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Abstract. 
Nystr6m's interpolation formula is applied to the numerical solution of singular integral equations. 

For the Gauss-Chebyshev method, it is shown that this approximation converges uniformly, provided 
that the kernel and the input functions possess a continuous derivative. Moreover, the error of the 
Nystr6m interpolant is bounded from above by the Gaussian quadrature errors and thus convergence is 
fast, especially for smooth functions. For C a input functions, a sharp upper bound for the error is 
obtained. Finally numerical examples are considered. It is found that the actual computational error 
agrees well with the theoretical derived bounds. 

I. Introduction. 

In this paper we consider the convergence of the natural or Nystr6m interpolant 
of the direct Gauss-Chebyshev method, for the numerical solution of Cauchy-type 
singular integral equations of the form: 

(1.1) rc -1 ( 1 - t 2 ) -½( t - s ) - l y ( t ) d t+2  (1-t2)-~K(s, t)y(t)dt  =f(s),lsl < 1 
- 1  1 

(1.2) rc -1 1-t2)-~y(t)dt  = N, 
d - 1  

where K(s, t), f ( s )  are given input functions and N is a known constant. If we 
assume that K(s, t) and f ( s )  are H61der-continuous functions in [ -  1, 1] × [ -  1, 1] 
and [ -  1, 1] respectively, then it is well known [8] that (1. l), (1.2) possess a unique 
solution y(t) in the space of H61der-continuous functions. 

Erdogan and Gupta [2] proposed a direct method for the solution of(1.1), (1.2), 
which is based on a quadrature approximation of the integrals. In particular, if the 
Gauss-Chebyshev quadrature formula is applied on a certain set of points, then 
(1.1), (t.2) can be reduced to an algebraic system of the form, 

(1.3) ( & + , ~ c . ) y *  = jr 
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where 

y* = D,*(t l)  . . . . .  y*(t . )]  r, f = If(s1)  . . . . . .  f ( s . _  1), N] r  

(1.4) (A.)i. J = n - l ( t i - s i )  -1 ,  (A . ) . , j  = n -1 

(1,5) (C.)~,j = rcn- 1K(s i, tj), (C.) . , j  = O, 

and tj = cos [ (2 j -  1)Tt/2n], s t = cos [in~n], for all i = l (1 )n -  1,j  = l(1)n. 
The solution of  the linear algebraic system (1.3) is an approximation of the 

solution of(1.1), (1.2) at a discrete set of points tj. Since the solution of(1.1) at points 
different from tj often represents quantities of  great interest in engineering, (e.g. 
3 ' ( -  1) represents the stress intensity factor), an interpolation formula is required. 
Erdogan and Gupta [2] have suggested a quadratic "extrapolation" technique for 
the evaluation of y( + 1). Similarly Krenk [7] has introduced a summation formula 
which is based on the Lagrange interpolating polynomials L, ( t )  at (t~, y*(tj)) .  
Ioakimidis and Theocaris [6] and Tsamasphyros and Theocaris [12], have 
considered the convergence of  L,( t ) .  We note that the Lagrange interpolation 
formula is exact for polynomials of  degree < n, whereas the Gaussian 
quadrature that approximates (1.1) and (1.2) is exact for polynomials of  degree 
< 2n and 2 n - 1  respectively. Consequently, the use of  Lagrange polynomials 
will result in a significant loss of accuracy when compared to the use of  an 
interpolation formula which is exact for polynomials of higher degree, say 2n. Until 
recently ([11], [5]) the natural or Nystr6m interpolation formula has been 
completely ignored, although it is well known [1] that for Fredholm integral 
equations it can yield excellent results. Although some equivalence results for the 
Nystr6m interpolant of the direct and indirect Gauss-Chebyshev method have been 
given [5], the question of  convergence and computational efficiency of the Nystr6m 
interpolant has not been studied. 

In section 2 we introduce the Nystr6m interpolation formula and give a brief 
description of some equivalence and existence results of  the discrete direct and 
indirect Gauss-Chebyshev method described in [4]. 

In section 3, we extend the analysis of [4], and use Nystr6m's theory [1], to show 
that, if 2 is not an eigenvalue of (1.1), (1.2) then: 

(i) The algebraic system (1.3) possesses a unique solution for sufficiently large n. 
(ii) The Nystr6m interpolant converges uniformly to the solution of  (1.1), (1.2), 

provided that K(s, t) ~ C 1 ( [ -  1, 1] x [ -  1, 1]), f ( s )  ~ C 1 [ -  1, 1]. 
(iii) The error of  the Nystr6m interpolant is bounded above by Gaussian 

quadrature errors and thus it is a quickly converging interpolation formula, 
especially for smooth functions. 
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In section 4 we solve three integral equations which arise in the solution of 
elasticity problems, and compare the convergence of  the "quadratic" extrapolation 
technique [2], Krenk's [7] summation formula, and the Lobatto-Chebyshev 
method [10], with the Nystr6m interpolant. For these examples, we observe that the 
Nystr6m interpolant converges at least as fast or even faster than all of  the 
previously mentioned methods. Finally, for functions f ~ C ~ [ -  1, 1 ], a sharp upper 
bound for the error is derived. 

2. Regularized equations. 

Using the Carleman-Vecua method of reduction [8], equations (1. i), (1.2) are 
reduced into an equivalent Fredholm Integral equation: 

(2.1) f 
l 

y(t)+ 2~z-1 (1 -x2) -~L(x ,  t)y(x)dx = F(t). 
- 1  

where 

(2.2) 

(2.3) 

1 

F(t) = --rt -1 (1 - s2 )½(s - t ) - l  f (s)ds+ N, 
- -1  

L(x, t) = - (1 - -  $ 2 ) ~ ( S  - -  t}- t K(s, x)ds. 
1 

Let us assume that L(x,t)  e C ( [ - 1 , 1 ]  x [ -  l, l ]), F(t) e C [ - 1 , 1 ]  and 
approximate the integral part of(2. l) using the Gauss-Chebyshev quadrature. Then 
(2. l) is :'educed to a functional equation of  the form: 

(2.4) y,(t)+ 2n-1 ~ L(tm ' t)y.(t,.) = F(t) 
m = l  

where tm= cos [ (2m-  l)n/(2n)], m = l(1)n. Furthermore, if we set t = t i, i = i(1)n, 
in (2.4) we obtain the algebraic system 

(2.5) (I+ 2Q,)Z = F 

where 

(2.6) (Q,)i.j = n-lL(t j ,  ti), i , j  -- l(1)n 

and Z = [zl . . . .  , z,] r, F = EF(q) , . . . ,  F(t,)] r. 
We can see that there exists a unique correspondence between the solution zi of 

(2.5) and the solution y,(ti) of (2.4). This implies that if (2.4) possesses a solution 
then (2.5) possesses a solution and vice versa (for more details see [1], p. 88). 

For the remainder of this paper we will assume that K(s, t) e C1([ -  1, 1] x 
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[ - -  1, 1]) and f ( s )  e C l [  - 1, 1]. If  we define 0(x, t, s) and h(t, s) by 
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(2.7) g(x , t , s )  = 
[K(s, x ) - K ( t ,  x ) ] / ( s -  t) ifs 4 t 

OK(s, x) 
t~s 

ifs = t 

J ' [ f i s ) -  f ( t ) ] / i s  - t) if s ~ t (2.8) hit, S) 
- ' If  is) i fs  = t, 

then g(x, t, s) e C ( [ -  l, 1] x [ -  1, 1] x [ -  l, 1]) and h(t, s )e  C ( [ -  l, 1] x [ -  l, 1]). 
We approximate F(t) and L(x,  t) by 

(2.9) F(t) = F.(t) + r . ( f  ; t) 

(2.10) L(x,  t) = L,(x,  t) + r,(K; x, t) 

where 

i2.11) 
n-1 

F,(t)  = - n-X ~ (1 - sg)(sk - t ) -  lf(s k) + f ( t )T , ( t ) /U ,_  1 (t) + N 
k = l  

I n -  1 

(2.12) L, (x ,  t) = - n -  lr~ 1 ~ (1 - sg)(s k - t ) -  1KiSk, x ) +  nK(t ,  x )T , ( t ) /U,_  1 (t) 
k = l  

if1 .1 ] (2.13) r . ( f ; t )  = -re  -1 (1-sZ)½h( t , s )ds-r~n -1 ~ (1 - sg )h ( t ,  sk) 
J - l  k = l  

(2.14) r , ( K ; x , t )  = - ( 1 - s Z ) ½ g ( x , t , s ) d s - n - l r t  ~, (1--s2)g(x, t ,  Sk) . 
1 k = l  

Here T.(t), U._ 1(0 are the Chebyshev polynomials of  the first and second kind 
respectively. 

We replace L(t,., t) with L.(t,.,  t), and F(t) with F.(t) in (2.4) to obtain a new 
functional equation: 

(2.15) Y*(t)+ 2n -1 ~ L.(tm, t)y*(tm) = F.(t), 
m = l  

which can be reduced to the following linear algebraic system 

(2.16) (I+ ~ 0 . ) f  = e .  

where 

(2.17) (~)i.j~= n - 1 L . ( t j ,  ti) i , j  = l(l)n 

and F. = [F . (q ) , . . . ,  F.(t.)] r. 
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We are now ready to state the following theorem: 

THEOREM 2.1 The algebraic systems (2.16) and (1.3) are equivalent. 

A - 1  PROOF. It has been shown in [4], that Q, = A,- 1C, and F, = , f ,  where 

(2.18) (A, l),.~ = n - l (1 - sZ) ( t i - s j )  -1, (A~-l)i,, = 1, i = l(1)n, j = l (1)n-1.  

After solving the algebraic system (2.16) or its equivalent (1.3) we obtain y*(tm), 
an approximation of the solution at the node points t~. For other points than tin, the 
Nystr6m interpolation formula (2.15) can be used directly. For points identical to 
the collocation points si, the following modification of (2.15) should be used: 

n 

(2.19) y*(si) = - 2 n  -1 ~L.(t , . .s i)y*(t , . )+F.(s~), i =  l (1)n-1 ,  
r n = t  

where 

n - - I  

(2.20) L,(t,,,si) -n - l~z  ~, (1 2 - = --Sk)(Sk--Sl) l[K(Sk, tin) 
k = l  
k ~ i  

- g (si, tm)] + ~zsiK (si, t,,)-- r~n- l(1 - s~ ) ~ -  (si, t,,) 

n--1 

(2.21 ) F. (s,) = - n - i  y, ( I - s 2 )(s k - s, ) - i  [j. (s k ) _ f  (s,)] 
k = l  

+ si f  ( s i ) -n -  l ( 1 -  s2) f ' (si) + N. 

3. The convergence of the Nystriim interpolant. 

Let us consider C [ -  1, 1], the space of all continuous functions in [ - 1, t], which 
is complete with the maximum norm: 

(3.1) ItYH~ = max b'(x)l. 
- l _ < x _ < l  

We introduce the following linear operators on C [ -  1, 1] 

(3.2) 

(3.3) 

(3.4) 

1 

L~y = re- 1 (1 - -  x 2 ) - ½ L ( x ,  t)y(x)dx 
- 1  

~ . y  = n-1 ~ L(tm, t)y(t~) 
m = l  

£e*y = n- 1 ~ L.(tm, t)y(tm), 
m = l  



SINGULAR INTEGRAL EQUATIONS. . .  

and define the norm of a linear operator ~- by 

(3.5) Ib¢-II -- suplI:.VlI~/IIYlI~ taken over 113'11 ¢ 0, y ~  [--1,  1]. 
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THEOREM 3.1. / f  f ( s ) ~ C t [ - 1 ,  1] and K ( s , t ) e C l ( [ - 1 ,  l ] x [ - 1 ,  i]), then 
{r,(f: t)} and {r.(K: x, t)}, defined in (2.13) and (2.14) respectively, eonveroe uni- 
formly to zero. 

PROOF. From equation (2.14) and the continuity of.q(x, t, s) we obtain pointwise 
convergence of Ir,(K; x, t)} (Szeg6 [9], p. 350). Moreover 

(3.6) Ir,(K;x,t)l  ~ (Al + C l )  max l,q(x,t,s)l 
- l < x . t . s < = l  

(3.7) l r , ( K ' x l , t l ) - r , ( K ' x 2 ,  t2)l < (AI +CI)  max [.q(xl, t t , s ) - -q(xz ,  t2, s)l, 
-- t~s_<l 

where 

f _  n--I 
(3.8) A 1 = (1-s2)~ds = n/2, CI = n -1 ~ ( 1 - s  2) = n/2. 

1 k= l  

The sequence {r,(K;x, t)} is a uniformly bounded equicontinuous family of 
functions due to the continuity of  #(x, t, s) and the inequalities (3.6)-(3.7). The 
theorem follows by invoking the Arzela-Ascoli lemma (see [1] p. 92 for a similar 
argument). 

The proof for {r , ( f ;  t)} is similar. • 

THEOREM 3.2. l lc~,-  &°*il ---, 0 as n --, oo. 

PROOF. We have 

(3.9) ll~e.-~.*Tl< max ] L ( x , t ) - L , ( x , t ) ] =  max ]r,(K;x,t)[ 
- l < x , t <  l - l < x , t = < l  

and the theorem follows immediately from theorem 3.1. • 

THEOREM 3.3. Under the assumptions o f  theorem 3.1 the, sequence { ~ y }  converoes 
uniformly to £~y, i.e. IIAe.y- ~yl l~  --, 0 as n --, oc. 

PROOF. 

(3.10) 

Since 

II~yll~ ~ Ilyll~ max IL(x,t)l 
- l < x ,  tN1 

(3.11) i~'eY(tl)-~'~y(t2)l < Jlyl]~ max IL(x, t l ) - L ( x ,  t2)l, 
-- l_<x_< 1 
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the set {~Yl IiY[[~ < 1 } isa bounded equicontinuous family of functions on [ -  1, 1 ], 
thus ~ i s  a compact operator from C [ -  1, 1] to C [ -  I, 1], Moreover we can easily 
show that inequalities (3.10), (3.11) hold if we replace c~a with c~,. Thus the sequence 
t~,Y~ is a uniformly bounded equicontinuous set of functions. Since {Lf,y} 
converges pointwise to C~,y on [ -  1, 1] (Szeg6 [9], p. 350), then the Arzela-Ascoli 
lemma implies that {~,y} converges uniformly to ~ y  ([1], p. 91). [] 

REMARK 3.1. 

REMARK 3.2. 
[1], p. 91). 

The sequence { ~ ,}  is a collectively compact family of operators. 

In general I I ~ , -  ~ll 4* 0 as n ~ ~ ,  in fact I1~11 ~ I1~.-  ~11, (see 

(3.12) 

(3.13) 

(3.14) 

where I is the identity operator. 

We rewrite equations (2.1), (2.4), (2.15) as follows: 

(1 + 2L~°)y = F 

(I + 2ZP,)y, = F 

( l  + )..~*)y* = r .  

We will show that the Nystr6m interpolant 

(3.15) y*(t) = - 2£fl*y*(t) + F,(t) 

converges to the solution y(t) of (3.12). To do so we need the following results: 

THEOREM 3.4. I f 2  is not an eigenvalue of(3.12), then ( I + 2 ~ , )  -a exists for all 
n > N(2), and it is uniformly bounded by a constant B, i.e. H(I+ 2 ~ , ) -  all __< B. 

PROOE. It follows directly from Theorem 3.3 (see [1], p. 98 and p. 105 for details). 

COROLLARY 3.1. Under the assumptions of Theorem 3.4, (I + 2L~'*) - a exists and it is 
uniformly bounded for all n > no. 

PROOF. The identity 

(3,16) (l+2,La*)- a = ( l + 2 ~ n ) - a + [ 2 - ~ I - ( I + 2 . ~ , ) - l ( . f ~ ' , - ~ * ) ]  -a 

× ( I +  2.~9°,,)(,~.- L,e* )(I + 2,.~,,)-a 

and Theorem 3.4 shows that (1+ 2~*)-1 exists whenever 

(3.17) [ 2 - a I - ( I +  2La, ) -a(~ ,_  La*)]-1 
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exists, which is true since Theorem 3.2 implies that 

(3.18) ll(l+)~c~,)-'(c~e,- cS*)[I < BN c~a,,-5¢*tl < 121-', forn  > n o. 

The uniform boundedness is obvious. 

REMARK 3.3. The last corollary and results given in [1], p. 105 imply that 
( I+2Q, )  -x exists. Moreover, we observe that the identity (A,+2C,) -~  = 
(I + 2A 2 ~ C,)-  1A ~- 1 = ( I+  ~.O,)- X A,~ 1, and the existence of A ~- 1 (shown in [4]), 
imply the existence of  (A,  + ;,C,) ~ for sufficiently large n. 

We now present the main result of this section. 

THEOREM 3.5. I lK(s ,  t) ~ C~([ - 1, 1] × [ -  1, 1]), f (s) ~ C1[ - 1, 1] and2 is not an 
eigenvalue of( l .1) ,  then the Nystr6m interpolant y*(t) defined in (2.15) eonveroes 
uniformly to the unique solution y( t) o f (  1.1 ), (1.2). 

PROOF. For uniform convergence we need to show IlY*-Y[[~_ ~ 0 as n-~ ~ .  
Clearly 

2( cd,, - cal,)y* + F -  r ,  (3.19) ( i + 2  c~,)(y _ y , ) =  c . 

implies that 

(3.20) Ily,-y*ll~ < 11(I+2~,)-III(I2111Le*-~.H[lY*II~+IIF-F.II~) • 

Similarly, we can show that 

(3.21) IlY-Y, II~ < tt(I+2~,)-111121 ll(c~- ~,)ytt~.  

The theorem follows from the inequality 

(3.22) IlY-Y*I[~ < IIY-Y.I[~ + [lY.-Y*II~, 

and theorems 3.1, 3.2, 3.3. • 

Combining (3.20)-(3.22) we have: 

(3.23) 
IIY-Y,*II~ < It(I +2~e, ) -  111 {1~.111(~ - Le,)yt]~ + t)~111La* - ~,11 Ily,*ll~ + I tF-  F, II~ }. 

This inequality gives us an upper bound for the error ofy*(t). Moreover, we can see 
that the error bound depends on the quadrature error incurred when we 
approximate Lay with La.y, La. with La*, F with F.. Since Gaussian-type 
quadratures have been used for the previously mentioned approximations, (3.23) 
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implies that [[y-y*[[o~ will converge to zero very fast, expecially if the kernel and the 
input functions are smooth. We have successfully verified this observation on 
several numerical examples, three of  which are described in the next section. 

4. Numerical examples and error bounds. 

(i) We first consider the singular integral equation of the form: 

f, (4.1) ~-1 ( 1 - t 2 ) - ~ ( t - s ) - l y ( t ) d t =  f(s), - 1  <- s <- 1 
- 1  

(4.2) re- 1 (1 - t2)-~y(t)dt = O, 
1 

which arises in the stress analysis of  a plane crack opened by the load distribution 
f (s) ,  in an isotropic medium [ 11 ]. The solution y( _ 1) of  (4.1), (4.2) represents the 
stress intensity factor at the tips of the crack. If we assume that f ( s )  e C ° [ -  1, 1] 
then we can obtain an error bound for the Nystr6m interpolant by using (2.13), 
(3.23), and the quadrature error formula ((2.12.6.6), p. 75, [3]). Thus we have 

(4.3) 
Ily-y,*llo~ ~ IIF- F, ll~ ~ max_l  ~,_<1 1~2"-2h( t, s)/OsZ"-Zl/[(2n-2)!22"-']. 

Using the Taylor series expansion of  h(t, s), it can easily be shown that 

(4.4) max_ 1 __<,__< 1 102"- 2h( t, s)/Os2" - 21 = Ilf (2n-l)[i J(2n  - 1). 

Finally, by combining (4.3), (4.4) 

(4.5) I[v- y*[to~ <= ]lf(zn-I][~/[(2n - 1)!2 2"- ' ]  

which indicates that Nystr6m's interpolation formula will yield excellent results, 
especially for smooth functions. 

The errors obtained by the numerical solution of  equation (4.1), (4.2) with 
f ( s )  = cos s at the point t = 1, by Krenk's [7] and by Nystr6m's formulae are given 
in the first and second column of table 1. The maximum error bound (4.5) is listed in 
the third column. Clearly, the exact solution y(l)  is obtained by inverting (4. I), (4.2), 

(4.6) Y(1) = re-1 f2  x ( 1 - s 2 ) - ½ ( l + s ) c ° s s d s =  rt- '2  f ] (1-s2) -½cossds  

which is the Bessel function of  order zero, i.e. y(1) = Jo(1) = 0.7651 . . . .  We observe 
that for this example (and others not reported here) the theoretical error bound (4.5) 
agrees extremely well With the actual computational error of  Nystr6m's formula 
and that the convergence is much faster than Krenk's formula. 
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Table 1. The error in the numerical evaluation of  the stress intensity factor y(1) of  eq. 
(4.1), (4.2) with f ( s )  = coss. 

n E r r o r  o f  E r r o r  o f  E r r o r  b o u n d  
[ 7 ]  (2.15)  (4.5) 

3, 1 "10  - t  4 "  10 - 5  2 ,0  

4 5"  10 - a  2 '  10 - 7  1.6 
5 2"  1 0 - 3  5 " 1 0 - t O  5,4 

6 4"  10 - s  1 ' 10 -1~ 1.2 
7 2 • 10 -  S 1 " 1 0 -  t 5 2.0 
8 2 " 1 0  - 7  1 " 1 0  18 2.3 

10-4. 

1 0 - 6  
1 0 - 9  
10-11  
1 0 - i 4  
10-17  

(ii) To provide a further comparison of the different type of  interpolation 
formulas and methods, we consider two integral equations arising in the solution of 
elasticity problems. The equation, 

; f (4.7) rc -1 ( 1 - t z ) - ~ ( t - s ) - l y ( t ) d t - 2  (1-tz)-½y(t)dt = 1, 
1 1 

14.8) re- ~ (1 -- t2) - ~y(t)dt = O, 
- 1  

- l < s < l  

arises in the solution of  a cover plate bonded to an elastic halt-space [2], and the 
equation 

i 
l 

(4.9) rc -1 (1- t2) -½( t - s ) - ly ( t )d t  
- 1  

(4.10) 

+ rt- lf~ 1 t(t2 - s2)(/2 + s2 ) -  2(1 - tE)-~Y(t)dt = 1, 

~-1 (1-t2)-~y(t)dt  = 0, 
- 1  

- l < s < l  

arises in the solution of  a cruciform crack [10]. 
From Tables 2 and 3 we can see that the Nystr6m interpolant converges at least as 

fast or even faster than all methods considered, even though the kernels K(s, t), in 
both cases are not continuous. The reason that the Gauss-Chebyshev method 
converges here is that the error in the Gaussian quadrature approximating the 
kernel part of  (1.1) depends on the smoothness of  K(s, t)y(t), rather than the 
smoothness of  the kernel K(s, t) itself. Although we have considered the Nystr6m 
interpolation formula only for the point t = 1, the formula can be applied just as 
easily for all points in [ -  1, 1 ]. 



210 APOSTOLOS GERASOULIS 

Table 2. Equation (4.7), (4.8). The strength of Stress Singularity y(1). 

2 =  10/3 2 =  1/3 

n [2] [7] (2.15) [2] [7] (2.15) 

20 0.4061 0.4076 0.4133 0.8323 0.8325 0.8336 
40 0.4104 0.4108 0.4121 0.8331 0.8332 0.8335 
60 0.4115 0.4113 0.4119 0.8340 0.8333 0.8334 

Table 3. The stress" intensityjactor y(1) of Eq. (4.9), (4.10). 

n Gauss- Lobatto- Gauss- 
Chebyshev Chebyshev Chebyshev 

[7] [10] (2,15) 

6 0.83363 0.85970 0.86261 
8 0.87264 0.86387 0.86435 

10 0.86289 0.86449 0.86448 
12 0.86381 0.86441 0.86433 
14 0.86527 0.86424 0.86415 
16 0.86281 0.86408 0.86401 
18 0.86503 0.86396 0.86391 
20 0.86283 0.86387 0.86383 
22 0.86463 0.86380 0.86372 
40 0.86335 0.86358 
60 0.86348 0.86355 

Note: All calculations have been performed on DEC-20 in FORTRAN with double precision arithmetic. 
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