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STRONG CONVERGENCE OF CERTAIN MEANS 
WITH RESPECT TO THE WALSH--FOURIER SERIES 

P. SIMON (Budapest) 

1. Introduction. It is known [1] that the Walsh--Paley system is not a Schauder 
basis in LI[0, 1]. Moreover, there exists a function in the (dyadic) Hardy space 
Hi[O, 1], the partial sums of  which are not bounded in L~[0, 1]. In this article we 
shall prove that some means of  the Ll-norms of these partial sums can be conver- 
gent for all elements of HI[0, 1]. For the trigonometric analogue of this statement 
see the work of B. Smith [5]. (In the proof  we follow his method.) The sharpness 
of  our theorem is also investigated. 

2. We recall briefly some notations and definitions. First of  all denote w, 
(n =0,  1 . . . .  ) the n-th Walsh--Paley function, i.e. let 

and 

1 ( 0 < - t <  1/2) 
w i ( t ) : =  1 (1/2 <-- t < l), w ~ ( t ) = w i ( t + l )  (for all realt)  

w2,(t):=Wl(2"t) (0<-- t <-- 1, n =  0 ,1 , . . . ) .  

If  n= 2 ni 2i (ni=0, 1) is the dyadic representation of  n=0, 1 . . . .  then let 
i = 0  

w~::  /~  w~.  
k = 0  

It is well-known that (w,, n=0 ,  1 . . . .  ) is a complete orthonormal system. (For 
more details see e.g. [1].) For fELI:=Li[O, 1] let f ( n ) b e  the n-th Walsh--Fourier  
coefficient of f ,  i.e. 

1 

f(n) := f fw.  (n = O, 1 . . . .  ). 
0 

Furthermore, we denote by D. the n-th Dirichlet kernel with respect to (w., n =  
= 0 ,  1 . . . .  ): 

n - - 1  

D , : =  ~ w~ ( n = 0 , 1  . . . .  ). 
k z O  
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Later we shall often use the following assertions (see [4]): 

(1) D, = w, 2 nkwz~D~k (n = ~ nk2 k = O, 1, ...), 
k~O k=O 

= < , <  = o , ,  . . . .  (2) D2,(t) = (2 -k <= t < 1) 

The so-called Hardy space plays an important part in the further investigations. 
Let Q ( f )  be the quadratic variation of ]'EL 1, i.e. 

where 

Q( f )  := ( ~  (S2.+,(f)-S~.(,f))2) 1t~, 
R~O 

S , ( f )  := • f ( k ) w  k (n = 1,2, ...). 
k = 0  

Then the space H I : = H I [ 0 ,  1] is defined b y - H I : =  {fCLI: Q(f)CL1}. It is well- 
known (see [2]) that the elements of H 1 can be represented as linear combinations 
of  so-called atoms. A function aEL=[O, 1] is called an atom, if either a = l  or 

f a = 0  and there is a dyadic interval I , c [0 ,  1] such that supp acIa  and [a]<= 
0 

<= [I,1-1 (1i,[ is the length of Ia.) Then f ~ L  l~belongs to H 1 if and only if there exist 
real coefficients u~ and atoms a, ( /=0,  1 . . . .  ) so that 

i=O i = 0  

3. It is known in the Walsh--Fourier  analysis (see [1]) that the system 
(W,, n - 0 ,  1 . . . .  ) is not a Schauder basis in LL Moreover, there exists a function 
f 6 H  1 such that  the Ll-norms of the partial sums S , ( f )  (n= l ,  2 . . . .  ) are not 
bounded. However, the following theorem shows that certain means of the ][ 5:, (f)[I l's 
can be convergent for all fC H 1. 

Trmom~M. I f  fE H 1, then 

(3 )  l i  k-lllSk(f)ll~ = llftE1. 
= g n  k=l 

Let n be a natural number for which 2N-X<=n<2 N (N=2,  3 . . . .  ) holds. Then 

- 1 <- ~ ~ k - l l l f - S k ( f ) l l x + o ( 1 )  (n -+ +oo), 
k=i - l o g  n k=i 

i , e ,  

1 r / - 1  

(4) lim iX'g-ff~, ~ k- l l l f - -Sk( f )[ l  1 = 0 
n ~ + o o  I O ~  n k = l  �9 
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implies our statement. On the other hand 

1 n - 1  tr ~k-i 

Z k-~Ilf-Sk(f)lh <- 2N-a Z Z (2k+J)-~llf-Sz~+J(f)Ih <= 
log n k=l k=0 j=o 

N--I 2k--i N--I 

<= 2N-~ ,~ 2-k Z [ff-S2~+flf)l[1 = : 2 N  -~ ~ '  d~(f). 
k=O j = o  k = O  

If  we denote by E~(f) the arithmetic mean of d~+i(f), ..., d~,(f), i.e. 

P~n 

E.(f)  := n -x .~  dk(f) (n = 1,2, ...), 
k = n + l  

then it is clear that 

(5) lira E,( f )  -- 0 

is sufficient for (4) to hold. 
The statement of the theorem cannot hold for all fELL To this end let 

(~k, k =  1, 2 . . . .  ) be a sequence of real numbers of bounded variation, i.e. 

IC<k--C~k+il < +0% 
k = l  

and take the function f defined by 

(6) f : -  ~k (D2~ +~ -- D ~ ) .  

Since IID2~I[~ = 1 (k=0,  1, ...) (see (2)), by means of Abel transformation it follows 
that fEL ~. On the other hand if n=l,  2 . . . .  and j = 0 ,  ..,, 2 " -1 ,  then 

n--1 n--1  

S2.+j(f) = ~ ak(D~+~-- D2~)+a.(D2.+j-D2,,) = ~ ~k(D2~+,-D2~)+~.w2.Dj, 
k = l  k = l  

from which 
n--1  

][S~+i(f)[h ~ [c<.l [[Dj[h-11 Z c~k(D~§ - D2~)llx 
k = l  

n--1  

=> I~.l IlDjlh-][ • @k-~- ek)D~k - elDz + e.-1D2-[[1 -> 
k = 2  

I~.t I } D j h -  ~ k -  ~k-ll + I~11 + 1~.-~ = I~.lllOjlh+O(1) 
k = 2  

(n ~ + co) 

follows. This leads to 

2"--1 2"--1 

2-" Z I[S~.+j(f)l[1 >= 2-"1~.1 Z [rOjlh+O(1) (n--- + ~ ) .  
j =o  j =o  

Since there exists an absolute constant C > 0  such that (see [3]) 

n--1  

(7) n -1 ~ lIDjIh => C log n (n ~ + oo), 
j = 0  

Acta Mathemat[ca Hungarica 49, 1987 



428 P. SIMON 

therefore 

2-" Z 
j = O  

IIS~-+j(f)lh =~ C nl~.l + 0(1) (n ~ + oo). 

Hence, if lira n.  I~.l = + oo, then it is easy to prove that 
+oo 

n 

lim (logn) -a Z k-~l[Sk(f)lla = + ~" 
n ~ + *  k = l  

For example the sequence e,:=n -~:2 (n = 1, 2 . . . .  ) satisfies the conditions required 
above. 

On the other hand there exists a function f C L t \ H  ~ such that (3) holds. 
Indeed, if we take in (6) 

c~k := (k . log k) -1 ( k = 2 , 3  . . . .  ) and cq:=O, 

then f E L  1 and 
2 - "  2 - n  

Qff)h= 2 f Q(f) ~ ~ f IS,~ : 
n:O g-n-I = ~-n--1 

2 - n  

= ~ .  f ID~.+,-D~.I = 1/2 ~(nlogn)-~= +o% 
n = 2  2-n-1 n=2 

i.e. f C H  1. Fruthermore, if n = l ,  2 . . . .  and j = 0  . . . . .  2 " - 1 ,  then 

= o(1) (n~+~o) .  

(Here we used the fact (see [3]) that llDjll~=O(logj) ( j ~ + ~ ) . )  From this (4) 
follows evidently. 

Finally, we remark that lira d k ( f ) = 0  cannot be true for all f C H L  Indeed, 

and 

f := ~ k -2 (D2ks+l--D21:)CH x 
k = l  

2 ks - -1  

dto(f)  = 2 - o  Z I I S : + , ( f ) - f l h  >-- 
/ = 0  

k a - 1  

-~ 2 -~  Z II S~, + j ( f )  - S2k,(f)lll -- 11S2~8(f) - f i b .  
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Since I I f -S2~( f ) l l l :o (1 )  ( k ~  + oo) (see [3]) thus applying (7) we get 

2 k 3 _ 1  

d ~ ( f )  => k - s  �9 2 -k~ 2" 
j=O 

IIO~+j - D~111 + o(1) : 

S/~3 - -  1 

= k - S ' 2 - k ~  Z I [ O f l t + o ( 1 )  ~ C . k + o ( 1 )  (k ~ -t-~o). 
j = 0  

4. For the proof of the theorem we need the following 

LEMMA. Let aC H 1 be an atom. Then for all n = l ,  2 . . . .  we have 

IIS.(a)-ab ~ 121a(n)l log  IIal-l+e.(a), 

where lim en(a) = 0 and le.(a)l <- 2. 
n~q-oo 

PROOF. Since for a =  1 the lemma is trivial, we may suppose that a ~  1. Let 
I , = [ k 2 - m , ( k + l ) 2  -m) (m=0,  1 . . . .  and k--0, .. . ,2m--I) and x q 0 ,  1] \ I , .  Then 
by (1) and (2) 

1 

S, (a) (x) - a(x) = S, (a) (x) = f a (t) w, (x 4- t) ~ nj wsJ (x 4- t) DsJ (x 4- t) dt : 
0 j = 0  

: Wn(X ) 
m - - 1  

ny ws~ (x 4- k2-  m) f a (t) w,, (t) Ds~ (x 4- t) dt = 
j = 0  la 

j (x) 

= w. (x) 2" nj wzJ (x 4- k2-  m)2J f aw., 
j=O ia 

where j (x)  denotes the maximum of indices j = 0  . . . . .  m -  1 such that D2j(x 4- t) = 2  j 
(tEl,). (4- stands for the dyadic addition.) If xE[s2 -m, ( s +  1)2 -m) (s--0, ..., 2 m-  1, 
s r  then 2J(x)~2mls-kl-1, therefore 

2m__l (s+l)2 -m 

f IS (a)-al = Z f IS (a)-al 
[O,1]\l a s=O s2-,n 

s ~ k  

2 m - 1  2 m 

= 2 Z la(n)lls-k[ -~ <- 41~(n)l 2 '  J-~ < 121,~(n)lm. 
s=O j = l  
s ~ k  

On the other hand 

and 

f l S . ( a ) - a l  ~ II.I1/SllS.(a)-alh-: e.(a) = o(1)  (n -~ + o ~ )  
la 

( ) (llS.()11 tl II ) < 21-m/211 [l < 2. ena <--2 -mls a s +  a s  = a s =  

This completes the proof of Lemma. 
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PROOF OF THE THEOREM. Let f q H  ~ be an arbitrary function and consider an 
atomic decomposition of f" 

i = 0  i = 0  

Furthermore, introduce the notation Ii:=I~, if=0, i . . . .  ) and rearrange the above 
decomposition of f as follows: 

s=o IZ~l =2-* 

If n is a natural number, then 

2n 2n 2 k --1 '~  

e o o o : .  -1 z z 2- z ll=z ~ z 
k = n + l  k = n + l  j = 0  Illl ~s 

2n 2k--1 

<= Z n-1 Z 2 [~,[2-k Z ]]s=~+,(a,)-,,,[ll= 
s = O  k = n + l  [[ i[=2-s  j = O  

= ~ ' +  = : A . + B . .  
s = 0  s = 2 n + l  

To the estimation of Bn we remark that if a~H 1 is an atom, then fi(m) =0 for all 
m =0, 1 . . . . .  I/~1-1-1. Hence, all of the partial sums of the a~'s in B, are equal to 
zero, therefore �9 

s = 2 n + l  lI~l = 2 - "  

Let us decompose A. into two further parts as 

s = O  S~nq-I 

Then applying the lemma and Cauchy--Schwarz inequality we get 

n 2n 2 k -- i 

A.1 <= 12 ~ s n  - i  z~ ~ I~i] 2-k ~ lgti(2k+j)l+o(1) 
s = O  k = n + l  Jill = 2  " s  j = O  

2n 2n 

~_ 12 Z s n  -1 ~+ '2  [a~12-k/21[ad12+o(1) <= 
s=O k =  1 ]Ill =2 - s  

~-12 sn-1 Z 2(~-k)/2 X [~1+o(1)=  o(1) ( n ~ - + ~ ) .  
s = 0  k = n + l  1Ill = 2  - s  

Furthermore, 
2n 2k--1  

A.2 = Z n- i  ~ Z I ~ d 2 - k Z  []S~+j(a~l-ad[l+ 
s = n + l  k = n + l  [ I ~ [ = 2 -  ] = 0  

1 2 + Z n-~ Z Z 1~,12-~ Z ]l&~+z(a3-ad~=:A.,+A., 
s = . + l  k = s + l  [I~] = $ - s  j=O 
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and A a 2 n2 ,  -'4n2 can be estimated by the same method  as above. Thus 

and 

2n ~ ,  ~n 

A~2 <- 2 n-1  ~ l ~ i l = n - 1  ~ ( s - n )  ~ I=il_- < 
s = n + l  k = n + l  ] I f [=2  - s  s = n + l  ]I/[ = 2  - s  

s = n + l  I l i l=2  -~  

2n 2n 2;: -- 1 

A~2 <= 12 Z sn-a Z Z I~,1 2-k  Z [a,(2k+J)l+~ 
s = n + l  k = s + l  [lil = 2 - s  j = 0  

2n 2n 
<= 12 Z sn-1 ~ z~ [~i]2(s-k)/~+o(1) <~ 

s = n + l  k = s + l  11i1=2 - s  

2n 2n 
<= 12 ~ sn -1 ~ I~i[+o(1)  = o(1) (n -+  +co) .  

s = n + l  1 1 1 = 2 ~  

This completes the p r o o f  o f  the theorem. 
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