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As previously pointed out by the authors,  the determination and use of the second 
derivative thermogravimetric curve (DDTG)  permits the accurate calculation of ki- 
netic parameters  of simple reactions, using the methods of numerical analysis. Further-  
more, the method outlined makes possible the kinetic analysis of some composite 
reactions which frequently occur in thermoanalytical  practice. The cases of indepen- 
dent and competitive reactions are discussed. In the latter the proposed method of 
evaluation is suitable for the on-line work of a combined thermobalance- -mass  
spectrometer system. 

Many doubts have been voiced recently about the adequacy of the rate law of 
thermal decomposition reactions. It is being discovered that certain systematic 
errors and experimental deficiencies have led to contradictions between literary 
data for the kinetic parameters of such reactions and the physical significance 
attributed to the parameters. Some authors thus prefer to regard all information 
provided by thermal analysis as purely qualitative from the point of view of ki- 
netics, and query the chances of gaining any real insight into the course of chemical 
reactions in this way. Much of this scepticism in fact seems to be justified, especial- 
ly with regard to a large part of the earlier literature on the topic, and in particular 
on treatment of composite chemical reactions. Even if the latest developments in 
experimental technique have succeeded in solving some of the conditions (it seems 
clear, for instance, that we have to accept severe limitations on the amount of 
sample, heating rate, etc.), the problems of numerical evaluation of the experi- 
mental results, despite the attention they have received, still remain practically 
unsolved. Most of the difficulties devolve on two factors: the first is the choice of 
an adequate rate law and parameters; the second is the mathematical method of 
getting these results from the initial experimental data. 

The rate law 

Satava [1 ] ~estfik and Berggren [2] have recently given comprehensive summa- 
ries of the equations applicable to solid-state decomposition reactions. Most of the 
rate laws of solid-state chemistry allow the use of an equation formally similar to 
the following simple expression for elementary reactions with homogeneous kinetics: 
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dot 
- k(1 - ot)~ = A e - E / R r ( 1  -- ot)n. (1) 

dt 

Certain types of  self-catalyzed reaction require more complicated functions. De- 
pending on the model used to derive expressions such as (1), definite values may 
be attributed to n on the basis of a topochemical approach. Deviations from these 
numbers may result in cases which do not correspond "purely" to one or another 
model. 

In the degradation of polymers an equation similar to (1) often seems appro- 
priate, while for the frequent examples of random degradation it is possible to use 
either some equation based on statistical considerations, with some necessary sim- 
plifications, or else an empirical formula corresponding to a certain extent to 
these equations. As a rule, the more sophisticated the equation, the more constants 
have to be determined, and the flexible formula may be fitted to a fairly wide range 
of curves. Here we reach the central difficulty of kinetic calculations: the problem 
that the overall conversion is insensitive to the special mathematical form of the 
rate law; in other words, more than one type of formula often give more or less 
equally good fits to the experimental results. That is why experimental accuracy 
cannot be too great, while every caution should be taken in the numerical cal- 
culation. 

Further difficulties arise when the kinetics cannot be described by any definite 
number of parameters. Of course, a sufficiently short section of the conversion 
curve may always be fitted by an equation of type (1) and parameters assigned to 
this section, but it is then tempting to try to attach physical importance to these 
parameters, and this may lead us to speak about "changing" mechanisms. In 
reality, although it is possible that a mechanism may alter in a dramatic way over 
some given temperature interval and so cause a sudden change in the set of param- 
eters, a continuously changing mechanism is most improbable. It will be shown 
later that when two simple elementary reactions are competing in the same system, 
the overall kinetics show a typically "variable" order, energy of activation and 
pre-exponential factor, indeed, at the beginning of the reaction, we may even 
find "negative orders";  obviously, in this case the parameters can have no physical 
meaning. In most composite cases we have to choose between two or more ways 
of  interpretation, and thus at least two independent experimental methods are 
needed to permit decision between the possible mechanisms. 

As most authors use a simple rate law, such as (1), and this is applicable to a 
very large number of experimental results, this will be dealt with first, though it 
should be pointed out that the methods described are not limited to this equation. 

Some remarks on methods of calculation used 
in thermogravimetry 

Methods of calculation may be classed as either differential or integral, depend- 
ing on whether they are based on the differential or integrated form of  the rate 
equation. Integral methods can only be used to fit conversion curves, and then 
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only the curve as a whole, and never parts of it. The main advantage of such pro- 
cedures is that primary experimental data are used directly, and assumptions or 
approximations (above all in the chosen mode of integration) are applied only to 
the approximating function and not to the curve to be reproduced. Their main 
drawback is that on account of the insufficiency of data, at least one parameter 
must be assumed in the calculation and changed by trial-and-error until the fit 
is obtained. Even though this tedious procedure is nowadays simplified by com- 
puter and is consequently not too time-consuming, the disadvantage remains that 
it is inconvenient to apply proper statistical methods, and so the procedure is not 
a genuine curve-fitting. In addition, it is very hard to estimate the importance 
of the residual deviation of the theoretical from the experimental curve. 

Differential methods have the advantage of being simpler, and at the same time 
the lack of information is less, since two functions, TG and DTG, are available 
for which values can be substituted in the rate equation. The main problem in 
their application is always connected with obtaining the derivative of the conver- 
sion function, the DTG. The analogue signal of some recording thermobalance 
is unsuited for this purpose. An attempt has been made by Schempf et al. [3] to 
fit the TG curve by a single high-degree polynomial, Such an expression ought 
essentially to carry out a twofold task: first it should smooth the curve to diminish 
the influence of experimental scatter, and second, it should approximate the prob- 
ability function. The fulfilment of the first condition is very important, because 
differentiation magnifies scatter greatly, while as to the second point the chosen 
polynomial must approximate the TG function with the least possible distortion, 
as its derivative is wanted. In fact the two tasks cannot be catered for by one and 
the same polynomial; indeed, smoothing alone is impossible by a single expression, 
on account of the great variation in "signal-to-noise ratio" along the curve. One 
criticism of the frequently used Freeman- Carroll method and its published com- 
puterized versions [4] is precisely its inaccuracy. 

While many of the differential and some integral methods try to overcome the 
above deficiencies by the use of more than one TG curve, obtained on different 
samples by employing different heating rates, it is easy to demonstrate that they 
do so only at the expense of an increase in error. 

In this paper an attempt is made to approach the kinetic problem by a more 
correct numerical treatment of the thermogravimetric data, and also by using the 
second derivative function (DDTG) in addition to the first derivative (DTG) and 
the integral (TG) [6]. 

New numerical treatment of thermogravimetric results: 
the D D T G  method 

As the first and especially the second derivatives are highly sensitive to experi- 
mental error, methods with a good smoothing power had to be sought. Basically, 
the choise rested between two types of methods. According to the first of these 
the experimental data could be approximated by a function only partly able to 
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follow the fluctuations of the errors, and this smoothing function differentiated. 
The second possibility is to carry out a numerical differentiation in the usual way 
(that is the derivatives are substituted by the differential quotient of an interpolat- 
ing curve), and to smooth the obtained curve. The drawback of both methods is 
that if smoothing of a sufficient extent is applied, the substituting of the derivative 
and the smoothing together become a very poorly-defined procedure; it is hard to 
judge whether the procedure is correct or not, and it is hard to view the influence 
of the individual factors on the systemic error. For example, the derivative of a 
well-smoothed curve may be highly distorted in comparison to the function to be 
obtained, and thus the approximation of the derived function may be poor in 
spite of the good fit given by the integral function. 

The difficulties, however, can be overcome in the following way [5]. 
Let us take an interval [a, b] and transform it to the interval [ -  1, 1]. We want 

to define a polynomial p(x) which is the best approximation of the unknown func- 
dy 

tion ~ in the following sense: 

+1 

- 1  

Let us express p(x) by means of Legendre polynomials: 

p(x)= ~ ajPs(x ). (3) 
j = 0  

As the Legendre polynomials are orthogonal, the aj coefficients may be written as : 
+1 

aj = (j + 0.5) / ~ Pj(x)dx. (4) 

- 1  

The dy/dx in (4) can be eliminated by partial integration: 
+1 +1 

= y d x  / . ( 5 )  

- 1  - 1  

If the experimental data y, are taken sufficiently close together, then the integral 
included in (5) can be determined by the well-known methods of integrating with 
weight functions. It is found that the systematic formula-error inherent in the 
numerical nature of the integration is negligible in comParison to the random error 
of the experimental fluctuations if we use more than ten base points and poly- 
nomials of the second or third degree. As we actually fit an interpolating function 
onto the Yi points during integrating with weight functions, the procedure outlined 
above may be regarded as a smoothing of the derivative of the interpolating func- 
tion by (2) but with the differentiation of the interpolating function eliminated by 
the integration. 
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As detailed analysis shows that the random error of the derivative is variable 
along the interval, a special "sliding and averaging" procedure, which may be 
performed in different ways depending on the accuracy required, was worked out. 
The derivation cannot be "automatized" completely, because the operator has to 
decide the location and length of the intervals, the degree of polynomials, and the 
mode of  "sliding and averaging", taking into account the special features of the 
experimental curve under evaluation. 

By means of this procedure we were able to produce first and second derivatives 
with a high accuracy. 

The following D D T G  calculation [6] makes use of these three functions. If  
(1) is taken to be valid, we may write the second derivative function of the conver- 
sion, e, or of the remaining weight fraction w = 1 - c(, according to 

d2w _ a w l  E dw n ]. (6) 
dT  z dT  R T  2 dT  w 

This may be simply transformed to the linear equation 

(d2w/dr z) T 2 (dw/dT)T  z 
E I - K = (7) 

I =  Kn + R T  z , (dw/dT) ' W 

The residual fluctuation, which is due not to the random accidental vibration of  
the balance or any other part of  the measuring system, but to the non-uniformity 
of  the decomposition itself, may be eliminated by a linear regression analysis of  
the I vs. K values obtained. 

If  the method holds, it yields directly the three parameters of  (1); if not, it is 
simple to notice and hence to conclude that a more complicated rate law is ap- 
propriate. 

Solution of some kinetic problems in composite eases by means of the DDTG function 

Equation (7) provides a simple method of linearizing anisothermic (dynamic) 
thermogravimetric curves that not only allows the correction of experimental 
curves, but (in contrast to integral methods ) may also be applied to a part of the 
curve; this is of considerable importance in general thermogravimetric techniques 
in view of the commonness of multi-step decompositions [7]. Provided the succes- 
sive steps are well separated, they can be treated independently. If  neighbouring 
steps overlap, however, it is often very hard to determine the amounts of substance 
which actually decompose in each step, since the steps can be separated only in an 
arbitrary way. If  we use the I vs. K diagram, we observe that at the end of the 
decomposition it always becomes linear, as in this section only the end-reaction 
takes place. 

Let us take as an example a simple two-step reaction with two independent, 
parallel reactions in which both reactions are of  type (1). Denoting the actual 
weight by g, the weight :at the beginning of the reaction by g0, and writing the 
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different kinetic parameters  in the usual  way  but  distinguishing them by the 
indices 1 and 2 for reactions 1 and 2, we obtain [7]: 

g ~ - ' ~  = A 2 E z ( n  z - l )  glo;"~ p ( x ~ )  + g~;"~ (8) 

E d T  e - x  ~ e - u  e x 
- - - -  J d u  = - -  - E i .  where RT - x ,  ~ -  = B and p ( x )  = x u x 

x 

In a plot of#  1-n~ vs. p(x2), 9o2 can be found from the intercept, we can obtain A2 
from the slope, as E2, and n2 may obviously be calculated from the final linear 
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Fig. l .  T G  a n d  D T G  curves  o f  t w o  i n d e p e n d e n t ,  para l le l  r eac t ions .  A1 = 10 *~ E1 = 35 
kca l /mole ,  nl = 1.2; A s = 101~,E2 = 60 kca l /mole ,  n 2 = 0.8, Cu rve  1 : B = 4 K / m i n ;  C u r v e  2: 

B = 0.5 K / m i n .  
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Fig. 2. I vs. K plot of the reaction of Fig. 1, I and II: part-reactions 
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part  of  the curve, since there no other reaction! takes place. Fig. 1 shows a typical 
overlapping two-step T G  curve, and Fig. 2 the I vs. K diagram of the same. 

The exact kinetic parameters of  the first reaction may only be obtained if it is 
not a very small one. In the latter case we only can "free" the second reaction 
from the first by this procedure. I f  both reactions are evaluable, we simply subtract 
the TG,  D T G  and D D T G  values calculated for the second reaction from the 
overall data, and thus we are already able to make an I vs. K plot for the first 
reaction and obtain its kinetic parameters.  

' o  3, 

/ 3 
2 4 . 

1 

! 
[ I I 1 I I I I I 
0 2 /-, G 8 10 12 14 16 

- K ' 1 0  - 4  

Fig. 3. I vs. K plot of competing case 1. n 1 = 1.05;n 2 = 0.25;E 1 = 50 kcal/mole; 
E 2 = 60 kcal/mole 

In the case of  competing simple reactions the overall I vs. K plot is essentially 
never linear, even though parts may appear to be so. We may assign kinetic param- 
eters to these "l inear" sections and the corresponding part  of  the T G  curve can 
be fitted by using them. These parameters may be calculated as usual by a simple 
linear regression, but they have no real physical meaning. 

Taking again a composite reaction produced by two simple competing reactions, 
we may distinguish three cases, according to Table 1: 

Table 1 

C a s e  A E  A n  

1 + + 
2 + - 

3 + 0 

A E = E 2 - E 1 ,  if E2 > E1 

An  = n 2 - -  n I 

The corresponding I vs. K diagrams are illustrated in Figs 3, 4 and 5. In these 
the 1 - K  lines of  the pure component-reactions are denoted by I and II, the 
competitives by arabics. One of them is held fixed in each set of  curves and the 
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pre-exponential factor of the other is varied, producing thus another grade ot 
competition by a different shift of  this reaction on the temperature scale. This 
may be characterized by a simultaneity function, (S), which will be treated later on. 

~r 
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Fig. 4. I vs. K plot of competing case 2. n~ ----- 0.2; n2 = 1.05; E~ = 50 kcal/mole; 
E 2 = 60 kcal/mole 

I t  is impossible to extract the I vs. K lines of  the par t  reactions from an analysis 
of  TG ' s  of  this sort, but the shape of the I vs. K curve of the overall reaction fre- 
quently permits us to choose between the three possibilities. I f  a choice is possible, 
by a procedure which cannot be outlined here in detail, we can obtain a first 
estimate of  the individual parameters. To determine the parameters more precisely 
we have to use another, more sophisticated computing procedure. The principle 
of  the least squares for the differences [(W~)ob~ -- (Wi)cale] would be an appropriate 
one, but its execution is rather difficult since the equation 

- dw/dt = A1 e-El/RTwnl -}- A~e -e~/Rr+"~ (9) 

is analytically not integrable. If, however, we have the numerical derivatives of  
the observed w(t) function with sufficient precision, we may write by the prin- 
ciple of  least squares for the derivatives according to (10): 

~ [(dw/dt) i -  (Ale-el/Rrw'nl + A2e-EdRrwin~)] = min (10) 

where w i and (dw/dt) i stand for the measured data and their numerical derivatives. 
Since the term in the second round brackets contains the measured values of  wj, 
it is not equal exactly to the value of the theoretical dw/dt function for the given 
set of  parameters. Its relative deviation, however, is negligible if we have obtained 
the values of  w~ with a small relative error. 
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Using the I vs. K diagram or assuming the values of  nl and n2 f rom a probable 
mechanism we have to determine four unknown parameters. In condition (10) the 
second expression in round brackets is linear in the two pre-exponential factors, 
and thus we have to change E1 and E2 systematically (e.g. by a steepest descent 
type method), and at given values of  E 1 and E 2 we can obtain A1 and A2 by the 
simple linear least squares method. 

,c~ 
" 2  

-1 

-2 

1 2 

I 3 

F ig .  5. I vs.  K p l o t o f  c o m p e t i n g  case  3. n i  = n2 ---- 1 .05;  Ea = 50 k c a l / m o l e ;  E~ = 60 k c a l / m o l e  

To check the usefulness of  the procedure, we integrated (9) numerically for the 
parameters E1 = 41.4 kcal, E 2 = 60 kcal, A 1 = 101~ min -1, A2 = 10 l~ min -1, 
nl = 0 and nz = 1.05. The calculation was performed with a linear, l~ heating 
rate between 675 and 758 ~ The values of  wi and (dw/dt)i were calculated at 
fifty different points. By definition Wo = 1. Simulating a case similar to our ex- 
periments and to the differentiating method outlined in page 230, the errors were 
modelized by adding a Gauss-type error to the values of  wl with a standard de- 
viation of  2 �9 10 -s, and furthermore two different types of  errors to the dw/dt  
function: a Gauss-type one with standard deviation of  2 �9 10-4 and a sine function 
with wavelength 20 min and amplitude 2 �9 10 -4. (A deviation of  this type was 
observed in our experiments in general.) To study the effect of  the errors the cal- 
culations were carried out for some greater errors too. The results are shown in 
Table 2 where the second row corresponds to our real experimental conditions. 

I f  a reliable first estimation should not be possible, or when we have the ex- 
perimental possibility of  measuring individual or relative rates of  the simple com- 
ponent-reaction in each case, it is much more accurate to make use of  (11), which 
is a generalized form of  (7): 

IT n~KT A n S K r  + - ~  S 
A E  1 W~ 

. . . .  , , UT : (11) 
R S = 1 + UT W~ 

where A E  - Ez - El, An = n2 - nl, and the index T refers to differentiation with 
respect to temperature. For  more than two reactions we may use a similar equation, 
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Table 2 

Determination of parameters in the case of competitive reactions 

Parameters of the 
Case error-simulation Obtained parameters 

a(w) a(dw[dt) amplitude E~ E~ log A1 log A2 

0 
1 0 - 3  

lO-a 
10-3 
I0-3 
lO-a 
lO-a 

0 0 
2 '  10 -~ 2" 10 -4 
4" 10 -4 4 �9 10 -4 
6 �9 10 -~ 6 �9 10 -~ 
8 �9 10 - 4  8 �9 10  - ~  

10" 10 - ~  1 0 '  10 - a  

0 0 

41.40 
40.87 
40.33 
40.11 
39.81 
39.60 
41:12 

60 10 
60.68 9.86 
61.44 9.73 
62.04 9.69 
62.75 9.62 
63.45 9.57 
60.20 9.92 

I6 
16.19 
16.40 
16.57 
16.77 
16.97 
16.06 

b u t  wi th  more  than  one s imul tanei ty  func t ion  (S). This  funct ion  has  the value 
o f  1 or  0 i f  only  one o f  the compe t ing  reac t ions  plays  a role, and  0.5 i f  the two 
reac t ions  have jus t  the same rate.  As  I and  K are  to  be de te rmined  f rom tl:e T G  
curve o f  the  overal l  react ion,  we have the t ask  only o f  ob ta in ing  fur ther  experi-  
menta l  i n fo rma t ion  f rom the relat ive ra te ;  this,  however ,  is s t r a igh t fo rward ly  de- 
t e rmined  by  mass - spec t rome t ry  i f  the two reac t ions  p roduc e  different and  charac-  
terist ic  p roduc t s  o f  sufficiently high volat i l i ty .  I t  is wor th  ment ion ing  tha t  the  de- 
t e rmina t ion  o f  relat ive rates is easy by  mass-spec t romet ry ,  bu t  to ob ta in  the overal l  
convers ion  f rom the same source is difficfllt and  essential ly inaccurate .  The  use 
o f  (11) requires  only  the relat ive ra tes  m e n t i o n e d  above  and it is easy to  combine  
with  overa l l  convers ion  data ,  ob ta ined  for  ins tance  by  t he rmograv ime t ry  
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R~SUM~ - -  L'emploi de la d6riv6e seconde de la courbe thermogravim6trique, d6jit signal6 
par les auteurs, permet le calcul pr6cis des param6tres cin6tiques de r6actions simples, A l'aide 
d 'une m6thode d'analyse num6rique. La m6thode qui est d6crite permet de plus l 'analyse 
cin6tique de plusieurs r6actions composites qui constituent un cas souvent rencontr6 dans la 
pratique de l'analyse thermique. On discute le cas de r6actions ind6pendantes et celui de 
r6actions comp6titives. Pour celles-ci la m6thode d'6valuation qui est propos6e se prate 
rutilisation combin6e d'une thermobalance et d'ma spectrom~tre de masse. 

ZUSAMMENFASSUNG- Wie von den Autoren schon friiher gezeigt, gestattet die Bestimmung 
und Anwendung der zweiten derivierten thermogravimetrischen Kurve (DDTG) die genaue 
Berechnung kinetischer Parameter einfacher Reaktionen dutch die Methode der numerischen 
Analyse. Ferner erm0glicht die beschriebene Methode die kinetische Analyse einiger zusam- 
mengesetzter Reaktionen, welche in der thermoanalytischen Praxis hiiufig vorkommen. Un- 
abh/ingige und kompetitive Reaktionen werden er~Srtert. Bei letzteren eignet sich der zur Aus- 
wertung vorgeschlagene Weg zur " o n l i n e "  Arbeit eines kombinierten Systems bestehend 
aus Thermowaage und Massenspektrometer. 

Pe3mMe - -  Kar  6blaO OTMe~ieno paHee, onpe~Ieaenne ri ncnonb3oBaaae BTOpO~ nport3Bo~no~ 
TepMorpaBnMeTpnqecro~ Kpvmo~ (~2TF) ,  ilpri rt3Meperli, lri Mero~oB ~rlcJIoBoro anaaH3a paape- 
maeT na~e~rm, I~ pacqeT ri~neTrlqecrrlx napaMeTpoB npoCTblX peartm~. Oni~caHnI, i~ MeTO~ ~eaa- 
eT BO3MOTKHbIM KRI-IeTI, I~IeCKn~ aHaIIn3 rleKOTOpblx cao~m, ix por t /af t ,  qaCTO uMemli~nx MeCTO B 
TepMoana~riTrI~eci<o~ npaKTi, ire. O6cy)r,zlei-mi coly~iari ~tn~t ne3aarlcI, IMblX rl KOrlKypnpyloI~r/x pear- 
Illa~. B nocnejIneM cnyqae npe~JlaraeMblfi MeTO,~ o6pa6OTrl, t ~IBYI~IeTC~I IIO~XO~IIIInM I"[191,1 CO- 
BMeCTI-IO~ pa6oTe KOM6I, IHHpOBaHHO~ CFICTeMbI TepMOBeCbI--Macc-cneKTpOMeTp. 
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