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Abstract. 
A strategy is given for selecting the dimension r of the linear variety which is used to define the criterion 

functional Jo,., and which determines the shape of the data clusters detected by the corresponding c- 
Varieties (FCV) clustering algorithms. 

I. Introduction. 

One of the questions not answered in [1] was that of a criterion for selecting r, the 
dimension of the linear variety V r used in the definition of the criterion function Jwm 
and which ultimately determines the shape of the clusters detected by the FCV 
algorithms. A poor choice for r can lead to disappointing or misleading results since, 
in such cases, one effectively attempts to impose upon the data a structure which 
does not exist. Ideally then, one would like to make the choice o f r  data dependent. 
However, this objective is complicated by the fact that a limited knowledge about 
the structure of the data is usually the reason for a cluster analysis in the first place. 

In this note a modified family of FCV algorithms is suggested in which r is treated 
as a parameter to be determined at each step of the FCV iterative procedure. The 
criterion for selecting r is thus based upon structural properties encountered in the 
data. By adapting to a data dependent linear variety the modified algorithms 
thereby tend to seek out cluster shapes and reduce the risk of arbitrarily imposing a 
non-representative structure. 

As in [1], we shall assume that all of the clusters in the data set are of the same 
general shape; that is, satisfactorily modelled by a prototype defined by a linear 
variety of common dimension r. An investigation using a similar approach for 
detecting a mixture of different cluster shapes is in progress and discussed briefly in a 
remark at the conclusion of this paper. A more detailed discussion of this important 
case will be left to a subsequent note. 
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2. The FCV family of clustering algorithms. 

Following the notation and definitions of [1], let X = {.~, .~2 . . . . .  .~,} be a finite 
sample of an unlabeled data set, X c ~s and let U denote a real c × n matrix with 
2 < c < n and elements Uik satisfying 

(2.1a) Uik ~ [0, 1] V i, k 

(2.1b) ~ uik = 1 V k 
i=1 

(2.1c) 0 < ~ Uik V i. 
k=l  

By letting the c characteristic functions ui: X ~ [0, 1] be defined according to 

(2.2) Ui(Xk) = Ulk V i, k 

the matrix U can be interpreted as establishing a (fuzzy) c-partition over the sample 
data set X. The details are given in [1]. 

Now, for each i = 1, 2,...,  c let 

(2.3) Vi(gi; dil, di2 . . . . .  dir) = { p c  Nslf; = 15i + ~" tjdij; t i e  JR} 
j = l  

denote a linear variety of dimension r, 0 < r < s, in N ~ through gl and spanned by an 
orthonormal set of vectors {dil, ~2,-.. ,  di,}. Define the orthogonal distance of a 
sample vector 2 k e N ~ to the linear variety l~ by 

(2.4) Dik = O(Xk, Vi) = (llxk - VilI2A-- ~ ((Xk--el, ~/ j )A)2)  ½ 
j = l  

where 

(2.5) (.~, 35)A = )~rA)5 

for the positive definite s x s matrix A and 

(2.6) I1~11~ = (-~, ~)a. 

The c-Varieties (FCV) family of algorithms presented in [ I ]  follow from the 
necessary conditions of the following two theorems for minimizing the generalized 
weighted sum-of-squared-error criterion functional 

(2.7) Jv,rn(U, g) = ~ i (Uik)m(Dik) 2 
i=1 k=l  
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where ~" = { i/1, V 2 . . . . .  V~} and the minimization is carried out for fixed 1 < m < ze 
over M:~ x N" x (R") '  and where M:~ denotes the family of partition matrices 
satisfying conditions 2.1 a), b) and c): 

THEOREM 1. Let F'= f: e {R ~'~ x (~")" be f ixed and assume 1 < m < x) and / ) i k>0  
V i, k. Then, 0 ~ M rv is a strict local minimum o f O ( U )  = J~.,m(U, f/) if and only if 

(2.8) fiik 1/ ~ tg  /r3 ~2/~,.- 11 = ~'.'ik/'-'~kJ , V i, k. 
j = l  

THEOREM 2. 
minimum of ~(F') = J~,,,(O, ~') only if for 

Let 0 e M :c be fixed and 1 < m < ~ .  Then f/ ~ N ~ x (R~)" is a local 

(2.9a) v, = ~ (fi,k)"fk/ ~ (fiik)", V i 
k = l  k = l  

we set 

(2.9b) aTii = A-½pij (j = 1,2 . . . . .  r) 

where Yii is the unit eigenvector corresponding to the j th largest eigenvalue of the 
matrix A ½SeA ½ and where 

(2.9c) Si = ~ (aik)m(~k -- 9i)(£k-- t~i) r, 
k = l  

is the within-cluster scatter of  the ith (fuzzy) cluster. 

REMARK 1. Condit ions (2.9b) could be written in the equivalent form 

(2.9b') d~j is the unit eigenvalue corresponding to the j th  
largest eigenvalue of the matrix S~A. 

After taking into account the singular case where/51~ = 0 for at  least one pair (i, k) 
in Theorem 1, the results above provide a Picard iteration procedure which is shown 
in [1] strictly to descend to a local minimum of Jr,m, at least in the nonsingular case 
and f o r l  < m <  oo" 

I) For fixed f '  = {f'l, f'z . . . . .  ~}let 

i {t, Bik = 0 
N k =  n I wheren  i =  k = ( 1 , 2 ,  . n) 

~= 1 O, /)ik ~ 0 ' "' 

i) IfN k = O ( k =  1,2 .... .  n)thenset 

(2.10) aik = 1 / ~  (]~ik/Ojk) 2/(ra- 1) 
j = l  
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ii) I fN  k > 0 (k = 1,2 . . . . .  n) then set 

0, /)i~ ¢ 0 
(2.11) Uik = 1/Nk, Dig = O. 

II) If N k >0, k = 1, 2 . . . . .  n then STOP. (U, V) from I is a (possibly degenerated) 
minimizing solution. (U is degenerate if there exists a j such that ~ ,  = 1 Uik = 03 

III) For fixed 0 = {fi~k} (i = 1 . . . . .  C ; k = 1, 2 . . . . .  n), c o m p u t e  f" from (2.9 a, b and 
c). 

Starting with either 0 or V loop through I, II, III until a sufficiently good approxi- 
mation to a minimizing partition is obtained. 

REMARK 2. Notice that the computation of the U~k from (2.8) is independent of the 
method used to determine the d i s t a n c e s  ]~ik" Theorem I only assumes that t h e  Dig are 
supplied. Similarly, calculation of the centers, fi, is dependent only upon the ~ i k  and 
therefore independent of the method used to generate the Dig" Since the scatter 
matrices S~ are dependent only upon the Uik and f~ in (2.9c), no decision has yet been 
necessary regarding the dimension r of the linear varieties defining each individual 
cluster, in looping through the iterative procedure. 

3. A scatter criterion for se lect ing the dimension r. 

The first part of the proof to theorem 2 in [-1] shows that ifa solution V exists then 
the t3~ can be chosen according to (2.9a) for every i = 1, 2 . . . . .  c. The second part, 
concerning (2.9b), proceeds by noting that Jv,m will be minimized if and only if the c 
individual terms 

(3.1) ~,(V~) ~ " 2 = (Ulk) (Dik) 
k = l  

are minimized, i = 1, 2 . . . .  , c. Minimizing (3.1) over the spanning vectors dli for fixed 
~3 i and j = 1, 2 . . . . .  c is equivalent to maximizing 

r 

(3.2) ~ (fi,k)" E (Xk--V"~i> 2 
k = l  j = l  

over av//j and (3.2) can be rewritten as 

(3.3) ~iiA( ~ (aik)m(Xk - -  ~ i ) ( X k  - -  ~i)r)A~q. 
j = l  k = !  
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Thus we are led to consider the problem 

r 

(3.4) maximize y. ~ASiAJ~ 
j = l  

- -  I over all orthonormal subsets {dil,  ~i2 . . . . .  d~,~ for each i = 1, 2 .....  c, i.e. 

(3.5) maximizee,+o ~ z'fASiAY'J 
j= t frA2~ 

over all orthogonal subsets {~, ~2 .. . . .  z,}- 
The solution to this problem follows from a theorem found in [2, p. 322]. 

According to that theorem, if 2~ is the largest of the s real eigenvalues of the matrix 
S~A, then 

~.r ASiA:~ 
(3.6) max~,o zyrA ~ = 21 

and this maximum is assumed only for eigenvectors form the eigenspace of S~A 
corresponding to 21. Further, the jth largest eigenvalue 

(3,7) 2~< < ~  < 2  < "  < < 2  . = ' ' ' = / ~ j + l ~ - .  j = A ' j - I  = ' ' ' =  1 

is the maximum of the same ratio, with f constrained to lie in the subspace 
orthogonal to that spanned by the eigenvectors corresponding to 2~_ i through 2~, 
and 

7.TASiAz 
(3.8) max.~÷o 2rAz ? = 2i 

is obtained only for those eigenvectors from the eigenspace of SiA corresponding to 
2j. Conditions (2.9 b, c) follow in the form given by Remark 1. 

Adopting the terminology of multiple discriminant analysis (cf. [ 1 ]) eq. (3.1) can 
be interpreted as the total scatter of the data X onto the subspace of ~s spanned by 
the set of vectors {AJ, ,  A~T~2 ... . .  AtT~,}, weighted by the ruth power of the member- 
ship values of the data vectors -~k in the ith partition of X. Roughly speaking the 
linear variety of  dimension r and through t'~ which minimizes ~k i of(3.1) is the one on 
which there is maximum scatter and equation (3.8) supplies a device to measure the 
relative amounts of scatter in the maximizing directions of the orthonormal vectors 
~Tij, namely by viewing the ratios of the eigenvalues of (3.7). (One may also note the 
application of the FCV algorithms to principal components analysis.) 

In Remark 2 it was noted that the dimension r could be assigned at the beginning 
of each loop through the FCV algorithms. The preceding discussion suggests that 



CHOOSING THE r-DIMENSION FOR THE FCV FAMILY. . .  ! 45 

the assigned value might be based upon the shape of the clusters, using the scatter 
information provided by each of the c within-cluster scatter matrices S~. The 
following implementation provides an "adaptive" FCV family of algorithms which 
has provided good results on test sets of data, where the data are known to consist of 
a fixed number of clusters of uniform, i.e. the same general, shape. 
1. Start the FCV algorithm with r = 0. 
2. Replace step III of the algorithm by : 

i) Compute cluster centers vi from (2.9a) (i = 1, 2 . . . . .  c); 
ii) Compute the within-cluster scatter matrices Si from (2.9c) (i = 1, 2 . . . . .  c); 
iii) Compute eigenvalues 21~ < ... ~ 2i~ and corresponding eigenvectors 

dil . . . . .  Ji, (i = 1,2 . . . . .  c); 
iv) Se t r  = k  k =  1,2 . . . . .  s - 1  

" i =  1 , 2  . . . . .  c 
if e o < Z i ' k +  1 < ~"P 

= /qk p = 0 , 1  . . . . .  k - 1  

where 
% = 0 and ep ~ (0, 1) for each p > 0 : Otherwise, set r = 0. 

v) Return to step I. 
This adaptive procedure was applied to the data shown in figures 1 and 2 ([3], p. 

231 ). Figures 3 and 4 illustrate the consequences of an unfortunate selection for r in 
the usual case of the FCV algorithms and provides the motivation for this in- 
vestigation. The results of figures 5 and 6 were obtained using the adaptive imple- 
mentation of the FCV algorithms described above, with the same starting condi- 
tions used in both cases (et = 0.25, r o = 0, starting centers as shown, m = I). 

REMARK 3. In the test cases run to date, a constant threshold value of % = 0.25 for 
every p = 1, 2 ..... s -  1 has resulted in satisfactory cluster results. The choice of these 
values is arbitrary and obviously will require some experimentation by the in- 
vestigator on a given data set to arrive at values meaningful to that particular 
problem. This arbitrariness should not be viewed in an entirely negative fashion, 
however, for it provides the investigator with a tool to explore the shape of the 
clusters and thereby obtain a more complete view of the data structure. 

REMARK 4. It was pointed out in part II of [1] that widely separated clusters of 
points falling on the same linear variety will not be identified as such by the FCV 
algorithms. The solution suggested there was to "penalize" the membership of such 
points according to their distance from the cluster-defining center v i. Improved 
performance for the adaptive FCV algorithms can be obtained in the same way. 
Equation (2.4) then takes the form 

(2.4) 
j = l  
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Fig. 1. Two round clusters. 
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Fig. 2. Two linear clusters, 
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t 
I 

~ i ~  -~ ~ /~ . . . e  ~ 

X = s t a r t i ng  cen te r s  

X ... . . . . . .  

Fig, 3, C lus te r s  de tec t ed  wi th  r = 1 (c-lines) 

x = s t a r t i ng  cen te r s  

Fig,  4. C lus t e r s  de tec ted  wi th  r = 0 (c -means) .  
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x = starting centers 

1 II 

X 

Fig. 5. Clusters detected by adaptive FCV algorithm. 

x = starting centers 

Fig. 6. Clusters detected by adaptive FCV algorithm 
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where ct ~ [0, 1]. Following the suggestion in [13 of setting c~ ~ 0.9 has continued to 
yield generally good results but, once again, a certain amount of experimenting with 
different values would be suggested for specific applications. The example problem 
of figures 5 and 6 was run using ct --- 1.0. 

REMARK 5. Once an equilibrium value for r has been achieved, one is back to the 
assumptions leading to the convergence results in [1]. Given the uniform cluster 
shapes in the test cases to date, this equilibrium has been reached after only a few 
iterations. 

REMARK 6. The choice ofr  for cluster i can be made independent from the choice for 
cluster j 4: i, since the directions of maximum scatter are computed after t~ and l,~ 
using eq. (2.9a). Thus it should be possible to follow basically the same approach to 
obtain an adaptive FCV algorithm which will seek out a mix ture  of clusters of 
different shapes within the data. An algorithm which will recognize a mix ture  of ball- 
like (point prototypes) and linear (line prototypes) clusters is providing very good 
results. Investigation of these algorithms is currently being focused upon con- 
vergence questions, which are complicated, among other factors, by the multipli- 
cation of possible stopping points for the iterative process. 
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