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Summary. In the present article the fact is emphasized that neuropeptides often are located in the same neurons as classical 
transmitters such as acetylcholine, 5-hydroxy-tryptamine, catecholamines, 7-aminobutyric acid (GABA) etc. This raises the 
possibility that neurons produce, store and release more than one messenger molecule. The exact functional role of such 
coexisting peptides is often difficult to evaluate, especially in the central nervous system. In the periphery some studies 
indicate apparently meaningful interactions of different types with the classical transmitter, but other types of actions 
including trophic effects have been observed. More recently it has been shown that some neurons contain more than one 
classical transmitter, e.g. 5-HT plus GABA, further underlining the view that transfer of information across synapses may be 
more complex than perhaps hitherto assumed. 
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Biochemical and modern molecular biological techniques 
have defined a large number of bioactive substances in the 
central and peripheral nervous system (CNS and PNS). In 
addition to earlier described low molecular weight com- 
pounds such as acetylcholine (ACh), catecholamines and 
certain amino acids (?~-aminobutyric acid (GABA), glycine), 
which are considered to act as neurotransmitters, an increas- 
ing number of peptides ranging in size from a few up to 40 
amino acids and more have been identified in neurons 135. The 
biochemical 79,1~1 and immunohistochemica112 demonstra- 
tion of peptides in well-defined neuronal systems in wide- 
spread areas of the nervous system, taken together with phy- 
siological investigations, indicate that some peptides, at least 
in some systems, may have a transmitter role 116,135. For  
example, several lines of evidence suggest a transmitter func- 
tion for substance P (SP) in primary sensory neurons 117,124. 
Important  clues for alternate roles for peptides have also 
been presented 146. Subsequent analyses have indicated that 
peptides exert a wide range of effects. 
When the interest in neuronal peptides became manifest 15 
or so years ago, and their presence in distinct subsets of 
peripheral and central neuron populations had been demon- 
strated, it seemed possible to assume that they might have a 
transmitter role. For  instance, classical transmitters identi- 
fied at that time, such as ACh, catecholamines and 5-hy- 
droxytryptamine (5-HT) had been found to be present in 
only a small population of neurons in the central nervous 
system34, 71,120. The addition of numerous peptides thus ap- 
peared to represent a meaningful way to 'fill up' neuronal 
systems, i.e. those cells that did not contain a classical trans- 
mitter produced a peptide. However, immunohistochemical 
analysis of the distribution of various peptides in comparison 
to, for example, catecholamine and 5-HT systems revealed 
that in many cases peptides could be observed in the same 
neuron that also contained a classical transmitter. This 
has been documented in many articles and re- 
views 5,18, 55, 56, 62, 66, 86,109.113,134 as well as discussed at meet- 
ings21. 30, 65,114. The co-localization of classical neurotrans- 
mitter and peptide in the same neuron represents a logical 
continuation of earlier demonstrations showing the presence 
of biogenic amines and peptide hormones in the same endo- 
crine cells 119,123 and possible cellular coexistence of trans- 
mitters in invertebrate neurons (e.g. Brownstein et al. 16, for 
discussion, see Osborne113). These findings, in a general 
sense, could be interpreted to mean that neurons either con- 
tain more than one transmitter substance (classical trans- 
mitter+peptide) or that the peptide in these neurons may be 
responsible for other types of functions, for example, they 
could exert long-term trophic effects. 
Many examples of neurons that contain more than one pep- 

tide but no classical transmitter have been reported. How- 
ever, it is unclear whether these neurons really lack a classical 
transmitter or whether the proper marker for a classical 
transmitter in these neurons is simply 'missing'. There is also 
increasing evidence that neurons may contain more than one 
classical transmitter. For  example, 5-HT and GABA appear 
to coexist in the same cells of both pontine and medullary 
raphe nuclei as first reported by Pujol and collabo- 
rators s, 9,103. It does not seem unlikely that these neurons in 
addition contain one or more peptides. Finally, increasing 
evidence suggests that adenosine nucleotides may participate 
as co-messengers in neurotransmission, as early advanced by 
Burnstock 18. 
It is important to note that coexistence of several types of 
compounds with possible messenger function still largely 
represents a histochemical concept based on immunohisto- 
chemical demonstration of these substances, using antisera 
raised against various transmitters, transmitter synthesizing 
enzymes and peptides. Apart  from problems concerning the 
specificity and sensitivity of these techniques, the most im- 
portant  questions are, of course, to what extent are these 
compounds actually released from the nerve endings and 
how do they participate in the transmission process? This 
article represents an initial account of an emerging view that 
transmission of messages across synapses is a more compli- 
cated event than perhaps previously assumed. 

How to define coexistence 

The nervous system is an extremely heterogeneous tissue, 
and it is therefore not possible to study coexistence with 
biochemical techniques with the present status of sensitivity. 
An exception may be some invertebrate neurons, which are 
so large that they can be isolated individually and that their 
content of neuroactive compounds possibly can be deter- 
mined biochemically 113. Biochemistry can be used however 
to demonstrate coexistence indirectly. For  example, there are 
'specific' neurotoxins such as 6-hydroxydopamine 142 and 
5, 6-dihydroxytryptamine 6 which destroy catecholamine and 
5-HT neurons, respectively. With the latter compound, a 
concomitant depletion of 5-HT, SP and TRH has been 
shown and was interpreted to indicate coexistence of these 
compounds in single neurons 48. 
Because neurons can be visualized individually in the micro- 
scope and because antibodies can identify substances within 
a single cell or a slice of a cell, immunohistochemi- 
stry27,31,105,126,138 offers the most accurate method for deter- 
mining coexistence. Various immunohistochemical approa- 
ches can be used to study multiple antigens in a neuron. They 
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Figure 1. lmmunofluorescence micrographs of the ventral tegmental area 
(VTA) (a, b), the periaqueductal central grey (PAG) (c, d), the ventral 
medulla oblongata (f,, g) and the nucleus tractus solitarii (NTS) (g, h), 
after incubation with antibodies to cholecystokinin (CCK) (a, c) tyrosine 
hydroxylase (TH), a marker for dopamine (DA) neurons (b, d), 5-hy- 
droytryptamine (5-HT) (e), glutamic acid decarboxylase (GAD), a 
marker for GABA neurons (f), somatostatin (SOM) (g), and methio- 
nine-enkephalin (ENK) (h). a and b, c and at, e a n d f a s  well as g and h 
show, respectively, the same sections which have been processed accord- 
ing to double staining technique using primary antisera raised in different 
species and secondary antibodies labelled with green fluorescent FITC 
and red fluorescent TRITC, respectively. This series of micrographs are 
meant to illustrate coexistence of classical transmitter and peptide (DA 

plus CCK) (a, b), two classical transmitters (5-HT plus GABA) and two 
peptides (SOM plus ENK). a-d Numerous cell bodies (arrow heads) in 
the VTA contain both CCK- and TH-like immunoreactivity (LI), whereas 
in the PAG no double-labelled cells can be seen. e, f I n  the area lateral to 
the pyramidal tract (P) numerous cell bodies (big arrow heads) contain 
both 5-HT- and GAD-LI. Note numerous 5-HT cells (small arrow heads) 
along the ventral surface of the brain which seem to lack GAD-LI. g, h In 
the NTS numerous cell bodies (arrow heads) contain both peptides, but 
there are also cells containing only one of the peptides (double arrow 
heads point to SOM-negative, ENK-positive cell and arrows point to 
SOM-positive, EN K-negative cell). Bars indicate 50 p,m. (From references 
103, 104) 
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include the 'adjacent section method', where consecutive sec- 
tions are incubated with different primary antisera. No 
cross-reaction between antisera can occur and consequently 
there are no problems of specificity due to interference be- 
tween antibodies. Only large objects such as cell bodies can 
be studied but  with sufficiently thin sections a cell body can 
often be identified in two or even more consecutive sections. 
When epoxy resin-embedded material is used, sections can be 
cut at 1 gm or thinner, and then numerous sections through a 
single cell body can be analyzed t~ "Elution-restaining meth- 
ods,lOS, 143 have been extensively utilized. After photography 
of the first staining pattern, the antibodies are eluted with 
acid solutions, and the sections are then reincubated with a 
new antiserum, and the new staining patterns are compared 
with the previously taken photographs. This method can, in 
our experience, not  be used with all antisera, since the elution 
procedure seems to damage some antigens. The third ap- 
proach is 'direct double-staining', which is based on availabil- 
ity of antisera raised in different species (fig. 1, a-h). Second- 
ary antibodies labelled with different chromogens (e.g. green 
fluorescent fluorescein isothiocyananate, FITC,  and red 
fluorescent tetramethyl rhodamine isothiocyanate, TRITC)  
and directed against IgG from the two respective species then 
allow visualization of  the two antigens in the same section by 
switching between appropriate filter combinat ions (fig. 1, a -  
h; see reference 105). In fact, it has recently been shown that 
three antigens can be visualized in a single section using a 
third, blue fluorescent dye conjugated to an appropriate sec- 

ondary ant ibody 137. By combining this triple staining techni- 
que with elution-restaining, it should be possible to visualize 
four or even more antigens in a section. The final analysis of 
coexistence will, however, include electron microscopic stu- 
dies. It has, for example, been shown that 5-HT and SP are 
stored in the same vesicles in some nerve endings in the spinal 
cord m,  and also at the ultrastructural level there are now 
methods to demonstrate three antigens in one section 37. 
Immunohistochemical  methods should, in spite of their 
power and usefulness, be considered with some caution both 
with regard to specificity and their sensitivity. Thus, it cannot  
be excluded that the antisera cross-react with compounds 
which are structurally similar to the immunogens.  Recently 
evidence has been presented that one single amidated amino 
acid in the C-terminal position may be sufficient to cause 
cross-reactivity 11'74. Therefore, expressions such as 'soma- 
tostatin(SOM)-like immunoreactivi ty ' ,  'SOM-immunoreac-  
tive', etc. should be used. 
It is also important  to emphasize the sensitivity problem and 
that negative results should be interpreted with great cau- 
tion. It  has been demonstrated repeatedly that improvement  
of the fixation technique and/or  product ion of antibodies 
with a higher affinity and/or  higher avidity reveal a certain 
antigen in places where it had not  been demonstrated earlier. 
Also, peptide levels in cell bodies are often too low to be 
visualized in central neurons,  but  can be increased by pre- 
treatment of experimental animals with a mitosis inhibitor, 
colchicine 33, and in this way visualized. 

Table 1. Coexistence of'classical transmitters and peptides in the mammalian CNS a (selected cases) 
Classical transmitter Peptide u Brain region (species) References 
Dopamine CCK Ventral mesencephalon (rat, cat, mouse, monkey, man?) 57, 58, 64, 66 

Nenrotensin Ventral mesencephalon (rat) 59 
Hypothalamic arcuate nucleus (rat) 59, 70 

Norepinephrine Enkephalin Locus coeruleus (cat) 24, 80 
NPY Medulla oblongata (man, rat) 40, 60, 130 

Locus coeruleus (rat) 40 
Vasopressin Locus coeruleus (rat) 19 

Epinephrine Neurotensin Medulla oblongata (rat) 59 
NPY Medulla oblongata (rat) 40, 130 
Substance P Medulla oblongata (rat) 84 
Neurotensin Solitary tract nucleus (rat) 59 

5-HT Substance P Medulla oblongata (rat, cat) 20, 22, 54, 73, 85 
TRH Medulla oblongata (rat) 56, 73 
Substance P+TRH Medulla oblongata (rat) 73 
CCK Medulla oblongata (rat) 94 
Enkephalin Medulla oblongata, pons (cat) 49, 68 

Area postrema (rat) 4 

ACh Enkephalin Superior olive (guinea pig) 
Spinal cord (rat) 76 

Substance P Pons (rat) 145 
VIP Cortex (rat) 38 
Galanin Basal forebrain (rat, monkey) 100, t01 
CGRP Medullary motor nuclei (rat) 140 

GABA Motilin (?) Cerebellum (rat) 23 
Somatostatin Thalamus (cat) 111 

Cortex, hippocampus (rat, cat, monkey) 52, 72, 131, 136 
CCK Cortex, hippocampal formation (cat, monkey, rat) 52, 78, 136 
NPY Cortex (cat, monkey) 52 
Enkephalin Retina (chicken) 147 

Ventral pallidum, hypothalamus (rat) 75, 150 
Opioid peptide Basal ganglia (rat) 110 
Galanin Hypothalamus (rat) 102 
Substance P Hypothalamus (rat) 75 
VIP Hippocampal formation (rat) 78 

Glycine Neurotensin Retina (turtle) 148 
a The coexistence situations have been defined mainly by immunohistochemistry. Only papers published 1985 or earlier are included, b This column 
contains the peptide against which the antiserum used for immunohistochemistry was raised. The exact structure of the peptide coexisting with the 
classical transmitter has for the most part not been defined. 
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Table 2. Coexistence of two classical transmitters in the CNS a 
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Classical transmitter 1 Classical transmitter 2 Brain region (species) References 

GABA 5-HT Nucleus raphe dorsalis (rat) 8, 9 
Medullary raphe nuclei and adjacent areas (rat) 8, 9, 103 
Retina (rabbit) t 15 

GABA DA Arcuate nucleus (rat) 41 
Olfactory bulb (rat) 46, 77 

GABA Histamine Hypothalamus (rat) 133 
GABA ACh Medial septum/diagonal band (rat) 15 
GABA Glycine Cerebellum (rat) 118 

a The coexistence situations have been defined mainly by immunohistochemistry using antisera raised against the transmitter itself and/or a transmitter 
synthesizing enzyme. 

Coexistence - overview 

During the last years an increasing number  of  neurons con- 
taining coexisting messenger molecules have been described 
both in the central and peripheral nervous systems. Limited 
space does not  allow a complete account of  this work, there- 
fore only selected cases are included. As indicated above, 
different types of  combinations have been encountered: 1) 
classical transmitter+peptide(s) (fig. 1, a~t) ,  2) more than 
one classical transmitter (fig. 1, e, f), and 3) more than one 
peptide (fig. 1, g, h). In table 1 coexistence of  classical trans- 
mitters and peptides in the mammal ian  CNS are listed, which 
have been described in papers in 1985 and earIier. The pur- 
pose of  this table is to demonstrate  that for each of  the 
classical transmitters there is at least one example of  coexist- 
ence with one or  more peptides. In table 2, examples of  the 
recent evidence that neurons may contain more than one 
classical transmitter are summarized. The first evidence con- 
cerned coexistence of  a biogenic amine (5-HT) and an amino 
acid (GABA)  8,9, and it seemed possible to argue that 5-HT 
and G A B A  indeed belong to different classes of  compounds  
and thus that  they might  complement  each other  in some 
unknown way. More  recently, however, there is evidence for 
occurrence of  two inhibitory amino acids ( G A B A  and 
glycine) in the same Golgi  neurons in the rat cerebellum 118. 
Also indirect evidence suggests such a coexistence, since 
G A B A  nerve endings have been shown to be located op- 
posite to postsynaptic membranes  that contain glycine recep- 
tors 144. 

Coexistence situations in the CNS 

As shown in table 1, peptides can be found in virtually all 
types of  classical transmitter neurons in many parts of  the 
central nervous system. It does not  seem unlikely that further 
research will find more and more such examples and that 
coexistence is a rule rather than an exception. It is o f  particu- 
lar interest that many G A B A  neurons in cortical areas includ- 
ing hippocampus contain one or more peptides 52'78,131,136. It 
should be noted that many types of  coexistence combina- 
tions seem to occur in an unpredictable way and that often 
only subpopulations o f  neurons seem to contain a certain 
peptide. Fo r  example, 5-HT neurons in the lower medulla 
oblongata  contain a SP -22' 54 and also a thyrotropin-releasing 
hormone(TRH)- l ike  peptide 48,56,73, whereas so far no such 
coexistence has been reported in pontine and mesencephalic 
5-HT cells. Moreover ,  the propor t ion of  5-HT neurons that 
contain the two peptides vary within the medullary raphe 
nuclei 73. Differential coexistence is also observed in the cate- 
cholamine neurons. Thus of  the multiple groups originally 
described and defined by Dahls t r6m and Fuxe 34 (A1-AI2 ;  
see references 61 and 63), the A1 and A6 noradrenergic and 
the C I - C 3  adrenergic neurons contain a neuropeptide 
Y(NPY)-l ike peptide 13, 30, 40, the parvocellular C2 adrenaline 
group a neurotensin 59 - and a cholecystokinin (CCK) 64 - like 
peptide. Some At  and most A6 neurons express a galanin- 

like peptide 1~ a n d m a n y  mesenceptvatic and some hypotha- 
lamic dopamine (DA) neurons exhibit neurotensin-like im- 
munoreactivi ty (LI) 42,s9,7~ whereby the A12 D A  neurons 
contain galanin-, neurotensin- and growth hormone  releas- 
ing factor(GRF)-L197,98,112. Finally, the caudal part  of  the 
A13 D A  cell group has a SOM-like peptide 99. The distribu- 
tion of  CCK-LI  in the mesencephalic D A  neurons is particu- 
larly intricate and is illustrated in figure 2 showing e.g. that 
the A I 0  cells in the ventral tegmental area (fig. 1, a, b) have 
an increasing propor t ion of  coexistence in caudal direction, 
whereas neurons of  the pars lateralis have almost 100% co- 
existence and hardly any cells containing both DA and C C K  
are found in pars reticulata. A galanin-like peptide has re- 
cently been observed in the basal forebrain cholinergic neu- 
rons both in rat and monkey;  these neurons project to the 
hippocampal  formation 1~176 101 

Coexistence in the P N S  

In the peripheral nervous system coexistence is frequently 
encountered; in fact, it can be observed in most systems. 
Particularly complicated patterns have been observed in the 
gastrointestinal tract with up to four peptides in presumably 
cholinergic neurons (see reference 29). The sympathetic and 
parasympathetic  systems are also rich in peptides (see refer- 
ence 87). Originally SOM-LI  was found in a populat ion of  
sympathetic noradrenergic neurons 53. Fur ther  study has ex- 

% 
100" 

8C 

60  

40  

20 

pars lateralis 
# �9 

JI 

* ~  ......... ~A 10 
. J  ................ l " ' "  

.... * pars compacta 
i t  

~ A 8  

pars reticulata 
r 

z I ? . . . . .  ? . . . . . .  ~ . . . . . .  ? 

4.8 6.3 

rostral caudal 

Figure 2. Schematic illustration of the percentage of dopamine (DA) 
neurons containing cholecystokinin (CCK)-LI in various subregions of 
the ventral mesencephalon at different rostral-caudal levels. (The most 
rostral level is approximately 4.8 mm behind the Bregma, the most caudal 
point 6.3 mm behind the Bregma and sections have been analyzed at 
0.3-ram intervals.) Areas analyzed are pars compacta, pars lateralis and 
pars reticulata of the substantia nigra as well as the ventral tegnnental area 
(A10 DA cell group) and the A8 DA cell group in the mesencephalic 
reticular formation. Note high proportion of DA/CCK coexistence in 
pars lateralis and low percentage in pars reticulata. In the ventral teg- 
mental area there is an increasing incidence of coexistence in the caudal 
direction. (From Staines, H6kfelt, Goldstein et al., in reference 66) 
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tended these findings. For  example, immunohistochemical 
analysis the coeliac-superior mesenteric ganglion in guinea 
pig has shown at least three distinct populations of neurons 
(figs 3, a-c; 4)82'91'93: 
1) noradrenergic ganglion cells containing an NPY-like pep- 
tide (approximately 65 % of all neurons), 2) noradrenergic 
cells containing SOM-LI (25 %), and 3) a small population of 
vasoactive intestinal polypeptide (VIP)/peptide histidine iso- 
leucine(PHI)-positive cell bodies. Some of the latter ones 
contained NPY-LI and sometimes also noradrenaline (NA). 
These neurons have specific domains within the ganglion and 
have been shown to project to different targets in the gastro- 
intestinal wall (fig.4) ;8,45. Moreover, they seem to be con- 
trolled by different afferent inputs (fig. 4). Thus, whereas the 
afferents from the intestine containing e.g. VIP/PHI and 
DYN exclusively terminate around the SOM-positive cell 
bodies (cf. fig. 3, b and c), afferents from the spinal cord and 
spinal ganglia have a more wide-spread distribu- 
tion35, 36, s2, 93,96. These findings suggest that chemical coding 
of neurons by a particular peptide in the peripheral nervous 
system may reflect its participation in a well-defined physio- 
logical event. 

A re coexistence combinations preserved during phylogeny ? 

This question has been studied only to a limited extent. How- 
ever, there are examples both of variation and preservation 
of  certain coexistence situations among different species. For  
example, NA and SOM coexist in sympathetic neurons in 
guinea pig and rat but not in cat 9~ 91. Coexistence of DA and 
CCK-LI has been observed in mouse, rat, cat, monkey and 
probably man, but the proportions and exact distribution of 
coexistence neurons in the ventral mesencephalon seem to 
vary among the different species 64. In contrast, no CCK-LI 
has so far been observed in mesencephalic DA cell bodies in 
guinea pig. We have analyzed one of the most primitive 
vertebrates, the lamprey fish, and although coexistence situa- 
tions have been encountered, there is so far no evidence for 
any major coexistence of those compounds which have been 
described in mammals 17. 

Functional sign(ficance of  coexistence 

The functional significance of coexistence of multiple puta- 
tive messenger molecules is not very well understood. A key 
issue is whether or not it is meaningful to have numerous 
compounds simultaneously conveying messages between 
neurons or a neuron and an effector cell; i.e. whether these 
messengers can produce selective and differential responses. 
There are several models which explain how multiple mes- 
sengers might work. One shows that the neuron under all 
conditions releases all types of messenger molecules at the 
same time, and that the distribution and type of receptors 
provide selectivity and specificity, i.e. post-synaptic selectiv- 
ity. An alternative model would be the ability to release the 
messenger differentially i.e., presynaptic selectivity. Both, of  
course, may operate together and other types of mechanisms 
should also be considered. In the following we shall present 
some morphological evidence for the view that differential 
release can be obtained and that this is related to differential 
storage of the transmitter substance. 
In general, nerve endings contain at least two types of vesi- 
cles, the synaptic vesicle (diameter about 500 A) and a large 
type of vesicle (diameter about 1000 A~), often containing 
an electron-dense core and termed 'large dense-core' or 
'granular '  vesicle. Immunohistochemical studies at the ultra- 
structual level have revealed that peptides seem to be located 
in the large dense-core vesicles. For  example, Pelletier et al. 122 
demonstrated that SP is present in large dense-core vesicles 
in nerve endings in the ventral horn of  the spinal cord. This 

general idea is supported by subcellular fractionation studies 
demonstrating that VIP in the cat salivary gland 89 and NPY 
in rat vas deferens 44 seem to appear exclusively in a heavy 
fraction characterized by presence of large dense-core vesi- 
cles. These fractions also contained overlapping peaks with 
the coexisting classical transmitters, i.e. ACh and NA, re- 
spectively. In contrast, the lighter fractions, presumably 
characterized by content of small synaptic vesicles, only con- 
tain classical transmitters. These findings suggest that pep- 
tides at least in some tissues are stored exclusively in large 
vesicles, whereas classical transmitters are found in both 
dense-core and synaptic vesicles. Thus, if a mechanism 
would exist allowing selective activation and release from the 
two types of vesicles, it should be possible to obtain differ- 
ential release of  transmitter substance from the nerve ter- 
minal. There is evidence that the classical transmitter and 
peptide can be released differentially and that this release is 
dependent on the frequency of action potentials 39, 9o Accord- 
ing to this hypothesis, a low impulse frequency selectively 
activates small vesicles resulting in the release of the classical 
transmitter, whereas at higher frequencies or by bursts of 
impulses the large vesicles also release their content in addi- 
tion. In this way the classical transmitter is released selec- 
tively or in combination with a peptide(s) 86. 

Interaction of  coexisting messengers 

Some experimental models have yielded interesting and per- 
haps meaningful results concerning possible interaction 
among transmitter substances. For  example, the cat salivary 
gland receives a parasympathetic innervation containing 
ACh together with VIP and PHI and noradrenergic sympa- 
thetic, perivascular fibers containing NPY 9~ ACh induces 
both secretion and an increase in blood flow and these effects 
are both atropine sensitive 9~ VIP alone has no apparent 
effect on secretion but causes increased blood flow, thus 
co-operating with ACh in the regulation of blood flow 9~ 
Moreover, VIP potentiates ACh-induced secretion, and ad- 
ditive effects on blood flow are seen when ACh and VIP are 
infused together 9~ With regard to the sympathetic control of 
blood flow, NA and NPY cooperate in causing vasoconstric- 
tion, whereby NPY alone exhibits a slowly developing, long 
lasting effect 88,9~ A different type of  interaction has been 
observed in rat vas deferens which is innervated by norad- 
renergic fibers containing NPY 1' 92.139, since here the peptide 
inhibits release of NA. Thus, the peptide seems to exert an 
antagonistic action at the presynaptic level. 
A second model was tested in the autonomic nervous system 
of the bullfrog by Jan and collaborators 14. The frog sympa- 
thetic ganglion allows a thorough analysis of the coexistence 
concept, since it is possible to define the roles of the coexist- 
ence messengers also with electrophysiological techniques. 
Neurons in some ganglia of the lumbar chain contain ACh 
and a luteinizing hormone-releasing hormone (LHRH)-like 
peptide, and physiological experiments indicate that the pre- 
ganglionic C-fibers release both ACh and the peptide ~4. 
However, the targets for the two compounds are not identi- 
cal. Acetylcholine exerts its actions only on the so-called 
C-cells, which are in synaptic contact with the preganglionic 

Figure 3. lmmunofluorescence micrographs (montages) of the coeliac-su- 
perior mesenteric ganglion of guinea pig after incubation with antiserum 
to neuropeptide Y (NPY) (a), somatostatin (SOM) (b) and peptide his- 
tidine isoleucine (PHI) (c). The montages show semiadjacent sections in 
the border zone between the NPY and SOM domaines. On the left hand 
side the NPY-positive cell bodies dominate, whereas SOM cell bodies are 
seen mainly to the right, but in this particular area a considerable inter- 
mingling takes place. Note that PHI-positive fibers originating in the 
gastro-intestinal wall preferentially innervate SOM-positive cell bodies. 
Bar indicates 50 pro. (From reference 82) 
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C-fiber from which ACh is released. The LHRH-like peptide 
causes responses only in some C-cells but does in addition 
activate B-cells which are many pm apart and thus not in 
synaptic contact with the preganglionic C-fibers 14. The phy- 
siological analysis reveals that the LHRH-peptide causes 
slow excitatory postsynaptic potentials (EPSP), whereas it is 
known that ACh causes a fast EPSP 14. In conclusion, in this 
particular model the two compounds both induce excitatory 
postsynaptic potentials but, whereas ACh induces a fast po- 
tential, the LHRH-like peptide is responsible for the slow 
EPSP. Moreover, whereas ACh acts synaptically on C-cells, 
the LHRH-like peptide activates only a proport ion of these 
cells but can in addition induce slow EPSP in B-cells located 
up to 10 p~m away. As pointed out by Branton et al. 14, the 
distribution of receptors and the ability of the messenger 
molecule to 'survive' long diffusion distances represent im- 
portant factors for deciding upon what effects are evoked. 
These and the previous examples indicate that coexistence of 

Studies on CGRP have also suggested another role for a 
coexisting peptide. It was early observed that CGRP-LI in 
the spinal cord is present not only in central branches of 
primary sensory neurons, but also in motoneurons and 
it therefore seems likely that CGRP coexists with 
ACh47.127,140,141. Recently evidence has been obtained by two 
groups that CGRP may be involved in regulation of receptor 
density. Thus, CGRP added to cultured chicken myotubes 
causes an increase in the number of surface ACh receptors, 
probably by acting as a long-term anterograde factor in the 
biogenesis and maturation of the endplate postsynaptic 
membrane43,107 These findings further underline the view 
that coexisting messengers may interact and act in a wide 
variety of ways, characteristic of the particular system in 
which the coexistence occurs. 

Conclusions and speculations 

messenger molecules is not a 'homogenous' phenomenon The functional significance of the histochemical demonstra- 
and that different types of interaction may take place, tion of coexistence of multiple messengers is at present diffi- 

Are extracellular enzymes targets for neuropeptides? 

Finally, in the discussion of functional significance of multi- 
ple messengers, we would like to focus on a recently discov- 
ered peptide, calcitonin gene-related peptide (CGRP) 3' 127 
Using antibodies raised against this peptide, immunohisto- 
chemical studies have revealed characteristic and unique dis- 
tribution patterns within the nervous system, including its 
presence in primary sensory neurons 127. In fact, these CGRP- 
positive primary sensory neurons seem in part to be identical 
to previously described SP-immunoreactive neurons 47, 149, It 
therefore seems likely that CGRP and SP are released from 
the same nerve endings both in peripheral tissues as well as in 
the superficial layers of the dorsal horn of the spinal 
cordgS. 129. Possible interactions between CGRP and SP have 
been studied in the spinal cord after intrathecal adminis- 
tration of the two peptides, separately or in combination 149. 
After intrathecal injection of SP at the lumbar level, rats 
exhibit a characteristic behavior with caudally-directed bit- 
ing and scratching 69' 12s, and this could be confirmed in our 
study on rats, exhibiting a fairly short-lasting behavior (2-4 
min) 149. CGRP alone in doses up to 20 gg did not cause any 
observable effects. However, if SP and CGRP were injected 
together, a marked increase in the duration of this behavior 
was seen, lasting for 30 min or more Ig9. A partial explanation 
for this prolongation of SP-induced behavior by CGRP has 
been forwarded by Terenius and collaborators sl. They ob- 
served that CGRP is a potent inhibitor o fa  SP endopeptidase 
isolated from human CSF 8I, suggesting that CGRP may pro- 
long transmission at SP 'synapses' by inhibiting a degrading 
enzyme. This may represent a new type of interaction of two 
compounds released from the same nerve endings and raise 
some general questions concerning chemical transmission, 
indicating that messenger molecules may not always interact 
with membrane-bound receptors but perhaps, as in this case, 
with an enzyme located in the extracellular space. 
It has been suggested 67 that such a hypothetical action of a 
messenger molecule on an extracellular enzyme may be a 
more general principle. For  example, in the substantia nigra 
it has been reported that nerve cells can secrete acetylcholin- 
esterase 25,51 (see GreenfieldS~ and it is known that this 
enzyme can hydrolyze SP 26, which is present in very dense 
fiber networks in the zone reticulata of the substantia ni- 
gra32, 83. In spite of this, several groups have failed to demon- 
strate binding sites for tachykinins in the rat substantia nigra 
with receptor autoradiography 7;128'132. One hypothetical 
explanation could thus be that SP released from nerve end- 
ings in the zona reticulata primarily interacts with an extra- 
cellular enzyme 67. 

cult to evaluate, but evidence has been obtained from studies 
in the PNS that classical transmitters and peptides are co-re- 
leased and interact in a cooperative way on effector cells. 
Other types of interaction may also occur, however, since 
peptides have been shown to inhibit the release of the coexist- 
ing classical transmitter. In the CNS, the situation is even less 
clear but similar mechanisms may also operate. Indirect evi- 
dence suggests that peptides may in some cases strengthen 
transmission at synaptic (or non-synaptic) sites and in other 
cases inhibit release of the coexisting classical transmitter. 
Thus, multiple messengers may provide a mechanism for 
relaying differential responses and for increasing the amount 
of information transmitted at synapses. 
It is emphasized that coexisting messengers may not neces- 
sarily be involved directly in the transmission process at 
synapses but could also exert other types of actions, for 
example have trophic effects or induce other types of long- 
term events in neurons and effector cells. For  instance, it has 
been shown that SP exerts growth-stimulatory effects on 
smooth muscle cells l~ and as discussed above CGRP may 
be involved in regulation of expression of  transmitter recep- 
tors43, i07. In fact, it may be argued that the coexistence phe- 
nomenon as such, i.e. that neurons in addition to classical 
transmitter(s) contain other compounds, suggests that pep- 
tides are involved in other functions, since the neurons al- 
ready have a classical transmitter at their disposal for accom- 
plishing the task of fast cell-to-cell communication. 
Redundancy of neurons and neuronal systems is an impor- 
tant feature of the central nervous system and one may ask 
the question, why should it not be sufficient to have one 
transmitter at each synapse when there are so many nerve 
cells? An answer could be that redundancy is also present at 
the level of the individual synapse. A highly differentiated 
transmission process may also be necessary to achieve the 
enormous operational capacity of our brain, which also in- 
cludes transfer of  messages for long-term effects. 
At this point it is, however, also wise to look upon the co- 
existence phenomenon with a critical eye, in view of the fact 
that physiological implications so far are very little eluci- 
dated. It cannot be excluded that coexistence of multiple 
messengers is a paraphenomenon representing a conse- 
quence of evolution. It is possible that peptides have been 
important messengers in lower species, but that they have 
been replaced by the more efficient, small-molecule trans- 
mitters, especially in phylogenetically young areas of the 
brain such as cortex, and that peptides at least in some places 
are carried along more or less as 'silent passengers'. It will be 
an important task to establish in the future whether or not, in 
fact, peptides and classical transmitters are released from the 
same nerve endings and under which conditions this occurs. 
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Furthermore,  it will be important  to determine the models of  
action and interaction of  the different transmitter sub- 
stances. 
Finally, the question may be raised whether or  not  the co- 
existence phenomen is of  interest in relation to pathological  
processes. So far, little evidence for such an involvement  has 
been presented. It  is obvious that, for example, the presence 
o f  a CCK-l ike peptide in certain mesencephalic dopamine 
neurons (see above) could be discussed in relation to 
schizophrenia, since this disease according to one of  the hy- 
potheses is related to hyperactivity of  mesolimbic dopamine 

C-SMG: �9 NA+NPY 
/X  LI A •  

systems (see book edited by Matthysse and Kety96a), but this 
issue has so far not  been sufficiently penetrated. 
It may, however, be relevant in this overview to speculate 
how coexisting messengers in a general way could interact in 
the development  of  a pathologic process. As an example we 
have chosen coexistence of  acetylcholine and the newly dis- 
covered peptide galanin 141a in forebrain neurons of  rat 1~176 and 
monkey 1~ projecting to hippocampus ~~176 As shown by many 
groups, these cholinergic neurons may be important  for 
higher brain functions such as memory  and learning 1~ 13i,. 
Their  cholinergic nature and projections to cortical areas 
have been established in many studies (see Fibiger 42~ and 
Wainer  et al.~4s" for review), and there is strong evidence that 
they are degenerated in Alzheimer 's  disease and senile de- 
mentia '48~. It is therefore not  unreasonable to consider if  and 
how a possibly coexisting peptide, galanin, could be involved 
in the development  of  this disease. 
In the hypothalamus galanin may inhibit the release of  do- 
pamine in a system where galanin and dopamine coexist 1~ 
I f  galanin inhibits the release of  acetylcholine also in the 
cholinergic forebrain system, this peptide could be of  impor- 
tance for the development of  Alzheimer 's  disease (fig. 5). Our  
reasoning is based on the hypothesis described above that  a 
coexisting peptide is stored in the large dense-core vesicles 
(fig. 5) and is preferentially released when neurons are firing 
at a high rate or with a certain frequency pattern 39,9~ In the 
case of  galanin, it may have the purpose to prevent excessive 
release of  the coexisting transmitter (fig. 5a-c). A further 
basis for our  discussion is that the degeneration of  the cho- 
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Figure 4. Schematic illustration of the coeliac-superior mesenteric gan- 
glion (C-SMG) and its connection with the spinal cord and intestine with 
special reference to peptides and coexistence systems. In the C-SMG two 
main populations of ganglion cells are seen characterized by presence of 
noradrenatine (NA) plus neuropeptide Y(NPY)-like immunoreactivity 
(LI) and NA plus somatostatin(SOM)-LI, respectively. The former are 
located in the lateral parts of the ganglion, whereas the NA+SOM gan- 
glion cells occupy its mid portion. Small population of cells contain 
vasoactive intestinal peptide (VIP)/peptide hisfidine isoleucine (PHI) plus 
NPY, and they are located in the lateral aspects of the 'NPY domaine'. 
Some NA cells seem to lack a peptide. The NA+SOM neurons project to 
the submucous ganglion, whereas the NA+NPY neurons innervate blood 
vessels in the intestinal wall. Cell bodies containing NA alone project to 
the myenteric ganglia. Projections from the intestine to the C-SMG arise 
from the myenteric ganglia and contain multiple peptides including VIP, 
PHI and dynorphin (DYN). They seem to innervate exclusively NA plus 
SOM cell bodies in the midline areas of the ganglion. The fibers from the 
spinal cord contain an opioid peptide, possibly an enkephalin(ENK)-like 
peptide, and they distribute diffusely over the ganglion. To what extent 
these fibers also contain acetylcholine has not been established. Finally, 
primary sensory neurons containing i.a. substance P give rise to a diffuse 
plexus within the ganglion, and these fibers represent collaterals of axons 
continuing on to the gastrointestinal wall and innervating blood vessels. 
bv, blood vessel; CM, circular muscle layer; LM, longitudinal muscle 
layer; LP, lamina propria; M, mucosa; MP, myenteric plexus; SM, sub- 
mucousa; SP, submucous plexus. (This schematic drawing is based 
mainly on work in references 28, 35, 36, 45, 82, 91, 93, 96) 
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Figure 5a, b. Schematic illustration of a cholinergic nerve ending in the 
hippocamus containing galanin and originating in the basal forebrain, a) 
Under normal conditions acetylcholine (ACh) is released in increasing 
amounts with increasing impulse frequency, causing an increased post- 
synaptic response (1,2). However, with very high activity (3), galanin is 
also released causing inhibition of ACh release, b) If a proportion of the 
cholinergic forebrain neurons is damaged (x), either as a consequence of 
degeneration of postsynaptic n e u r o n s  (i) 135a, or by presynaptic degener- 
ation (2), the remaining neurons (y) may exhibit hyperactivity, leading to 
increased galanin release, increased inhibition of ACh release and a di- 
minished postsynaptic response. This in turn, via feed-back mechanisms, 
may further activate the forebrain neurons, leading to a vicious circle 
causing accelerated cell death. 
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l inergic fo r eb ra in  n e u r o n s  is a sequent ia l  p rocess  and  tha t  
par t ia l  de s t ruc t i on  o f  a sys tem causes  a m a r k e d  hyperac t iv i ty  
in t he  r e m a i n i n g  n e u r o n s ,  as d e m o n s t r a t e d  exper imen ta l ly  
on  the  n ig ros t r i a ta l  d o p a m i n e  sys t em by  A g i d  et al. ~. I t  m a y  
be  specu la ted  tha t  such  changes  occur  du r ing  p rogress ive  
d e g e n e r a t i o n  o f  the  cho l inerg ic  f o r e b r a i n  sys tem in Alz-  
he im e r ' s  disease.  As  s h o w n  in F igu re  5b, hyperac t iv i ty ,  i.e. 
i nc reased  f i r ing in t he  r ema in ing ,  n o n - l e s i o n e d  n e u r o n s  
w o u l d  lead to a subs tan t i a l  re lease  o f  ga lan in  a n d  conse-  
quen t ly  dec reased  ace ty lcho l ine  release. If, as one  m a y  ant ici-  
pa te ,  f e e dba c k  m e c h a n i s m s  ope ra t e ,  low ace ty lchol ine  levels 
in the  synap t i c  space  w o u l d  lead  to f u r t he r  increase  in im-  
pu lse  act ivi ty,  f u r t h e r  re lease  o f  ga lan in  a n d  s t r o n g e r  sup-  
p re s s ion  o f  ace ty lchol ine  release.  Thus ,  p r o v i d e d  tha t  gala-  
n in  b iosyn thes i s  can  be  m a i n t a i n e d ,  the  m o r e  the  act ivi ty  
increases ,  the  less ace ty lchol ine  is re leased,  t ak ing  the  sys t em 
in to  a vicious circle. Such  an  inc reased  s t ra in  on  the  n e u r o n s  
cou ld  a lso  lead  to  acce le ra ted  d e g e n e r a t i o n  a n d  thus  fas te r  
d e v e l o p m e n t  o f  the  disease.  I t  w o u l d  be  in te res t ing  to k n o w  if  
one  cou ld  c o u n t e r a c t  this p roces s  by a c o m p o u n d  w h i c h  
b locks  ga lan in  b ind ing  sites. Such  a ga lan in  a n t a g o n i s t  cou ld  
be  a po ten t i a l  d rug  for  the  t r e a t m e n t  o f  A l z h e i m e r ' s  disease,  
shou ld  one  b e c o m e  avai lable  in t he  future .  
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Peptides and epithelial growth regulation 

by R.A. Goodlad and N. A. Wright 

Cancer Research Campaign Cell Proliferation Unit, Department of Histopathology, Royal Postgraduate Medical School, 
Hammersmith Hospital, Du Cane Road, London W12 OHS (England) 

Summary. There is now considerable evidence implicating several peptides in the control of gastrointestinal epithelial cell 
proliferation and cell renewal. While some of these may act directly, many may be involved in regulating the powerful trophic 
effects of the intake and digestion of foold on the gut epithelium. - Several peptides have been associated with the regulation 
of intestinal cell proliferation. There is little doubt that gastrin is trophic to the stomach, but, its role in the rest of the 
gastrointestinal tract is debatable. Enteroglucagon has often been associated with increased intestinal epithelial proliferation, 
but at the moment all the evidence for this is circumstantial. The effects of peptide YY and bombesin warrant further study. 
The availability of recombinant epidermal growth factor (EGF) has recently enabled us to demonstrate a powerful trophic 
response to infused EGF throughout the gastrointestinal tract. The increasing availability of peptides will eventually allow 
the rigorous in vivo evaluation of the trophic role of these potentially very important peptides. 
Key words'. Peptides; gastrointestinal tract; epithelial cell proliferation; gastrin; enteroglucagon; peptide YY; bombesin, 
epidermal growth factor; cholecystokinin; somatostatin. 

Introduction 

In many ways the gastrointestinal epithelium is an ideal 
model for the study and investigation of the control of epi- 
thelial cell proliferation, as it is continuously and rapidly 
renewed with its cell division restricted to an anatomically 
discrete zone. It is also capable of adapting its rates of proli- 
feration to a wide variety of physiological and other stimuli. 
The study of epithelial cell renewal is also of considerable 
importance since most tumours are of epithelial origin v6. 
Three main mechanisms are generally considered to be in- 
volved in the control of epithelial renewal in the gut namely, 
a (local?) negative feedback system from the functional (vil- 
lus) to the reproductive zone (crypt), the direct or indirect 
effects of food (luminal nutrition and/or intestinal wol;kload) 
and the effects of humoral factors 1~ 
Parabiotic studies in which the blood systems of two animals 
are linked have indicated that a hormonal factor may cross- 
circulate from a stimulated animal to its partner 5~, too. A simi- 
lar response has also been noted in less extreme models where 
isolated loops of small intestine still respond to altered food 
intake 2~ and after intestinal resection 7,37 
The study of cell renewal and epithelial growth control neces- 
sitates the use of suitable methods, and unfortunately many 
studies in this field have been bedeviled by the use of totally 
inappropriate methods. The problems involved have been 

5 19 35 66 102 103 spelt out in detail elsewhere . . . . .  , and are as follows; 
1) The intestine contains a large proportion of non-epithelial 
cells (muscle, submucosa lymphoid aggregates); thus any 
gross measure may give a misleading result. Even the mucosa 
itself is approximately 20 % non epitheliaP 9. 2) The choice of 
a suitable denominator is of vital importance, as many mea- 
sures, such as labelling index and mitotic index will not detect 
a general increase in compartment size. These measures also 
suffer from being 'state' measures, and as such can be mis- 

leading if the duration of the DNA synthesis phase or mitosis 
is altered. 3) Measures based on the gross uptake of tritiated 
thymidine can be especially misleading, as although usually 
equated with growth, triatiated thymidine uptake can be 
affected by a variety of stimuli. Thymidine itself is not a 
precursor in the de novo synthesis of DNA, but is incorpo- 
rated by a salvage pathway which depends on the activity of 
several enzymes and transport mechanisms plus the size of 
the endogenous thymidine pool. All of these factors can be 
influenced by hormones or growth factors. Thymidine can 
also be stored and recycled, and it can also be taken up by 
bacteria 66. 
Most of these pitfalls can be avoided if the accumulation of 
arrested metaphases in microdissected crypts is determined. 
This 'rate'  measure also avoids the several problems involved 
in the quantification of sectioned material, and expressing 
the results on a per crypt basis can account for all the factors 
that may influence epithelial cell production (cell cycle time, 
size of the growth fraction and size of the crypt it- 
self)S, 19,35, 66,102, I03. 

Gastrin as atrophic hormone in the gastrointestinal tract 

There is a considerable body of evidence for a powerful 
pharmacological and possibly physiological modulation of 
cell proliferation by gastrin in the stomach 21,63,99. There is 
also evidence, unfortunately mainly based on the gross up- 
take of tritiated thymidine, that this trophism extends into 
the small intestine and colon 4s,46,48, 58. Claims by Johnson 43'44 
for a major trophic role for gastrin were also supported by a 
study of the effects of gastrin on primary duodenal explants 
in short-term cultureSS; but this study is especially open to 
criticism 1~ 


