STRONG CONVERGENCE OF CERTAIN MEANS WITH RESPECT TO THE WALSH—FOURIER SERIES

P. SIMON (Budapest)

- 1. Introduction. It is known [1] that the Walsh—Paley system is not a Schauder basis in $L^1[0, 1]$. Moreover, there exists a function in the (dyadic) Hardy space $H^1[0, 1]$, the partial sums of which are not bounded in $L^1[0, 1]$. In this article we shall prove that some means of the L^1 -norms of these partial sums can be convergent for all elements of $H^1[0, 1]$. For the trigonometric analogue of this statement see the work of B. Smith [5]. (In the proof we follow his method.) The sharpness of our theorem is also investigated.
- 2. We recall briefly some notations and definitions. First of all denote w_n (n=0, 1, ...) the n-th Walsh—Paley function, i.e. let

$$w_1(t) := \begin{cases} 1 & (0 \le t < 1/2) \\ -1 & (1/2 \le t < 1), \end{cases} \quad w_1(t) = w_1(t+1) \quad \text{(for all real } t\text{)}$$

and

$$w_{2^n}(t) := w_1(2^n t) \quad (0 \le t \le 1, \ n = 0, 1, \ldots).$$

If $n = \sum_{i=0}^{\infty} n_i 2^i$ $(n_i = 0, 1)$ is the dyadic representation of n = 0, 1, ... then let

$$w_n := \prod_{k=0}^{\infty} w_2^{n_k}.$$

It is well-known that $(w_n, n=0, 1, ...)$ is a complete orthonormal system. (For more details see e.g. [1].) For $f \in L^1 := L^1[0, 1]$ let $\hat{f}(n)$ be the *n*-th Walsh—Fourier coefficient of f, i.e.

$$\hat{f}(n) := \int_{0}^{1} f w_{n} \quad (n = 0, 1, ...).$$

Furthermore, we denote by D_n the *n*-th Dirichlet kernel with respect to $(w_n, n = 0, 1, ...)$:

$$D_n := \sum_{k=0}^{n-1} w_k \quad (n = 0, 1, ...).$$

426 P. SIMON

Later we shall often use the following assertions (see [4]):

(1)
$$D_n = w_n \sum_{k=0}^{\infty} n_k w_{2k} D_{2k} \quad (n = \sum_{k=0}^{\infty} n_k 2^k = 0, 1, ...),$$

(2)
$$D_{2^k}(t) = \begin{cases} 2^k & (0 \le t < 2^{-k}) \\ 0 & (2^{-k} \le t < 1) \end{cases} \quad (k = 0, 1, ...).$$

The so-called Hardy space plays an important part in the further investigations. Let Q(f) be the quadratic variation of $f \in L^1$, i.e.

$$Q(f) := \left(\sum_{n=0}^{\infty} \left(S_{2^{n+1}}(f) - S_{2^n}(f)\right)^2\right)^{1/2},$$

where

$$S_n(f) := \sum_{k=0}^{n-1} \hat{f}(k) w_k \quad (n = 1, 2, ...).$$

Then the space $H^1:=H^1[0,1]$ is defined by $H^1:=\{f\in L^1\colon Q(f)\in L^1\}$. It is well-known (see [2]) that the elements of H^1 can be represented as linear combinations of so-called atoms. A function $a\in L^\infty[0,1]$ is called an atom, if either a=1 or $\int_0^1 a=0$ and there is a dyadic interval $I_a\subset [0,1]$ such that supp $a\subset I_a$ and $|a|\leq |I_a|^{-1}$ ($|I_a|$ is the length of I_a .) Then $f\in L^1$ belongs to H^1 if and only if there exist real coefficients a_i and atoms a_i ($i=0,1,\ldots$) so that

$$\sum_{i=0}^{\infty} |\alpha_i| < +\infty \quad \text{and} \quad f = \sum_{i=0}^{\infty} \alpha_i a_i.$$

3. It is known in the Walsh-Fourier analysis (see [1]) that the system $(w_n, n=0, 1, ...)$ is not a Schauder basis in L^1 . Moreover, there exists a function $f \in H^1$ such that the L^1 -norms of the partial sums $S_n(f)$ (n=1, 2, ...) are not bounded. However, the following theorem shows that certain means of the $||S_n(f)||_1$'s can be convergent for all $f \in H^1$.

THEOREM. If $f \in H^1$, then

(3)
$$\lim_{n \to +\infty} \frac{1}{\log n} \sum_{k=1}^{n} k^{-1} ||S_k(f)||_1 = ||f||_1.$$

Let n be a natural number for which $2^{N-1} \le n < 2^N$ (N=2, 3, ...) holds. Then

$$\left|\frac{1}{\log n}\sum_{k=1}^{n-1}k^{-1}\|S_k(f)\|_1 - \|f\|_1\right| = \left|\frac{1}{\log n}\sum_{k=1}^{n-1}k^{-1}(\|S_k(f)\|_1 - \|f\|_1) + \frac{1}{\log n}\sum_{k=1}^{n-1}k^{-1}(\|S_k(f)\|_1 - \|f\|_1 -$$

$$+\|f\|_1\left(\frac{1}{\log n}\sum_{k=1}^{n-1}k^{-1}-1\right)\| \leq \frac{1}{\log n}\sum_{k=1}^{n-1}k^{-1}\|f-S_k(f)\|_1+o(1) \quad (n\to+\infty),$$

i.e. $\lim_{n \to +\infty} \frac{1}{\log n} \sum_{k=1}^{n-1} k^{-1} ||f - S_k(f)||_1 = 0$

implies our statement. On the other hand

$$\frac{1}{\log n} \sum_{k=1}^{n-1} k^{-1} \|f - S_k(f)\|_1 \leq 2N^{-1} \sum_{k=0}^{N-1} \sum_{j=0}^{2^{k-1}} (2^k + j)^{-1} \|f - S_{2^k + j}(f)\|_1 \leq 2N^{-1} \sum_{k=0}^{N-1} 2^{-k} \sum_{j=0}^{2^{k-1}} \|f - S_{2^k + j}(f)\|_1 =: 2N^{-1} \sum_{k=0}^{N-1} d_k(f).$$

If we denote by $E_n(f)$ the arithmetic mean of $d_{n+1}(f), ..., d_{2n}(f)$, i.e.

$$E_n(f) := n^{-1} \sum_{k=n+1}^{2n} d_k(f) \quad (n = 1, 2, ...),$$

then it is clear that

$$\lim_{n \to +\infty} E_n(f) = 0$$

is sufficient for (4) to hold.

The statement of the theorem cannot hold for all $f \in L^1$. To this end let $(\alpha_k, k=1, 2, ...)$ be a sequence of real numbers of bounded variation, i.e.

$$\sum_{k=1}^{\infty} |\alpha_k - \alpha_{k+1}| < +\infty,$$

and take the function f defined by

(6)
$$f := \alpha_k (D_{2^{k+1}} - D_{2^k}).$$

Since $||D_{2^k}||_1 = 1$ (k=0, 1, ...) (see (2)), by means of Abel transformation it follows that $f \in L^1$. On the other hand if n=1, 2, ... and $j=0, ..., 2^n-1$, then

$$S_{2^{n}+j}(f) = \sum_{k=1}^{n-1} \alpha_k (D_{2^{k+1}} - D_{2^k}) + \alpha_n (D_{2^{n}+j} - D_{2^n}) = \sum_{k=1}^{n-1} \alpha_k (D_{2^{k+1}} - D_{2^k}) + \alpha_n w_{2^n} D_j,$$

from which

$$||S_{2^{n}+j}(f)||_{1} \geq |\alpha_{n}| ||D_{j}||_{1} - ||\sum_{k=1}^{n-1} \alpha_{k} (D_{2^{k+1}} - D_{2^{k}})||_{1} \geq$$

$$\geq |\alpha_{n}| ||D_{j}||_{1} - ||\sum_{k=2}^{n-1} (\alpha_{k-1} - \alpha_{k}) D_{2^{k}} - \alpha_{1} D_{2} + \alpha_{n-1} D_{2^{n}}||_{1} \geq$$

$$\geq |\alpha_{n}| ||D_{j}||_{1} - \left(\sum_{k=2}^{n-1} |\alpha_{k} - \alpha_{k-1}| + |\alpha_{1}| + |\alpha_{n-1}|\right) = |\alpha_{n}| ||D_{j}||_{1} + O(1) \quad (n \to +\infty)$$

follows. This leads to

$$2^{-n}\sum_{j=0}^{2^{n}-1}\|S_{2^{n}+j}(f)\|_{1}\geq 2^{-n}|\alpha_{n}|\sum_{j=0}^{2^{n}-1}\|D_{j}\|_{1}+O(1)\quad (n\to+\infty).$$

Since there exists an absolute constant C>0 such that (see [3])

(7)
$$n^{-1} \sum_{j=0}^{n-1} \|D_j\|_1 \ge C \log n \quad (n \to +\infty),$$

428 P. SIMON

therefore

$$2^{-n}\sum_{j=0}^{2^{n}-1}\|S_{2^{n}+j}(f)\|_{1} \geq C n|\alpha_{n}| + O(1) \quad (n \to +\infty).$$

Hence, if $\lim_{n \to \infty} n \cdot |\alpha_n| = +\infty$, then it is easy to prove that

$$\lim_{n \to +\infty} (\log n)^{-1} \sum_{k=1}^{n} k^{-1} ||S_k(f)||_1 = +\infty.$$

For example the sequence $\alpha_n := n^{-1/2}$ (n=1, 2, ...) satisfies the conditions required above.

On the other hand there exists a function $f \in L^1 \setminus H^1$ such that (3) holds. Indeed, if we take in (6)

$$\alpha_k := (k \cdot \log k)^{-1}$$
 $(k = 2, 3, ...)$ and $\alpha_1 := 0$,

then $f \in L^1$ and

$$Q(f)||_{1} = \sum_{n=0}^{\infty} \int_{2^{-n-1}}^{2^{-n}} Q(f) \ge \sum_{n=2}^{\infty} \int_{2^{-n-1}}^{2^{-n}} |S_{2^{n+1}}(f)| - |S_{2^{n}}(f)| =$$

$$= \sum_{n=2}^{\infty} \alpha_{n} \int_{2^{-n-1}}^{2^{-n}} |D_{2^{n+1}} - D_{2^{n}}| = 1/2 \sum_{n=2}^{\infty} (n \log n)^{-1} = +\infty,$$

i.e. $f \notin H^1$. Fruthermore, if n=1, 2, ... and $j=0, ..., 2^n-1$, then

$$||f - S_{2^{n}+j}(f)||_{1} = \left| \left| \sum_{k=n}^{\infty} \alpha_{k} (D_{2^{k+1}} - D_{2^{k}}) - \alpha_{n} w_{2^{n}} D_{j} \right| \right|_{1} \le$$

$$\leq \left| \left| \sum_{k=n+1}^{\infty} (\alpha_{k-1} - \alpha_{k}) D_{2^{k}} - \alpha_{n} D_{2^{n}} \right| \right|_{1} + \alpha_{n} ||D_{j}||_{1} \le \sum_{k=n+1}^{\infty} |\alpha_{k-1} - \alpha_{k}| + \alpha_{n} + O(n \cdot \alpha_{n}) =$$

$$= o(1) \quad (n \to +\infty).$$

(Here we used the fact (see [3]) that $||D_j||_1 = O(\log j)$ $(j \to +\infty)$.) From this (4) follows evidently.

Finally, we remark that $\lim_{k\to +\infty} d_k(f) = 0$ cannot be true for all $f \in H^1$. Indeed,

$$\begin{split} f := \sum_{k=1}^{\infty} k^{-2} (D_{2^{k^3}+1} - D_{2^{k^3}}) \in H^1 \\ \\ d_{k^3}(f) &= 2^{-k^3} \sum_{j=0}^{2^{k^3}-1} \|S_{2^{k^3}+j}(f) - f\|_1 \geq \\ \\ &\geq 2^{-k^3} \sum_{j=0}^{2^{k^3}-1} \|S_{2^{k^3}+j}(f) - S_{2^{k^3}}(f)\|_1 - \|S_{2^{k^3}}(f) - f\|_1. \end{split}$$

and

Acta Mathematica Hungarica 49, 1987

Since $||f - S_{2k}(f)||_1 = o(1)$ $(k \to +\infty)$ (see [3]) thus applying (7) we get

$$d_{k^3}(f) \ge k^{-2} \cdot 2^{-k^3} \sum_{j=0}^{2^{k^3}-1} \|D_{2^{k^3}+j} - D_{2^{k^3}}\|_1 + o(1) =$$

$$= k^{-2} \cdot 2^{-k^3} \sum_{j=0}^{2^{k^3}-1} \|D_j\|_1 + o(1) \ge C \cdot k + o(1) \quad (k \to +\infty).$$

4. For the proof of the theorem we need the following

LEMMA. Let $a \in H^1$ be an atom. Then for all n=1, 2, ... we have

$$||S_n(a)-a||_1 \le 12|\hat{a}(n)|\log|I_a|^{-1}+e_n(a),$$

where $\lim_{n\to +\infty} e_n(a) = 0$ and $|e_n(a)| \leq 2$.

PROOF. Since for a=1 the lemma is trivial, we may suppose that $a\neq 1$. Let $I_a=[k2^{-m},(k+1)2^{-m})$ (m=0,1,... and $k=0,...,2^m-1)$ and $x\in [0,1]\setminus I_a$. Then by (1) and (2)

$$S_{n}(a)(x) - a(x) = S_{n}(a)(x) = \int_{0}^{1} a(t)w_{n}(x+t) \sum_{j=0}^{\infty} n_{j}w_{2^{j}}(x+t)D_{2^{j}}(x+t)dt =$$

$$= w_{n}(x) \sum_{j=0}^{m-1} n_{j}w_{2^{j}}(x+k2^{-m}) \int_{I_{a}} a(t)w_{n}(t)D_{2^{j}}(x+t)dt =$$

$$= w_{n}(x) \sum_{j=0}^{j(x)} n_{j}w_{2^{j}}(x+k2^{-m})2^{j} \int_{I_{a}} aw_{n},$$

where j(x) denotes the maximum of indices j=0, ..., m-1 such that $D_{2j}(x+t)=2^j$ $(t \in I_a)$. (+ stands for the dyadic addition.) If $x \in [s2^{-m}, (s+1)2^{-m})$ $(s=0, ..., 2^m-1, s \neq k)$, then $2^{j(x)} \leq 2^m |s-k|^{-1}$, therefore

$$\int_{\substack{[0,1]\setminus I_a}} |S_n(a)-a| = \sum_{\substack{s=0\\s\neq k}}^{2^{m-1}} \int_{s^{2-m}}^{(s+1)^{2-m}} |S_n(a)-a| \le$$

$$= 2 \sum_{\substack{s=0\\s\neq k}}^{2^{m-1}} |\hat{a}(n)| |s-k|^{-1} \le 4 |\hat{a}(n)| \sum_{j=1}^{2^m} j^{-1} < 12 |\hat{a}(n)| m.$$

On the other hand

$$\int_{I_a} |S_n(a) - a| \le |I_a|^{1/2} ||S_n(a) - a||_2 =: e_n(a) = o(1) \quad (n \to +\infty)$$

and

$$e_n(a) \le 2^{-m/2} (\|S_n(a)\|_2 + \|a\|_2) \le 2^{1-m/2} \|a\|_2 \le 2.$$

This completes the proof of Lemma.

430 P. SIMON

PROOF OF THE THEOREM. Let $f \in H^1$ be an arbitrary function and consider an atomic decomposition of f:

$$f = \sum_{i=0}^{\infty} \alpha_i a_i, \quad \sum_{i=0}^{\infty} |\alpha_i| < +\infty.$$

Furthermore, introduce the notation $I_i := I_{a_i}$ (i=0, 1, ...) and rearrange the above decomposition of f as follows:

$$f = \sum_{s=0}^{\infty} \sum_{|L|=2^{-s}} \alpha_i a_i.$$

If n is a natural number, then

$$E_{n}(f) = n^{-1} \sum_{k=n+1}^{2n} d_{k}(f) = n^{-1} \sum_{k=n+1}^{2n} 2^{-k} \sum_{j=0}^{2^{k}-1} \left| \left| \sum_{s=0}^{\infty} \sum_{|I_{i}|=2^{-s}} \alpha_{i} (S_{2^{k}+j}(a_{i}) - a_{i}) \right| \right|_{1} \le$$

$$\leq \sum_{s=0}^{\infty} n^{-1} \sum_{k=n+1}^{2n} \sum_{|I_{i}|=2^{-s}} |\alpha_{i}| 2^{-k} \sum_{j=0}^{2^{k}-1} \left| \left| S_{2^{k}+j}(a_{i}) - a_{i} \right| \right|_{1} =$$

$$= \sum_{s=0}^{2n} + \sum_{s=2n+1}^{\infty} =: A_{n} + B_{n}.$$

To the estimation of B_n we remark that if $a \in H^1$ is an atom, then $\hat{a}(m) = 0$ for all $m = 0, 1, ..., |I_a|^{-1} - 1$. Hence, all of the partial sums of the a_i 's in B_n are equal to zero, therefore

$$B_n \leq \sum_{s=2n+1}^{\infty} \sum_{|I_s|=2^{-s}} |\alpha_i| = o(1) \quad (n \to +\infty).$$

Let us decompose A_n into two further parts as

$$A_n = \sum_{s=0}^n + \sum_{s=n+1}^{2n} = :A_{n1} + A_{n2}.$$

Then applying the lemma and Cauchy-Schwarz inequality we get

$$A_{n1} \leq 12 \sum_{s=0}^{n} sn^{-1} \sum_{k=n+1}^{2n} \sum_{|I_i|=2^{-s}} |\alpha_i| 2^{-k} \sum_{j=0}^{2^{k}-1} |\hat{a}_i(2^k+j)| + o(1) \leq$$

$$\leq 12 \sum_{s=0}^{2n} sn^{-1} \sum_{k=n+1}^{2n} \sum_{|I_i|=2^{-s}} |\alpha_i| 2^{-k/2} ||a_i||_2 + o(1) \leq$$

$$\leq 12 \sum_{s=0}^{n} sn^{-1} \sum_{k=n+1}^{2n} 2^{(s-k)/2} \sum_{|I_i|=2^{-s}} |\alpha_i| + o(1) = o(1) \quad (n \leftarrow +\infty).$$
Furthermore,
$$A_{n2} = \sum_{s=n+1}^{2n} n^{-1} \sum_{k=n+1}^{s} \sum_{|I_i|=2^{-s}} |\alpha_i| 2^{-k} \sum_{j=0}^{2^{k}-1} ||S_{2^k+j}(a_i) - a_i||_1 +$$

$$+ \sum_{s=n+1}^{2n} n^{-1} \sum_{k=s+1}^{2n} \sum_{|I_i|=2^{-s}} |\alpha_i| 2^{-k} \sum_{j=0}^{2^{k}-1} ||S_{2^k+j}(a_i) - a_i||_1 =: A_{n2}^1 + A_{n2}^2$$

and A_{n2}^1 , A_{n2}^2 can be estimated by the same method as above. Thus

$$A_{n2}^{1} \leq \sum_{s=n+1}^{2n} n^{-1} \sum_{k=n+1}^{s} \sum_{|I_{i}|=2^{-s}} |\alpha_{i}| = n^{-1} \sum_{s=n+1}^{2n} (s-n) \sum_{|I_{i}|=2^{-s}} |\alpha_{i}| \leq \sum_{s=n+1}^{\infty} \sum_{|I_{i}|=2^{-s}} |\alpha_{i}| = o(1) \quad (n \to +\infty)$$

and

$$A_{n2}^{2} \leq 12 \sum_{s=n+1}^{2n} s n^{-1} \sum_{k=s+1}^{2n} \sum_{|I_{i}|=2^{-s}} |\alpha_{i}| 2^{-k} \sum_{j=0}^{2^{k}-1} |\hat{a}_{i}(2^{k}+j)| + o(1) \leq$$

$$\leq 12 \sum_{s=n+1}^{2n} s n^{-1} \sum_{k=s+1}^{2n} \sum_{|I_{i}|=2^{-s}} |\alpha_{i}| 2^{(s-k)/2} + o(1) \leq$$

$$\leq 12 \sum_{s=n+1}^{2n} s n^{-1} \sum_{|I|=2^{-s}}^{2n} |\alpha_{i}| + o(1) = o(1) \quad (n \to +\infty).$$

This completes the proof of the theorem.

References

- [1] L. A. Balashov—A. I. Rubinstein, Series with respect to the Walsh system and their generalizations, *Itogi nauki*, *Mat. anal.*, (1970), 147—202 (in Russian).
- [2] R. R. Coifman—G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569—645.
- [3] N. J. Fine, On the Walsh functions, TAMS, 65 (1949), 372—414.
- [4] F. Schipp, Construction of a continuous function, whose Walsh series diverges at a prescribed point, *Annales Univ. Sci. Budapest*, Sectio Math., 9 (1966), 103—108.
- [5] B. Smith, A strong convergence theorem for H¹(T), Lecture Notes in Math., 995, Springer (Berlin—New York, 1983), 169—173.

(Received April 10, 1985)

EÖTVÖS LORÁND UNIVERSITY DEPARTMENT OF NUMERICAL ANALYSIS BUDAPEST, MUZEUM KRT. 6—8. H—