) and (2.5). Then

r

[ ro@dt=O0FHE)) (r—~0+).

0

Proor. Integrating by parts, we have
[ o@dt=[-t [ vo@dul+ [ dt [ v ?0(w)du=
o t [ t

= O{rH(r)}+0(1) fr H(H)dt = O{rH(")},

by (2.3), (2.4) and (2.5).
This completes the proof of the lemma.

LeMMA 2. Let (ay) satisfy (2.9) and let a, =0 (n, k=0, 1, ...). Then, uniformly
in O<t=m,

kg':') y SIn (k-}——%—] t = 0{b, (D}
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Proor. Since a,=0, we have by Abel’s lemma
L] 1
> Q. sin (k+-2—) t‘ =

= b,())+0{a,} = Ofb, @),
by (2.9). This completes the proof of the lemma.

Z’ Gy SIn [k+——] l ké’) At

k=0

4. In this section, we shall prove the theorems mentioned in Section 2.

Proor oF THEOREM 1. We have

T,(f; %)—f(x) = kz a5, () —f (%) =

== f {{4> (t)/[zsm—t)}[ 2 ay sin [k+—] ]d

by (2.1). Now we observe that [@(2)]|=w(¢), therefore

4.1 ﬂT,,(f—f)ﬂé-i—f w(tl) Zn'a,.kSm(k+—) ldt
0 281.113-1’ k=0

._—.(f + f) L+1, say.

nn

However, by (2.1), the sum in the integral does not exceed 1 and hence
L=0() fmlt_la)(t) dt = O{annH(ann)}’
¢
by Lemma 1. Also, by (2.2) and Abel’s lemma

L=0(@,) [ i?w@)dt=0{a,H (),
aﬂﬂ
by (2.3).
Combining [, and I, we get (2.6) and this completes the proof of the theorem.

Proor or THEOREM 2. We have from (4.1)

-1 =2 [ 20| 3 aysin(e43) ] ar =

0 ZSin-é— k=

x/n T
= %(of +,,7{,‘ ) = L+1I,, say.
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Using the inequality sin (k+—21-) t'é[k+2l) t and (2.1), we get

#=in

L=0@ [ w@dt=0{w(z/n)}.

Also, by (2.2) and Abel’s lemma
I, = O {a,, H(n/n)}.

Combining I; and I,, we get (2.7).
For the estimate (2.8), we first observe that

n/n

L=0® f w()dr.

Now integrating by parts and using (2.3), (2.5) we get

z/n %

f w()dt = [__,zf (w(u)/uz)du]g/”+ i/" 2tdt fn u2w(u)du =

0

=0 {n—zﬂ(n/n)+ fl tH(?) dt} = O{n2H(n/n)}.

Hence
I = O{n"H(n/n)}.

And proceeding as in I, above, we get
12 = 0 {a,mH(TC/Tl)}-

However, by (2.2), {a.}i=0 is non-decreasing and hence
(n+1)ann = 2 Apre = 1,
k=0

by (2.1). Thus using the inequality n~*=0(a,,) in I, and combining it with I,
we get (2.8).
This completes the proof of Theorem 2.

Proor oF THEOREM 3. Proceeding as in Theorem 2, we get

1L/l = L+1,

where
L = O {w(n/n)}
and
L=2f _____“’((’1) S 4 sin [k+—;—)t .
k=0

o
wn 2sin ¢
2
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By Lemma 2, we get

wlk

I, =0(1) f" t=1w(Db,([n/t])dt = O(1) "jl [ T o@b,(/t)dt =
r/n k=1 pic+1)
n— xf n—
—o) S ok | )i =00) S o@hb,te k.
k=1 w/(k+1) k=1

Thus combining I; and I, we get the required result and hence the proof of
the theorem is complete.

ProOF OF THEOREM 4. Splitting up the integral in (4.1) into the sub-integrals
[ 2
f and f and proceeding as in Theorem 1, the proof of the theorem may be com-
0 @y
pleted. ’

5. In this section, we specialize the matrix A==(a,) to obtain corollaries of

the theorems.

By (1.5), we get the following corollary from Theorem 1:

CoROLLARY 1. Let o(2) satisfy (2.3), (2.4) and (2.5) and let (p,) be non-negative
and non-decreasing. Then

H’Rn(,f) _fn = 0{(pn/Pn) H(pn/Pn)}'
If feLip o (O<a=1), then w(t)=0() (0<a=1) and

Hu) = {lcig (nfw) a=1

w1t O<oa=<1.

Hence Theorem A is a particular case of Corollary 1. B

It is interesting to note that one can get the estimate or Coroliary 1 by using
Norlund matrix (see (1.6)), in place of Riesz matrix. On setting d,,=p,_/P, in
Theorem 4, we get

CoROLLARY 2: Let w(t) and (p,) be as defined in Corollary 1. Then
[N () =F1 = O{(pa/ P) H(p,/ P)}-

Now we give the following corollary from Theorem 3:

COROLLARY 3. The degree of approximation of fcC*[0,2x] by the (R,p,)
means of Fourier series of f is given by

(5.1) [R(~F1 = 04 3k Peam/io),
where (p,) is non-negative and non-increasing.

Proor. We have, by (1.5),
k+1
bn(k+1) = Z Ay = Pk+1/Pn-
r==0
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However (p,) is non-increasing therefore

and (k~1P,) is non-increasing and hence

o@/n) = (Pt 3 o(/k)k-1P,.
k=1

Using these estimates in (2.10), we get the required result.

It is interesting to note that the estimate in (5.1) was earlier obtained in [3]
by using Norlund matrix as defined by (1.6), where (p,) is defined as in Corollary 3.

Since f€Lip o« implies that «(r)=0(r*), we deduce the following corollary
from Corollary 3:

COROLLARY 4. Let fe€C*[0,2x] and let feLip o (O<<a=1). Then the degree
of approximation of f by (R, p,)-means of its Fourier series is given by

IR, (f)— £ = 0{(/P,) g k-1-*R},

where (p,) is non-increasing and non-negative.

Once again, the estimate in Corollary 4 was earlier obtained in [2] in the case
of Norlund matrix generated by non-negative and non-increasing sequence (p,)-
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