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Abstract. We show that a field satisfying the Yang-Mills equations in dimen- 
sion 4 with a point singularity is gauge equivalent to a smooth field if the 
functional is finite. We obtain the result that every Yang-Mills field over R 4 
with bounded functional (L z norm) may be obtained from a field on S 4=  
Rgu  {o9}. Hodge (or Coulomb) gauges are constructed for general small 
fields in arbitrary dimensions including 4. 

There has been a great deal of mathematical interest in the topological ana 
geometrical methods used to construct the instanton solutions to the Yang-Mills 
equations [1-3]. More recently several articles treating analytic properties have 
appeared [6], [8], [i0], [14]. We consider properties of the Euclidean (Riemannian, 
elliptic) equations and derive some standard a priori estimates on solutions. The 
main result is a local regularity theorem in 4-dimensions: A Yang-Mills field 
with finite energy cannot have isolated singularities if its structure group is compact_ 
Apparent point singularities, including singularities in the bundle, may be removed 
by a gauge transformation. In particular, a Yang-Mills field on a bundle over 
R 4 extends to a smooth field on a bundle constructed over R4w {or} = S 4. 

For convenience we concentrate on bundles over flat manifolds. For the 
regularity theory, the curvature of the manifold itself is not particularly important. 
In this paper we also assume all solutions have smooth curvatures where they 
are defined. Other references have handled the question of weak solutions in 
detail [10, 14, 16]. An announcement of the results in this paper has appeared 
[15] and an outline of the proof also appears in [6]. Parker has generalized 
these results to coupled systems in 4 dimensions. 

We give a brief description of the problem in Sect. 1 to establish our notation. 
In Sect. 2, we prove a number of tedious technical lemmas on canonical gauges 
for fields with small curvatures which are necessary later. Standard a priori 
estimates appear in Sect. 3. The proof of the removability of singularities in 
Sect. 4 is remarkably similar to the proof of the removability of singularities of 
harmonic maps contained in [12]. 
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1. Yang-Mills Equations 

The differential objects we will be working with are a Riemannian manifold M, 
a vector bundle t /over M with fiber t/x ~ R t and compact structure group G. Denote 
the Lie algebra of G by (5 and the adjoint and automorphism bundles by Ad q and 
Aut q respectively. Assume also q has a metric compatible with the action of G 
and an inclusion G c SO(f). We use the metric on G induced by the trace inner 
product  metric on SO(E). 

Since our theorems are all local, it is not necessary to work only with these 
abstract elements. We assume often that M = 0g is a coordinate chart, and that 
some local choice of gauge p : t/[ 41 _-__ ~ x R t has been made. Then p : Aut ~/[ ~ 
q / x  G and p : Ad t / ~  ~ '  x (5. We compute  in these cross-product structures. 

The gauge group is ~f = C~(Aut r/), which in our trivial bundle case is 
(¢ _~ C°°ffll, G). The choice of p introduces a flat covariant derivative d = 
(~/~x 1 . . . . .  ~/gxn). Any covariant derivative D is given by D = d + A = {~/Oxi+ Ai} 
where Ai(x)E(5. One can think of A as a Lie algebra valued 1-form, or locally 
A:O#~R"®(5.  Gauge changes s:°g-+G act on D = d + A  by 

s - l o D o s = d  + s-tds + s - l A s = d  + ~. 

This means A and A = s-lds + s-~As represent the covariant derivative in 
different coordinates (or gauges). 

The curvature or field F = F(D) of a connection O measures the extent to 
which covariant derivatives fail to commute.  (We always use the symbols d and 
D to represent exterior differentiation; the symbol V is used for full covariant 
differentiation). Then F = D 2 = dA + [A, A] is a section of T*M A T*M ® Ad t/. 
Locally in the trivial bundle Ad t / ~  a# x (5, we have F :q/--+ R" A R" ® (5 is a 
Lie algebra valued two-form, F = { Fq} = { [I) i, D j] }. 

F~j = O/~x~A~ - O/#xJA~ + [A~, Aj] e(5. 

Curvature is actually a section of T*M A T * M ® A d  (5 and transforms under 
a gauge transformation s e n  by F--+ s-aFs. 

The Yang-Mills equations are the Euler-Lagrange equations for an action 
integral 

]]FI] 2 =  ~ ] V } 2 d l ~ m  = fqikgJ'9-* ( F , j ,F~) .  
M all 

Here the second integral is in local coordinates, 9 ~ is the induced metric tensor, 
g2 its determinant, and (A,  B )  = tr AB* is the trace inner product  in (5 c SO(~). 
Usually we assume the metric is flat; 9 ~i = 6 ~j. 

The Yang-Mil ls  equations, or the Euler -Lagrange  equations for the integral 
[] F t] 2 are written as D*F = 0. In the case gti = 6i j in coordinates on q/, this means 
explicitly, 

(D*F)j = Z(a/ax'F,j + [Ai,  F i i ] ) =  O. 
i 

A similar equation holds in general metrics. We say D is a Yang-Mills connection 
and F = F(D) is a Yang-Mills field if D*F = 0. If  s a n  lies in the gauge group 
IIs-lFsIi:= ttFI[:. Therefore the solutions of D ' F = 0 ,  as either Yang-Mil ls  
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connections or fields, are an invariant space under gauge transformation. This 
is the main difficulty in treating the regularity theory. 

The Bianchi identities DF = 0, are always true for F = F(D). This means in 
coordinates: DiFkj+ DkFji+ DjFi, =0 .  The abelian case, the case where all 
brackets are zero, is the basic linear model for the theory. In this case F = dA, 
the Bianchi identites are dF = dZA = 0, and the Yang-Mills equations are d*F = O. 
The system dF = 0, d*F = 0 is an elliptic system for F. 

The situation is more complicated in the non-abelian case. In the abelian case, 
A --, A + du under a gauge transformation s = e"eN and F = dA = dA + d2u 
is left invariant. However, in the non-abelian case, F transforms to s-1Fs under 
a gauge transformation seN. If s is not smooth, it can make a smooth field into 
a discontinuous one. So the choice of good gauges is much more important  to 
the non-linear (non-abelian) theory. 

The linearized Yang-Mills equations written for A are d*dA = 0. As noted, 
this is the exact equation if G is abelian. This single system is not elliptic, and as 
in the Hodge theory for exact forms on manifolds, one usually adds a second 
equation such as d*A = 0 to complete the elliptic theory. In the abelian case, 
this involves solving the linear equation d*(A + du)= d*A = 0 for u :~//-~ t5. 
Here A is the original connection form and s = e"e N the gauge transformation. 
The equation d*A can also be added to the non-linear theory as a method of 
choosing a good gauge. In the general case, it is a non-linear elliptic equation 
which must be solved to get this "good" gauge in which d*A = 0. 

Such a gauge seems to have many names in the physics literature (Lorentz, 
Landau, Coulomb). For  the purposes of this paper, we use our original mathe- 
matical term Hodge gauge. The entire chapter following this one deals with the 
technical problem of constructing the Hodge gauges we will need in Sect. 4 for 
the main proof. 

2. Canonical Choices of Gauge 

This section treats the problem of finding a gauge in a. domain o~ for a connection 
in which D + d + A and d*A=O when l l F l i =  max[F(x)l is sufficiently small. 

xE~/ 
We prove this in three cases: when 0//= S.-1 : {xeR" :Ix[ = 1}, 

O#=B"={xeR" : l x l< l )  and q l - - - 9 1 = { x e R " : 1 < l x l < 2  }. 

Assume a gauge is given in which D = d + A. Then it is an elementary calcu- 
lation that the equations d* A = d*(s- 1 ds -Jr S -  1 AS)  -~- 0 for SeN are Euler-  
Lagrange equations for the integral 

J ( s )=  llA ll~ = I IAI2= f l s - t d s  + s- lAst  z. 

There is a relationship between finding Hodge gauges and the existence of harmo- 
nic maps from J/ / to  G. The two equations agree in their top orders. We know 
quite a lot about  harmonic maps. In particular, we know we do not have a good 
global theory [12], but we do have good local theories [7]. 

First we find some gauge which is not  too large when II Fltoo is not too large 
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(Lemmas 2.2-2.4). Then we use the implicit function theorem to find a Hodge 
gauge d*A = 0 with estimates (Theorems 2.5-2.8). Assume throughout that G 
is compact and every connection has some gauge in which it is continuously 
differentiable. 

The simplest geometric method of choosing a local gauge is to fix a fiber over 
x o and identify nearby fibers in a geodesic ball by setting (x'(t)" A(x(t))) = 0 along 
all geodesics x(t) emanating from x 0 (meaning x(0)= xo). This fixes gauge in 
all balls within the cut locus of M. In a Euclidean ball B" with x o = 0, this corres- 
ponds to A(0)= 0 and ~xJAj(x)= A r = 0. We call such a gauge an exponential 
gauge. J 

X n A word on notation. We use the coordinate change x = { i}i=l ~ (r, ~ ) =  
(t x [, {x i/t x t } ) for ~ = x/Ix  [e S "-1 as transformation from Euclidean to spherical 
coordinates. The one-form A = {Ai} ~ (A,  A~,) splits into radial and spherical 
parts. The two form F = {Fii} ~ (Fro, Foo ) splits into two pieces also (note F~r = 0 
because of anti-symmetry). Here F~, o is a two-form along S"-1. In the sphere 
S" -1  we sometimes change coordinates on S"-1, ~b---(q~, 0) from spherical to 
"polar" coordinates. Here ~p~(0, n) is the polar angle, OeS "-2 and ~p = (cos ~0, 
sin q~0)= x/]x[. Again on S "-1, A = {A0} = ( A ,  Ao) and F = {F00 } = (F,oo, Foo ) 
in a natural way. This notation is used throughout the paper. 

Lemma 2.1. In an exponential gauge in R", 

A(x)[ < a /2 Ix I  max IF(y)[. (2.1-a) 
lyl < Ixl 

Proof. Assume a gauge is given in which D = d + A ;d_~ + [A, .4] = F. Solve 
the ordinary differential equation in t with ~b fixed. 

d O) = - 
dt 

with initial condition o'(0, ~ ) =  l eG  c SO(g). Then the gauge transformation 
s(x) = a([x], x/ lx[)e C~(B ", G) if A is continuously differentiable. Also s- ~8/8se 
Ca(B ", G). By construction, in the gauge changed by s, D = d + A, where A = 
s - lds+s-~As ,  and ~XkAk(X)=A~(x)=O. Note that A is not necessarily as 

k 
differentiable as ~], but that F = s-XFs exists. 

We compute easily from the equation ~XkAk = O. 
k 

k k 

= rO/OrAj + Aj = 8/8r(rA~). 

By integrating we get 
1 

Aj(x) = y y,  xkrkj( x)d . 
0 k 

\ 0  / y< tx[ 
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The same argument  is carried out  to get an exponential  gauge in S"-1 based 
at the nor th  or south pole. Only  the estimate is slightly different due to the curva- 
ture. Here  in this gauge (Ao)= (A~o, Ao)= (0, Ao). 

I Ao(q~,O)[ = Fo,o(Z,O)dz. 

However ,  in T*S' -  1 we use the correct  norms 

It Ao(q), 0)tl = (sin 9 ) -  1[ Ao(q~, 0) I (etc.). 

PI Ao(~, 0)[I = c s c  ~lAo(~, 0)1 

< csc q~ sin ~dz max [IFo,o(r, 0) 1 csc ¢p] 
k 0  / 

_ 1 - c o s  ~ If F I1~. 
sin ~o 

This gives the est imate on  S"-  1 for exponential  gauges: 

[I A(e, 0) ll --< tan ~o/2 I1F II ~. (2.l-b) 

At the cut locus from q~ -- 0, as q~ --, r~, the estimate blows up and the exponent ia l  
gauge becomes singular. 

Finally, given a gauge for q[ S"- 1, we may  also extend it with A r = 0, into a 
collar ne ighborhood.  The integral formula  is 

1 

Aj(x) : 1/[x[Aj(x/[xl) + Z I zxkFkj(XZ) dz" 
j afI:<l 

Call these normal  exponential  gauges transverse. For  these transverse gauges off 
S"-1 we get the estimate 

IA(x)t<=ltlxllA+(xflxl)l+llxl+lllxll m a x  I F ( y ) l  . (2.1-c) 
Ix l<  lyl_-< 1 

The  next three temmas are  proved in precisely the same way. In each case, 
two exponential  or  transverse gauges are matched  by a rotat ion.  

Lemma 2.2. There exists s o > 0 and ~ < oo depending on G, such that if  D is a 
connection in a bundle over S"-1 in which 

m a x  IFI : NFII~ < ~ 0 ,  
qs~S n - 1 

then there exists a gauge p :tl ~- S"- '  x R" in which II A ti ~ --< ~ tl FII ~. 

Proof Let D = d ° +  A ° in the exponential  gauge f rom the nor th  pole ((p = 0) 
and D = d ~ +  A ~ in the exponential  gauge f rom the south pole (4o = ~z). F r o m  
(2.l-b) 

[I A°(q ~, 0)[I = csc qoiA°(q~, 0)l =< tan ~ot2 ttF II ~ 
II A"(~o, 0)ll = csc ~ol~4"(~o, 0) I __< t an (n  - ~o)/2 II F II ~ 



16 K.K. Uhlenbeck 

Because D = d o + A ° = d ~ + A ~, A ° and A" are related by a gauge change 

d ° - d  ~= s - l d s =  A = -  A °. 

O/~Sgos --- s(A~o - A °)~ = O. 

Therefore  s(q),0)=~(0) for ~:S "-z  ~ G. Moreover  [d~(0)[= [ds(rc/2,0)[= 
I 0) - Ao( /2, 0)1 _-< 21t f < 2=0 % < (length of the shortest  non-  
minimizing geodesic in (G), then ~(0) = s o exp u(O), where u : S"-2  ~ ((5). By assuming 

u = 0, we have 
s n -  1 

Il dull~ < c(G)ll d~lt~ < 2c(G)ltFlloo. 

Define a new gauge by multiplying the exponential  gauge from the nor th  pole by 
h : S " - I - { u , O } ~ G .  

h(go, 0) = s o exp(sin z (go/2)u(O)). 

This is the same gauge defined by rotat ing the exponential  gauge from the south 
pole by q: S"-  1 _ {0, 0 } ~ G. 

q(go, 0) = exp( - cos 2 0 /2  u(O)). 

This new gauge is defined on  all of S ' -  1, and if D = d + A in this gauge 

A = h - l A ° h  + h - l d h  = q - l A ' q  + q - ldq .  

On the entire sphere 

I Ao(q,, 0)1 = I h(go, 0)sin ~o/2 cos go/211 u(0)[ 
= ] q(go, 0) sin 0 /2  cos go/21! u(O)1 

-31sin (plu(0)l <---c(G)IIF][, 

One way to estimate tl No(go, 0)11 is 

csc (PlAo(~O, 0)[ __< csc go(] A°(go, 0) I + [doh[). 

The other  way is by 

csc go[Ao(go, 0)[ < csc go(IA"(go, 0)[ + [doh[). 

The  first gives the estimate for  (p < re/2, the second for go > r~/2. 
The next two lemmas involve fixing gauge on the boundary ,  as in Dirichlet 

boundary  conditions. No te  we actually allow these boundary  gauges to rotate  by 
a constant  element s o of  G. Later  on we shall see this extra degree of  f reedom makes  
the appropria te  Dirichlet problem on an annular  region 11 confusing. This part icu- 
lar problem is a familiar annoyance  in gauge theory.  

Lemma 2.3. Let t 1 be a bundle with a covariant derivative D over B" and curvature 
]l F Iloo < e" Assume a gauge is f ixed on tl[S "-1 = tllOB" in which D o = d 0 + A~,, 
IAo( 1, 0)1 <= a all O e S  "-1. Then there exists ~ = ~I(G) > 0 such tha~ if ~ < ~1, 
there exists a oauge on tl ] B" in which D = d + A, "4 o = Aq, on tl [ S "- t and ][ A [] o~ < tea. 

Proof Consider  the exponent ia l  gauge from zero, D = d ° +  A ° and match  by 
rota t ion with the transverse gauge off the unit sphere D = d I + A 1 which fixes 
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Ao" From (2.l-a) 
IA°(x)l = 1/21xl [I rll~ --< 1/21x1~. 

From (2.1-c) we have the inequality 

IAl(x)l _-< Ixl-lH 4oll + (Ix1-1 + Ixl)II F Ira =<- 31xl-l(x. 
Then the two gauges are related by s = s o exp tT(0). Change gauge from the expo- 
nential gauge at zero by So(eX p r 2 a(0)). Estimate as in the previous lemma. 

l_emma 2.4. Let  t 1 be a bundle with a covariant derivative O over 1I = {x: 1 < Ix I < 2} 
and curvature ,, F , ,~  < c~ Let  S~ -1 = { x :  x t = t}. Suppose 9auges are chosen on 
tllS~ -1 in which D O = d~ + ato with tAro(t, ~b)[ < c~ for t =  (1, 2). Then there exists 

~ t  = Ao ce 2 > 0 such that i f  ~ < c~2, there is a gauge on rII~l in which D = d + A,  A O 
on S t -  1, and II A tl o0 <- ~c~. 

n--1  Proof  Match transverse gauges from the boundary sphere S t , t = (1, 2) exactly 
as before. 

At this point we are in a position to apply the ordinary implicit function theorem 
in Banach spaces to solve the non-linear elliptic system 

d*(s-  ~ ds + s -  1 As) = d* A = 0 

for s when A is small enough. Unfortunately, the exponential and transverse gauges 
used to construct a connection A from small curvatures F in Lemmas 2.2-2.4 
produce estimates on .4 of the same differentiability as F. Intuitively, we should be 
able to get one more derivative on A than on F. Since a method for doing this has 
not appeared so far, the applications of this entire procedure are limited. The trick 
used in [16] to circumvent the construction of A does not work here. We use 
Sobolev spaces L~ of connections or maps in the k derivatives in L p. We are restrict- 
ed to using the implici t function theorem on the equation d* A = 0 as a mapping 
on Sobolev spaces L f - ~  L v - ~ because A is not smooth enough to use the more 
usual map L~ ~ Lg. Also, the difference in the behavior of the boundary conditions 
on S"- 1, B" and 11" leads us to state the theorems separately, although the proofs 
follow the same line of argument. 

Theorem 2.5. Let  ~ be a bundle over sn-  t with a covariant derivative D, curvature 
F = F(D). There exists 7o > 0 such that if  [I F I[ ~ < 70, then there exists a gauge 
p :tl ~ S n-1 x R e in which D = d + A and d* A = O. Furthermore, II A tt~ < K 11FII~" 
The choke  o f  gauge is unique up to constant multiplication by an element o f  G. 

Proof  From Lemma 2.2, if 70 < % we can construct a gauge in which D = d + ~], 
II II --< I1 v II ---- Fix any ~ > p > n - 1. The expression 

Q(u,B) = d* [exp( - u)d exp u + exp( - u)Bu] 

induces a C ~ map on u~L~(S"-  1, (5), B s  LP(S . -  ~, (5 ® R"). 

Q "L~(S"- 1,(5) x Lv(sn-a,(5®Rn)--*LV_~(S"-I , (5) .  

The image actually lies in 

L ~ ( S n - ~ ,  (5)= {~LV_~(sn-~ ,  (5)" ( ¢,Uo>=O, uoe(5}.  
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Likewise define 

15)  • u:O}. 
Sv~ - 1 

p , i  n -  1 p ,±  n -  1 Then dlQ(o,0):/J1 (S ,15)-*L 1(S 15) is an isomorphism. (Note daQ(o,o ) 
u = Au). The ordinary implicit function theorem in Banach spaces now says we 
may solve 

Q(u, ~t) = d * ( s - l  ds + s -1 ~ls) = d*A = 0 

if A e LP(S "-  1,15 ® R" -  1) is sufficiently small. Here s = exp u e L~ (S"- 1, G) and 
ueL] ,±(S, -  1, 15). By taking 7o small tl ~ II p < c,,v [[ A [100 < 'C7o can be assumed small. 
Since the norm [[uilp, ~ is also small, i lAi[p<(l+tc l ) [ t .4 l [~ where A = s  -~ 
ds + s -  1.4s. Finally, d* A = 0 and dA + [A, A] = F = s -  i Fs. Consequently 

A q ,a<Xz (p ) ( IdA  q)~tCz(p) ( F q+ A 2 q+ A q). Let q = p / 2  to get an 
estimate on [[ A p1" An estimate on 1[ A 1101 leads by the Sobolev theorems to an 
estimate on 11A q,'for 1/n - 1/q + 1/q' = O. Once  2q > n this is an improvement and 
we get estimates on all [1A Ilq,1 norms. 

Corollary 2.6. Under the hypotheses of  (2.5) with n = 4, we have 

(2 - KIIFII~) 2 j" IAI 2 < j" IFI 2. 
S 3 S 3 

Proof. Since A is a co-dosed Lie-algebra valued one-form on S 3, 2 ~ [A[ a __< I IdAI 
S s S s 

for 2 the first eigenvalue of the Laplace operator on co-dosed one forms on S 3. 
This can be computed to be 4 from [10]. Using the formula F = dA + [A, A], we 
estimate the error. 

( 4 ~  1A[2)1/2 _< (s j  [dAl2)  ~/2 <=(~s~ [Fie)  l / e+  ( ! i  [A[4) ~/2 

___< [v2l +gllrl[  IAI ) 

Theorem 2.7. Let D be a covariant derivative in a bundle over B". There exists 
71 > 0 such that/ f[I  FI[~ < 7a, then there exists a 9augeJbr tl over B" such that if 

• = 0  on S "-1  D + d + A in this 9auge, then d*A = 0 in B" and doAq, . Furthermore 

11A I1 = ¢ 11F II 
Proof. If 71 < 7o, we may apply Theorem 2.5 to fix the gauge on S"- 1 = 0B" 
with d o A o = O  and I]1011 _<_/lifo011 By Lemma 2.3, if K71 -~<el and£'/1 =<el, 
we may construct an appropriate gauge over B" such that if D = d + A in this 
gauge, il ~ II o~ --< t:l 7t. We can now solve 

Q(u, A) = d*A = d*(s-  ~ds + s -  1.4s) = O, 

for s = e", u[ S"- ~ = 0 by the implicit function theorem. The formula for Q induces 
a smooth map on u~L],o(B", 15), AeLP(B ", R" ® 15) for p > n. 

Q:L],o(B", 15) ® U'(B n, R" ® 15)--* L p_ I(B", 15). 
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Since we are using Dirichlet boundary conditions, the linearization 

dlQ(0, 0) = A :L~,o( B~, ffi) ~ L p_ I(B", ~ )  

is an isomorphism. Also, since IIA][® ---<m171, we clearly make I]AIIv arbitrarily 
small by choosing 71 small. This procedure produces s = eU~L~(B ~, G) and the 
regularity argument is exactly as in Theorem 2.5. 

Theorem 2.8. Let D be a covariant derivative in a bundle tl over ~I = {x:l =< Ix I =< 2}. 
There exists 7' > 0 such that if II F l[ ~o --< 7', then there exists a gauge in which D = 
d + A, d*A = O, d~,Ao = 0 on S~-1 and S 2-1, and S A r  = 0 for all t ~ [1, 2]. More- 

Ixl =t 
over, IT a z K' II F 11 
Proof Apply Theorem 2.5 to D on the boundary spheres S~- l(t = 1, 2) and con- 
struct .4 using Lemma 2.4. Again we shall use the implicit function theorem to 
solve the equation 

Q(u, A) = d*A = d*(s- lds + s-~As) = 0 

for s = exp u. This is the variational equation for the problem of minimizing 
j'IAI 2 =  Sls-~ds+ s -1 fls[ 2, subject to the appropriate boundary conditions. 
tl lI 
In fact, to preserve the condition d~,*A~ = 0, we shall require that s be constant on 
each component of dll = S~- t u S 2-1 (although we do not specify the values of 
these constants). Thus we set 

L~'±(II, (~) = {u~L~(ll, ffi):u is constant on St -1 for t 

= 1, 2 and u is LZ-perpendicular to the constants of ffi}. 

Then for p > n, Q induces a map 

Q: L],-t(t[, (5) ® LP(H, (5 ® I~") ~ L p_ ~(~I, ffi). 

However, the linearization has a IB-dimensional kernel (corresponding to the 
constant gauge transformations). This allows us to add a IB-valued function 

f : L]'±(ll, IB) ® LV(II, ffi ® ~ " ) ~  ~ 

given by f(u,  A) = ~A = ~s- l(O/Or)s + s- 1As~ff~. Then the linearization of 

(Q, f )  u u 

(dlQ(O, 0), d~f(O, 0)): L~'±(ll, f f i )~L  p_ ~0/, (5)® ffi 

is an isomorphism, and we can solve d*A = 0 and ~ A  = 0 when A~LP(21, tb ® R") 
tl 

is sufficiently small. The regularity is proved as in Theorem 2.5. 
Finally, since d*A = 0, the integral ~ A is independent of t  and the condition 

I~1 = t  

SA =0 impl i e s tha t  ~ Ar=O, Vt6[1,2 ]. 
u I~! =* 

Corollary 2.9. (For n > 2). There exists a constant 2 n such that i f  D is a covariant 
derivative D = d + A in 9.1 with curvature II F < ¢, d*a = 0, - 0 and 
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S A = O ,  then 
M =r 

( 2 -  1¢'II FtI~) SIAl z <= JIFt 2. 
9.1 gl 

Proof. As in the proof of Corollary 2.2, 2. is constructed as 

)~ = min Sldfl 2 

for feC (T*a), d ' i =  0, dUolST-'=O, IL=O. The problem is elliptic, so to 

show 2 > 0, we need only show that the value 2 = 0 is not  taken on. Suppose 
2 = 0 is taken on. Then there exists f • 0 satisfying the conditions with df = O. 
But 9.I is simply-connected; thereforef  = dg. However, on the compact boundary 
spheres d~f  o = d~dog = 0 and g is constant on $7-~t = (1, 2). Since d ' f =  d*dg = 
0, g is a harmonic function on !1[ which is constant on the two boundaries, 
or g = c I + czr 2-". However, j g, = 0 implies c 2 = 0, or f =  dg = 0. The rest of 

Ixl =~ 
the proof is identical to the proof of Corollary 2.2. Note that the condition that 

A = 0 which gave us so much trouble in the proof of Theorem 2.7 is very 
I~1 =t 
important in showing 2 > 0. 

3. Basic  A Priori Est imates  

We assume all covariant derivatives D are smooth in some gauge, since regularity 
theorems now appear elsewhere. The basic inequality of Lemma 3.1 is more care- 
fully discussed by Bourguignon and Lawson [5]. We assume the metric on M is 
flat for convenience. The difference between the flat case and the case where 
curvature is not zero contains a lower order term which would be relatively 
unimportant in our calculations. In this section B(x, a) = B"(x, a) = {y~ R" :Ix - Yl 
<a} .  

Lemma 3.1. I f  F is a Yang-Mills field, then 

IF]AIFI > 2(F.[F,F])= 2 Z ( Fiy,[Fjk, Fki]) 
i , j ,k 

ArFI>=--41FI 2. 

Proof We give a brief outline of the computation [5]. F rom the Yang-Mills 
equations D*F = 0 and the Bianchi identities DF = 0 we have (D*D + DD*)F = 0. 
The Laplacian D*D + DD*= A on one-forms differs from the full covariant 
derivative Laplacian V*V = V 2 by a curvature term 

(V2 - A)O = [F, I~] = {~j [Fij, O jk] -- [Okj, Fij] }. 

The full covariant Laplacian can be used to estimate a scalar Laplacian on the 
norm. 

101AI01 = <0,VZ0> + vo>  -Idl01l  2 __> < 0, v20>. 
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These three equations combine to give the first inequality. The second inequality 
follows from the rough estimate 

2 (  F, [ f ,  F]  > =< 21Ell [V, F]I < 4iFI 3. 

We now regard - 41F I = b as a fixed function and write the inequality as 

A f>_ - b f  

f o r f  = I F I" If b eL  "/2 +" for any # > 0, then a theorem of Morrey (see [9], Theorem 
5.3.1) applies to this problem. We state the case of the theorem which applies here. 

Theorem 3.2. Let b be bounded in Lq(B(xo,ao)) for q > n / 2 , f > O ,  and f~e  
LZ(B(xo, ao)) for 1/2 < 7 < 1. Suppose also that in a weak sense 

- A f  < b f  

Then f is bounded on domains interior to B(x o, %) and for B(x, a) ~ B(x o, %) 

Moreover, the and 4 -"/2 S Ibl q 
B(xo,ao) 

Proof If b ~ L q, we have the inequality 
'~./2q 

b"12< ~ (b")J aUfor / t>0 .  
I x - y i N a  I x - y [<a  I 

We may then apply Theorem 5.3.1 of Morrey [9]. The requirement f >  1 is not 
necessary here. We can prove the estimate for f l  = N f +  1, which implies the same 
inequality for f2 = f +  I/N, and then let N ~  oe in R. The uniform dependence 
of X I can be computed by dilating B(x o, %) to the unit ball. 

We wish to make minor extensions of this theorem. These are derived from 
the basic a priori integral inequality used by Morrey in proving Theorem 3.2. 

Lemma 3.3. Let oil c R", fe  LZl,loc(q/) r~ L~oc(ql), f ~ 0, oo > p > 1/2 
v = 2n/n - 2 and u~C~'(uli). Then if 

- A f  < b f  

Sld(ufp)iz < ~]p - 1 ]p(Zp - 1)IAu z ] + (du)Z]f 2v 
i / \n12 i /  \ 2 I v  

Proof We may replace f by f +  e, prove the estimate for f +  ~ and let e + 0. Take 
uZf 2~- ~ as a test function. Then 

~d(uZf 2"- ~)'df = - ~ u2f 2p- day< ~ bu2f zp. 
oil oil ug 

On the left-hand side, rearrange the integrand algebraically to 

( 2 p  - 1)lp 2 Id(u/.)l= - (p - 1)lp(du 2 . d f  2p) 

-(2p - 1)tp ldul f 

If'(x)tZ < ~ l  a-" S IF(y)I 2. 
B(xo,ao) 

constant •1 depends uniformly on n,q,? 
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The right-hand side can be estimated using H61der's inequality. 

/ \ 2 / v  

i b(ufP) 2 ~ I b"12(~(ufP)~J • 
oR all \oi l  I 

This gives us 

(2p - 1)/p ~ f td(uf~)l~ ~ lp - l l/p I du2 "d( f  2p) 
OR ql, 

+ ( 2 p -  1)iP~ ~ldul~f ~'> 
OR 

/ \n /2  f \2 /v  

+ (j'b~/"J (~(u2fp)v), 
\0R / \oR / 

Integrate the first term on the right by parts and multiply the entire equation by 
pZ/(2p - t) to get the inequality of the lemma. 

Lemma 3.4. Assume the conditions of  Lemma 3.3, and suppose for q >_ 1 there 
exists a constant c n such that if B(xo, ao) c ql, 

(z, c, - b t 2i" (q2/2q - 1) > 7' > 0. 

Then for all B(x, 2a) ¢ q/, we have u f~6L 2 (B(x, a) ) with 

a - ,+2  ~ (dfa)2 <c~a-n j" f 2  
B(x,a) B(x, 2a) 

\ 2 t q v  

a-° ~ S"')  _---c;a-" I S ~ 
B(x,a) t B(x,2a) 

Furthermore, c r and c'r depend only o n y, q and n. 

Proof Lemma 3.3 applies with q / =  B(x, 2a) and 1 < p < q. We may assume by 
dilation a = 1. For  convenience, rig(u, p) = max lp - 1 l p/(2p - 1)t Au2[ + (du) 2. 
By applying the Sobolev inequality as well with v = 2n/(n - 2), 

/ \2/~ 

oR oR 

[" \ 2 / n  [" \2 Iv  

+ p 2 t ( 2 p -  t ) ( f b " t 2 j  ( ~ ( u f " y J  . 
\ q l  / ",oil 1 

From the hypotheses of this lemma 

/ \2/~ 

oR 

as well as 

v/c" ~ I d(uf")l 2 ~ .~t . ,  p) ~ f 2v <= ,~( (u, q) ~ f 2p. 
oR oR oR 

We get a bound on the L p* norm on interior domains in terms of the L 2p norm on a 
domain. By interation we obtain the result for Pi = (n/n - 2) i = vpi_ 1/2 which gives 
us the estimate for q in a finite number of steps. 

We can now prove the main result of this section. 
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Theorem 3.5. There exists a constant c' such that if F is a Yang-Mills field in 
B(xo,2ao) and ~ [F]"/2<c', then IF(x)[ is uniformly bounded in the interior 

B(xo, 2ao) 
of B(x o, 2ao) and 

for all B(x, a) c B(xo, ao). 

If(x)12<=a-'X, S IF[ 2 
B(x,a) 

Proof Let b = 4IF[ and [F[ = f  Choose c'  = c/(4n)where c is the constant of 
Lemma 3.4. Then Lemma 3.4 applies for q = n, 7 = c/3, and 

(B(xJ2ao).bn/2) 2/n= 4 (Btxo,2oo) IF[ "/2 "~2/n. 

Apply Lemma 3.4 to get a bound on ~ I F I". Now Theorem 3.2 applies. Since 
B(x,a) 

IF[ "/2 is invariant under dilation, the size of the ball does not affect the 
B(,a) 

constants X or c n. 

Theorem 3.6. Let F be a smooth Yanff-Mills field in a punctured ball ~ = B(xo , a) - 
{Xo} such that ~ [FIq < oe for q > max(n/n - 2, n/2). Then Irl is uniformly bounded 

ql 
in the interior of  B(xo, ao). 

Proof Apply Lemmas 3.3 and 3.4 with b = 4 IFI,f-- IF[ and q / =  B(xo, a) - {Xo}. 
Here we let u be a cut-off function u = v + v' where v is a cut-off function which 
is zero at x o and v'sC~(B(xo, a)). We fix v' and let v(x - Xo) = q~(x/e) where (p has 
support in the unit ball. Check the growth of the error on the right in Lemma 3.3 
(or Jr(u, p) of Lemma 3.4)as e ~ 0. The contribution from v' is fixed. So K(u, p) 
X(v,  p) = e- 2K(~o, p) and we have 

5 [Idvl 2 + ( P -  1)p/2p-1 A(v2)]f 2p 

<:e-2~"(P' q)) I f2p 
Ix- xol<=~ 

~/~ (q), p)  ~n(1 - 2p/q)- 2 (~fq)2p/q. 

The error term contribution to the inequality from the singularity approaches 
zero if(1 - 2p/q) - 2In > 0, or for p < (n - 2)/2nq. Clearly p may be chosen greater 
than 1/2 if and only if q > n/(n - 2). Then we havefPeL~(B(xo,  ao) ) by Lemmas 
3.3 and 3.4. If, in addition, q > n/2 we may apply Theorem 3.2. 

This theorem can in fact be improved for n = 2, 3. The proof in two dimensions 
is simple because we can use the, first order equations valid only for n = 2, 

d I *FI 2 = 2(*F, D ' F ) =  O. 

The proof in three dimensions is considerably more difficult [-12]. The differential 
inequality - A  IF I <41F[  2 is insufficient due to the fact that the fundamental 
solution to the Laplacian in R 3 is 1/[xl, of smaller growth than 1/[x[ 2. 

The construction of Yang-Mills fields with point singularities can be accom- 
plished by what is in effect a separation of variables. Let D be a connection in a 
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bundle q over S "-~ and let f :  B" - {0} --* S n - 1  be given byf (x )  = x/[ x [. Then any 
connection D on t/ can be pulled back via f to a connection f * D  on the bundle 
f ' t / .  It is an easy calculation that if D is Yang-Mills on q over S "-~, t h e n f * D  is 
Yang-Mills over f ' t / .  Moreover, the curvature o f f* t / g rows  exactly like 1/l x 12. 
Since S 2, S 3 and S 4 are known to have non-trivial Yang-Milts fields (in some 
bundles) this produces examples of isolated singularities at 0 of Yang-Mills fields 
in dimensions 3, 4 and 5. The curvature grows like 1/Ix[ 2 about the singularity 
x = 0, so the integral I If* (F)[q is finite for q < n/2, but infinite for q > n/2. 

D*' 

4. Removability of Singularities 

In this section we complete the proof of our main theorem. 

Theorem 4.1. Let D be a Yang-Mills connection in a bundle ~ over B 4 -  {0}. I f  
the L 2 norm of the curvature F of  D is finite, ~ F 2 < or, then there exists a gauge in 

B 4 

which the bundle rl extends to a smooth bundle V1 over B 4 and the connection D extends 
to a smooth Yang Mills connection F) in B 4 

We have the immediate corollary. 

Corollary 4.2. Let D be a Yang Mills connection in a bundle ~ over an exterior 
region 0/l = {x ~R4: [ x I > N}. I f  ~ F 2 < ~ ,  then [F] =< C] x] - 4 for some constant 

og 

X 
(not uniform). Moreover, if we map B 4 - {0} ~ ~ by f ( x )  = N ~ ,  there exists a 

I I 

gauge change in ~1 such that f*~l and f * D  extend to a smooth bundle f * t  1 and a smooth 
Yang-Mills connection f * D  over all of B 4. 

Proof The m a p f i s  conformal, s o f * D  is Yang-Mitls in B 4 - {0}. Also 

l I f*F[ 2= ~[F(f*O))[ 2 
B 4 B4 

Here F is the curvature of D a n d f * F  = F( f*D)  is the curvature of the pull-back 
connection. We may now apply Theorem 4.1 tof*(D).  The growth at infinity is 
obtained from the change in variables of two-forms under conformal operations. 

IF( f (  x) )l = [ f * F ( x ) l l d f  (x)l - 

< max lf*FI (x)(N/] x12) -2 
xeB 4 

= (C'N~)[x[ -4. 
The global form of this corollary can be more simply stated. 

Corollary 4.3. Let D be a Yang-Mills connection on a bundle ~1 over R 4 with finite 
L 2 norm of  its curvature ~ 1F[ 2 < ~ .  Then i f  f :  S 4 -  {0} ~ R 4 is a stereographic 

R4 

projection, f * D  is a Yang-MiIls field on f * q  over S 4 - {0} which extends in some 
gauge to a Yang-M ills connection f-~D on a bundle f - ~  over S 4. 
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The proof of Theorem 4.1 proceeds in two steps. First we need to find a useful 
gauge in B 4 - {0}. We do this by piecing together Hodge gauges in the annuli 
IIe = {x :2 -e-  1 < ix I < 2-t}. Then we use the Yang-Mills equations in this broken 
Hodge gauge to show that IF] actually has better growth near the singularity 
x = 0 than lx1-2. In fact, we are luckily able to show directly that IFI is bounded, 
although by Theorem 3.6 any growth ~ ] x l- 2 +~ for e > 0 would have been suffici- 
ent. Once we know IF[ is bounded, we may find a Hodge gauge by applying 
Theorem 2.7 directly in/3". 

The construction of the broken Hodge gauge can be carried out in any dimen- 
sion, under suitable hypotheses (for example S F"/2 < oo ). However, the second 
step is strictly a four dimensional argument. 

Lemma 4.4. I f  the hypotheses o f  Theorem 4.1 hold, 9iven any ~ > O, we may assume 
IFI~<=~ ~ 

B(0,2) 

Proof, I f S F 2 < m ,  then lira j" tF I2=0 .  Assume then, that 5 I F l 2 < e  2. 
B 4 r~O IM<r Ixl<o 

Change coordinates by y = 2x/p. Then F(x) pulls back to a Yang-Mills field 
frO') on {y:0 < [Yl < 2/p} and 

I IPl ~=  I IriS-  -<~ 
B(0, 2) lxl _-< 0 

The truth of Theorem 4.1 for ff~ implies its correctness for F. Note, however, that 
the uniformity of the estimates is lost in passing from ff back to F. 

Lemma 4.5. Under the hypotheses o f  Theorem 4.t, i f  (, F 2 ~ C', then 
B(0,2) 

Iv(x)l ~_<f~l-~k I F ~ 
B(0,21xt) 

for Ix I <= 1. m r e  c'  = c l  and k = k,  are the constants of  Theorem 3.5 with ,, = 4. 

Proof. I f lx l<=l ,B(x,  lxj )c13(0,2)and i F 2 =  ~ F2 < ' = C~2. 
B(x, lxl) B(0, 2) 

We may then apply Theorem 3.5. 
We are now directly in a position to construct the broken Hodge gauges. We 

break B 4 up into annuli 

!1~ = {x: 2 -~-1 < lx l  < 2 -e} for f = {0, 1,2,...} 

Se={S={x:lxl=2 -e} f o r e = { 0 , 1 , 2  . . . .  }. 

Definition. A broken Hodge gauge for a connection D in a bundle,/over B" - {0} = 
oo 

0 lie is a gauge related continuously to the original gauge in which D = d + A 
g = 0  
and A 1H e = A(f) have the following properties for all f ~ 0 : 

(a) d*A(O = 0 in R e. 

(b) A g g ) l s t  = A , ( t  - 1)Is  t 

(c) d~,Ao(f ) = 0 on S e and Se+ 1 

(d) ~Ar(~)= ~ Ar(f)=O. 
S~ St+i 
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Note that (a) means the gauge is Hodge in ~lt, but not  necessarily consistent across 
S t. Condition (b) implies that the induced connection on the pull-back bundle 
q l St is the same from the gauges given in li  e and lie - 1' This is actually insured by 
the condition that the gauge is continuous. Condition (c) says to choose gauges 
over the t/ISt which are Hodge, and condition (d) allows us to apply Theorem 2.7 
and its Corollary 2.8. 

The following theorem is true in all dimensions. 

Theorem 4.6. There exists {(  = y , ) >  0 such that i f  D is a smooth connection in 
B " -  {0}, and the growth o f  the curvature satisfies IF(x)] lx l 2 < 7 < y', then there 
exists a broken Hodge gauge in B" - {0} satisfying 

(e) IN(#)(x)I < ~:' II F(#)II 2 -  e < ~,~,2 e +t 

6) (,~.-k2o 2) S IA(#)I2- -<2-2t S IFI 2. 
u(t) u(t) 

Proof  The dilation y = x U + 1 carries H e into the standard annulus 1[ of Theorem 
2.8. Moreover, the inequality [F(x)llx] 2 < 7  translates into the inequality 
I (y)llyl 2 _-<7, II ll  on the curvature F in the new variables. So we may 
apply Theorem 2.8 to D = D(#) in the annulus H e to get a gauge over 11[(#) in which 
(a), (b), (c) and (d) are true. At first, it is not clear that the gauge changes across the 
spheres S t are continuous. However, recall from Theorem 2.5 that gauges for 
t/IS t in which d~A o = 0 are unique up to multiplication by constant elements in G. 
Therefore, the gauge chosen on S e from the construction on t[ t differs by a constant 
element gt e G from that chosen by the construction on ti  t_ 1" Rotate the gauge on 
lie by the constant element h e = gt, . . . ,ga. Now the choice of gauge is continuous 

across S t. The inequality II A I1 ~ < ~c' II F l100 translates into (e)in the coordinates of 
LI e rather than li. Likewise, Corollary 2.9 becomes (f) under the same dilation. 

We now restrict our attention to 4-dimensions again. Our main result follows 
from the following differential inequality. 

Proposition 4.7. Let  n = 4. Then there exists e > 0 such that i f  D is a Yang-Mi l l s  
connection in B(2, 0 ) -  {0} and ~ F 2 < e 2 then 

B(2,0) 

1-co ~ V2 I vz <l/4r ~ V 2. 
Ixl<2r / / \ l x l ~ r  Ixl=r 

Proof  From Lemma 4.5, we get tF(x)l 2 < Ixl k f f=, by choosing e 2 _< C'. 
B(0,21xl) 

If we choose e2k =< xf7  7, we may apply Theorem 4.6. We now estimate S F 2 in 
H 

integration by parts in the Hodge gauge. Assume F = F(#), A = A(#) in the broken 
Hodge gauge over !I t .  

S F2 = ~ (dA(#)  + I-A(#), A(#)], F(#))  
11¢ Ilg 

= S ( ( D A ( # ) -  [A(#), A(#)]), F(#))  
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= ~ < A(C), - (D*F(E) + [A(f), F(f)]  )> 

+ S <Ao(f) ,Fr ,~(f ) ) -  ~ <A0(f),rr0( E)>" 
S t St4-1 

Sum this equality over [ => 0. The boundary terms cancel, except for those over 
So, since A0(~ ) = A, ( f  - 1)IS t and the curvature F is continuous across S t. The 
other boundary terms become negligible as f -~ co ; lim S < A0 (D, F~0 (f) > = 0. 

This follows because the estimate of Lemma 4.5, lF(x)121xl-'*<=k ' ~ F 2 
B(o, Ixl) 

improves as x¢lIe,  f ~ ~ .  The term D*F(~) = 0 disappears because D is Yang- 
Mills. We now have 

~ < F(#), (F(f) + [A(E), A(f)])> 
E>Ottg 

= ~ < AO(0 ), Fro (0) > 
So 

(;o )//2 =< (IAo] ~) IFr,  I 2 . 

Apply Corollary 2.6 to the connection D o 4-A o on t/] S o. Note DoA o *  = O. We 
have 

( 2 -  KiIFi[ . )  2 ~[Aot 2 ~ ~tFooi 2. 
So So 

Corollary 2.9 is used to estimate the error 

[ J" < F(¢'), [A(d), F(¢')] >l =< I[ F(f)[[~ J" ]A(~')[ 2 
l ie tI~. 

<_ 2-2tIIF(Z)H~(24 - tc'2-ze H F(g)~2)-I  S IF(#)[ 2. 
lie 

Here the factor 2-  2t arises from the dilations between tl e and the standard annulus 
used to state Corollary 2.9. By Lemma 4.5, we have 

2-2']l F(~)I[~ < k  [ F(E)I 2 < k  F 2 =<ke. 
Ix}_-< -e+~ \ l x l =  2 

Assume K' ke < 24/2. The above estimate simplifies to 

[ i <F(#), [A(t:), A(t:)] > ! .~k2/;t,, I f l  2 S IF(:)I z. 
tTe \ t x l  =2 tU 

We go back to the main inequality • and put in the estimates for the right-hand 
side. 

F Z < k 2 / Z ,  I1,'I 2 ~ F 2 - }  "- 

B=2ql: \ Ix[ = 2 B=~Ztl/ 

+ (2  kK(x 2 2)lJ2) -l(x l,   2)lI2(x l 2 
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Rearranging terms: 

(1-k2/,,]~4(lxJ~2F'2)l/2)Qg-kK(,xS<_2F2)l/2)lxS<tF2 
< 5 ] f , , l  2 5 ]F,012<1/2 I F2" 

l x { = i  I x l = i  [ x l = l  

Let co = k (2221 + kK/2). Then 

( ( 1  F 2 )1/2)  S -- (9 i F2 < 1/4 i F2" 
[x] _< 2 [x] _ 1 [x[ = 1 

This result for r = 1 implies the inequality for arbitrary r by dilation. 

Theorem 4.8. Let n = 4. Then there exists e > 0 such that if D is a Yang-Mills 
connection in S(2, 0 ) -  {0} satisfying ~ F 2 < e 2 then II F ][ 0o is bounded in Ix t< 2. 

Ixl<2 

Proof. Using the same e of Proposition 4.7, (assuming in addition 1 - me = )~ > 0) 

(1-cog) 5 F 2=<1/4r 5 F 2. 
]xl<r Ixl=r 

L e t f ( r ) =  J" F 2 s o f ' ( r ) =  ~ F 2.Since 
Ixl __<r lxl =r 

4(1 -- COe) < if(r) 

r = f(r) 
by integration 

or 
f (r)  <= r "(~ - ~ f ( 1 )  

F 2 ~ r4~e 2. 
Ixl~, 

Replace the inequality of Proposition 4.7 by 

4(1 - ~(2r)2~e)f (r) ~ r f f  (r), 

Integration of this differential inequality gives 

f (r)  ~ r%~¢~f(1). 
Finally, by Lemma 4.5 again, 

] F(x)] 2 =<Ix] -4k f F2=[xI -4k f (2]x[  ) 
B(o,2[xl) 

< e4°~/~24kf(1). 

Our last step is to show the existence of a gauge in which the bundle and covariant 
derivative are smooth. The dimension becomes unimportant again. 

Theorem 4.9. Let D be Yang-MiIls in Bn(0, 1) = {xER":0 < Ixl < 1}. Assume 
in addition that F = F(D) is pointwise bounded in norm. Then there exists a gauge 
in which the bundle tl extends smoothly to q over x = 0 and D extends to a smooth 
f) in q which is Yano-Mitls. 
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Proof As in  all  the  p r ev ious  ca lcu la t ions ,  we m a y  a s s u m e  (by d i la t ion ,  if necessary)  
t ha t  P r o p o s i t i o n  4.7 h o l d s  in  ]x I < 1. Howeve r ,  in  this H o d g e  gauge,  IA(E)[ < 

K' tt F(f)II 2 -~. E q u i v a l e n t l y  t A(x) ] < 2x~:' tl F tl ~ - N o w  a p p l y  the  impl ic i t  f u n c t i o n  
t h e o r e m  desc r ibed  in  the  p r o o f  of T h e o r e m  2.7. I n  the  n e w  gauge,  d*A = 0. T h e  

genera l  r egu la r i t y  t h e o r e m  gives  the  r egu la r i t y  of  D = d + A in  this  gauge  
[10, 14, 16]. 
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