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Abstract. It is shown that any Gibbs state of the two dimensional fer- 
romagnetic Ising system is of the form 2#+ + ( 1 - 2 ) # _ ,  with some 2~ [0,1]. 
This excludes the possibility of a locally stable phase coexistence and of 
translation symmetry breaking, which are known to occur in higher dimen- 
sions. Use is made in the proof of the stochastic aspects of the geometry of the 
interface lines. 

1. Introduction 

The collective phenomena exhibited by systems of locally interacting spins on 
infinite lattices are of considerable interest for diverse subjects, including statistical 
mechanics, field theory and solid state physics. Of special interest is the behavior 
at phase transitions, the simplest of which correspond to situations in which the 
system may be at a thermodynamic equilibrium in more than one state. 

When there is no unique equilibrium state one may frequently identify a 
number of pure phases, which are states with certain homogeneity. The following 
discussion bears on the possibility of a locally-stable coexistence of distinct phases. 
This would be described by a state in which, while thermodynamic equilibrium is 
maintained, in different regions the typical configurations show behavior charac- 
teristic of different pure phases. In some cases, as the one discussed below, the 
coexistence may be described by the presence of a sharply defined interface. If both 
the interactions and the pure phases are translation invariant, the phase coexis- 
tence relates to the possibility of the breaking of translation symmetry. 

It has been generally expected that for systems with short range interactions 
the possibility of such a phase coexistence depends on the dimension of the lattice. 
For the dimension three and more Dobrushin proved in 1972 [1] that coexistence 
is possible in the Ising system at low temperatures. The coexistence was induced 
there by mixed boundary conditions on a sequence of increasing cubes, - on the 
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upper halves and + on the lower halves of the surfaces. The proof that for these 
states translation symmetry in the vertical direction is broken was much simplified 
by van Beijern [5]. The construction was recently extended to the Widom- 
Rowlinson lattice model [6]. 

For the analogous boundary conditions in two dimensions, Gallavotti proved 
that at low temperatures the limiting state is a convex combination (ensemble 
average) of the pure phases [8]. Subsequently, this result was extended to all the 
temperatures and a collection of other boundary conditions [9, 10, 11], indicating 
that these may be the only Gibbs states of the two dimensional system. The best 
evidence in this direction has been a recent proof, by Russo [13], of such an 
assertion for all the Gibbs states which have one of the main symmetries of the 
lattice. 

The main result described here finally settles the question fbr the two 
dimensional Ising system. In this note we provide details of the proof, which was 
announced in [14], that at any temperature below T~ the only Gibbs states of the 
system are convex combinations of the pure phases/~+ a n d / ~ .  In particular, this 
excludes the possibility of the translation-symmetry breaking. 

In the analysis, which can generally be described as stochastic-geometrical, we 
first identify an interface which is associated with phase coexistence. This provides 
a characterization of any given spin configuration as a patchwork of several pure- 
phase components, enabling us to reduce the study of equilibrium states of the 
system of spins to that of a system of lines. We then prove that there is no Gibbs 
state which corresponds to a stable coexistence of two phases with a single 
interface which is in some sense "flat". This part of the proof depends essentially on 
the availability of contour arguments and the F K G  inequality. The same method 
may be used to show that there is no Gibbs state with any finite number of 
interfaces, winding finitely around the origin. Finally, it is shown that in any Gibbs 
state there can be no more than one interface and that it has the properties which 
were assumed in the previous step. 

Since the submittal and circulation of the announcement [14] partial results in 
this direction were also given in [15] and the main result was given another proof 
by Higuchi [16]. In our method, however, the reference to inequalities other than 
F K G  occurs only in the last step, which for low temperatures may be proven by a 
Peierls argument combined with the stronger version of the second step described 
above. Thus the following proof may be extended to show the instability of phase 
coexistence in some other two-phase systems, like the Widom-Rowlinson lattice 
model, at tow temperatures. 

2. Preliminaries 

The two dimensional ferromagnetic Ising system (f.I.s) is described by the "spin" 
variables {al}i~2 which take the values _ 1 with equal, and independent, a-priori 
probabilities. Spin configurations are identified with points in the set 
t 2 = { - 1 ,  +1} ~2. 

For any A C~g 2, we denote by o- a the restriction of a configuration a6 ~2 to A. 
SA is the a-algebra, of subsets of t2, which is generated by such a restriction. 
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98~ ----- (~ 98Ac, is the a-algebra of events "measurable at infinity", with p(;g2) 
A~P(7/2) 

being the collection of finite subsets of 7~ 2 and Ac=-7Z2\A. 

States of the system are probability measures, #, on O (or rather on 98 
\ 

= U 98A)- We denote their restrictions to A by #A("), the conditional 
A~P(~ 2) / 

expectations by #(. [aa)--#('  198A)(a), or #(. IA) for AE98, and integrals by #(f). 
The spins interact ferromagnetically, with the Hamiltonian 

HA(al=--H(aAlaa~)=--½ ~, a,%-- ~ aias. (2.1) 
i, jaA icA, j ~ J  c 

Ii-Yl = 1 I i - J l  =1 

For an inverse-temperature fi the thermodynamic equilibrium of a state # is 
characterized by the Dobrushin-Lanford-Ruelle (DLR) condition [2]: 

tZa({aA}ltlA~) = exp[-- flH(a A l ~ac)]/Norm.01a0) (2.2) 

which is the defining property of Gibbs states. 
The study of the thermodynamic equilibrium is thus reduced to that of the 

collection of the system's Gibbs states, which we denote by A(fi), with A = U A(fi). 
~g0 

It is well known that for fi>flc the (translation invariant) limits, #+,a, #_aeA(fl), 
of finite volume Gibbs ensembles with + 1, correspondingly - 1 ,  boundary 
conditions are distinct. 

While on general grounds A(fi) is closed under convex combination, we shall 
prove as our main result: 

Theorem 1. For the two dimensional ferromagnetic tsing system at any fie [0, Go): 

A(fi) = {2#+,~(-) + (1 - 2)#_ e(')}a~to, u 

= span{#+,e, #-,p}" (2.3) 

A very useful tool for our analysis is provided by the following general 
property of Gibbs states [2] : 

Proposition 1. Let ExtA(fi) be the set of extremal elements of  A (with respect to 
the convex combinations). Then g#e A(fi): 

(1) (Decomposition to extremal elements) 

~(-)= ~ ~(&)v~(-) 

for some measure ~ on an index space I and some v : I--+ExtA(fl). (In fact, #-ahnost 
surely #(. 19800)(a)eExtA(fl) and one may choose I=g2, ~t=#.) 

(2) #e ExtA(fi) if and only if VBe f8oo :#(B) is either 0 or 1. 
(3) IfBE98oo and #(B)=t=O then #(.IB)eA(fi). 

For two measures on O (or OA), # > # means that # ( f )>  v(f) for any real 
FKG 

function which is monotone with respect to the following partial order of f2 : 

a 2> a ' . ¢ a a  i 2> ~7'i'7'iE ~ 2 .  (2.4) 
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A more specific property of the Ising ferromagnetic system is that it satisfies the 
conditions required for the FKG inequality [3, 4]. In particular, we shall use its 
following consequence. 

Proposition 213]. Let r h ~ (2A, I f  r l ~ 4, then the Gibbs states of the f.I.s which are 
induced in f2 a with t t and ~ as the boundary conditions (for some fixed fi) satisfy : 

#.4,, > #a,~- (2.5) 

We use (i x, iy), (Jx, Jy) to denote the Cartesian coordinates of general i,j~77 z. We 
shall also employ the following geometrical terminology and notation: 

i, je7/2 are connected if ]i~-jx [ + liy-jy] < 1. The same points are * connected if 
max{lix-jx], ]iy-jyl} _-< 1, and / connected if in addition (ix-ix) ( i , - jy)>0.  

A cluster (*cluster or/cluster) : a connected (*connected or/connected) subset 
of 7~ 2. 

An oo+cluster (oo-cluster, etc): a cluster of infinite size on which 
a = + 1( -  1, etc.). 

A contour of a: a polygon which connects nearest neighboring points of 
(77 + ½) x (77 + ½), and which separates two adjacent/clusters of opposite signs. It is 
an oocontour if its size is infinite. When referring to the number of contours in a 
region we shall, of course, count only the complete contours, which have no ends 
in the region. 

The reason for our interest in the diverse notions of connectedness is that while 
a + cluster is not necessarily surrounded by a -c luster  its exterior boundary is 
always a -*cluster. Further, the above definition of contours leads to non 
crossing lines. The use of/clusters amounts to a procedure of "rounding the 
corners" used to separate contours whenever four segments meet at a point. 

Finally, a statement is true/~-almost surely, or for/~-a.e.o-. ("# almost every £'), 
if the subset of f2 on which it is false has zero/~-measure. 

3. Identification of the Interface 

Our first step in the analysis of phase coexistence is to identify a simple feature, 
with the aid of which we shall separate in general configurations regions of distinct 
phases. While its choice is somewhat arbitrary (since even in the pure phases 
locally no spin configuration is excluded) such an interface should satisfy the 
following three conditions. 

(i) For a given configuration of the interface lines, the state in each of the 
regions which they separate should resemble a pure phase. 

(ii) No interface line should be found in configurations which are typical for 
pure phases. 

(iii) The absence of interface lines in configurations which are typical for some 
Gibbs state should imply that the state is a convex combination of the pure phases. 

Of main interest for us is, of course, property (iii), which will provide a sufficient 
condition. However this condition would have been useless had (ii) been invalid. 
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Natural candidates for interface lines are the infinite contours. Since they 
partition the space to regions with boundary spins of definite signs, (i) is clearly 
satisfied. For temperatures in the two phase region, the second condition is also 
met, as a consequence of the following result of L. Russo: 

Proposition 3 (Proposition 1 of [13]). For the two dimensional f.I.s and fl> flc, in 
#+,~-a.e.a and #+,~-a,e,a there are no co*clusters of the opposite signs. 

We shall adopt the above choice since it satisfies also condition (iii), as stated 
in the following proposition. 

Proposition 4. Let #~A(fi). I f  #-a.e.c~ has no co contour then #~span{#+,~, #_,p}. 

Before proving Proposition 4 let us remark that Proposition 3 was proven by 
showing that, in d =  2, the infinite + cluster of #+ forms a mesh which completely 
surrounds any region, preventing the existence of infinite - *clusters (and thus of 
infinite contours). 

To prove Proposition 4 we recall from [13] : 

Lemma 1. Let #~ A(fl). I f  p-almost surely there is no co +cluster then #=#_ .  

For the sake of completeness let us remark that Lemma 1 is a quick 
consequence, due to the Markov property and the F K G  inequality, of the fact that 
the assumption implies that any finite volume is #-a.s. surrounded by a -c luster .  

Proof of Proposition 4. Let I i be the characteristic functions, with values 0 or l, 
defined by the following mutually exclusive and exhausting events: 

I1(0- ) = 1~:>0- has no 0c - clusters 

/2(0-) = 1<=>0- has an co - dusters but no co + clusters 

Is(o-) = t~-o- has both an Go - cluster and an co + cluster. 

If # satisfies the assumptions in Proposition 1, then 13(0-)=0, i.e. I1(0- ) 
+ 1 2 ( o ) =  1, for #-a.e.a, since the presence of two coclusters of opposite signs 
implies the existence of an infinite contour. The function Ik are measurable at 

Therefore, by Proposition 1, whenever #(Ii) =t:0 then ~ is a Gibbs state. infinity. 

Applying Lemma 1 to these states, we get 
#(.)=#(I~ .)+#(1z.) 

= # ( I 0 # + ( ' ) + # ( I 2 ) # - ( ' ) ,  (3.1) 

which proves the claim. []  

4. Instability of a Single Interface 

Let 

£21 = {0-e f2l in 0- there is exactly one cocontour, 7(00, and 7(0-) has a 
finite but non-empty intersection with each of the lines {ix = const}.}. 

According to our interpretation, Q1 includes the set of configurations with a 
single interface which is basically horizontal. Intuitively, that seems to be the 
simplest mode of phase coexistence. In this section we shall prove that for d = 2, it 
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is unstable at any non-zero temperature, in the sense given by the following 
proposition. 

Proposition 5. Let tze d. Then 

#(f21)=0. (4.1) 

In the proof we shall use the "fluctuations at infinity" of the interface line. 
These are reflected in the following two lemmas which refer to "duplicate systems". 

Lemma2. Let #EExtA. / f  #(f21)=t then for #x#-a.e.  (o,o')~f2xf2 the two 
contours y=~'(o) and 7'=7(o') intersect infinitely often in both ~ + and Jr .  

" axis" Prooj2 Both 7 and ~ have a finite intersection with the y- , {ix=0 }, and have 
unique infinite connected components in re+. Thus y defines a partition of re+ to 
two sets whose points may naturally be refered to as lying "above" or "below" ?. 

The claim follows from the fact that the subset of f21 x f21 on which it is 
violated is a disjoint union of two sets of equal g x # probabilities, which are 
measurable at infinity. The sets are: 

A = {(G o-')~ ~21 x f21 I?' eventually lies "above" ? in re+ } 
(3.1) 

B =  {(0, o')e f21 x ~2117' eventually lies "below" ? in 7c+}. 

The equality of their probabilities is implied by the symmetry (0, o ')~(a ' ,  0) of 
# x ~. Hence/~(A) = #(B) < 1/2. However the extremality of ]~ implies the triviality 
for #, and thus for # x ~, of the corresponding ~r-algebras of '+events measurable at 
infinity", by which #(A)= #(B) is either 0 or 1. Therefore 

#(A) =#(B)=0.  [] (3.2) 

Let T: f2~f2  be the shift defined by (Tcr)i=ai_(o,1 >. For any measure # we 
denote/h(-)= T#(-) [i.e./h(f(cr))=#(f(T¢))]. The following lemma will be used to 
prove the T-invariance of the Gibbs states supported by f2~. 

Lemma3. Let #~Extd.  I f  #(f21)=1 then for #xfi-a.e. (~;,~)~f2~ x f21 the two 
contours 7 =7(a) and ~ =7(~) intersect infinitely often in both ~+ and re .  

That, u x/h-almost surely, the contours ? and ~ come to within distance 1 
infinitely often is a consequence of Lemma 2. It might therefore be no surprise that 
the remaining gap would also be closed an infinite number of times. 

Proof of Lemma 3. Since the above property is measurable at infinity, if it fails then 
with # x/h-probability 1 7 and p intersect at only a finite number of times. This 
would imply for 

G, = {(o-, ~)I?(o)~?(4)c~{i~ > n} :#0} (3.3) 

that given any 3 > 0 there is some N = N(3) such that tbr any n > N 

x fi(G,) < 3. (3.4) 

Let however, i, be the earliest point in {ie:g2Iix>n}, in the lexicographic 
order, with the property that both ? and p intersect the 10 x 10 square centered at 
i; and let B, be the corresponding square. By Lemma 2 i, is well defined for 
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/~ x pa.e. (o-, 5). For  a fixed n we regard as essential parts of 7 and p only their 
infinite connected components in ;g2/B,. It is easy to see that one may define a 
transformation R which changes the spins of (a, #) only in the corresponding set 
Bn, yielding configurations for which: 

(i) 7 intersects ~ in B, 
(ii) ? and p have no nonessential components in ~,2/B,. 
The second property ensures that for p x #-a.e. (a, (~): 

[i,(R((a, 5)) ) -  in((a , 6-)) I ~ 2-10 (3.5) 

and hence 

card. R -  1({(or, ~)}) __< (2.10) 2 210.1 o =_ g. (3.6) 

The uniform bound (3.5) and the fact that R changes (a, d) only in B n imply (by the 
DLR condition) that VA ((21 × ~21 

p X D ( i  - I(A)) < 8- i p (A)  (3.7) 

with 

e- 1 = g exp(4.10.10fl). 

By (i) the range of R is contained in G,, thus 

p x p(R-  t(G,,)) = 1 (3.8) 

and, by (3.7), 

# x p(Gn) > e. (3.9) 

(3.9) contradicts (3.4) and, therefore, proves the claim. [] 

Lemma 4. I f  peExtA and p(f21)= 1, then p is invariant under the translation T. 

Proof Let/~ satisfy the assumptions and let p = Tp. Without the loss of generality 
we may assume that the spins immediately below ? are p-almost surely +.  

Notice that if for some (a, 5)s(21 x ~21 there is an infinite cluster on which 
a = - 1 and # = + 1 then, by the uniqueness of the infinite contour in ~21, this 
cluster has to lie "above" ?(a) and "below" ?(5). This, however, is not possible if 
?(a) and 7(5) intersect infinitely often in both directions. 

Lemma 3 implies, therefore, that for # x p-a.e. (or, 5) there is no infinite cluster 
on which o-> & 

Let now A be a finite box. Then, by the above conclusion, p x p-almost surely 
there exists a *cluster which completely surrounds A, on which a < &  For  any 
finite A ~ A let a~i,A(a, 5) be the outermost such *cluster in A, if such a set exists, and 
C~2,A(a, 5)= 0 otherwise. We shall also denote by ~A.A the complement, in A, of 
the region surrounded by a~i,.~- The key observation here is that 1 VAcz]" 
Thus 

{(a, 5)~ f2 x f2 ~ A(a, 6) = V} ~ ~B v × v" (4.7) 

1 (4.7) can be viewed as defining a multidimensional generalization to set valued functions of the 
notion of nonanticipatory stopping time, which is very useful in the theory of martingales. 
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the case v=#x /2 ,  the factorization and the Markov property 
conditions imply for each of the terms in the above sum: 

# X /~A x A(" I( 0'' 0-)V x V) = #A(" I O'~X,A ) X ~A(" I O-0tzi,A ) '  

Since only terms with 

Therefore, the conditional expectations of any measure v on (2 x f~ satisfy: 

1'(" I~S,A =~ 0) V({O~fi~,A(") # 0}) 

= ~ ~ v(.t(G,h)v×v ) Vv×v({(cr, gr)v×v}). (4.8) 
VcA (a,~)s.t. 

~.a,A((r, #*)= V 

Consider now f e  ~ which is bounded and monotone in the F K G  sense. For  
of the DLR 

(4.9) 

~i,A < 6"~x,A (4.10) 

contribute, Proposition 2 (the F K G  inequality) implies that for any monotone f 

# x #(f(a) l c%i,a + 0) < # x #(f(cr) l(x~, A + 0). (4.11) 

Thus 

#(f(.  )) - # x f~(f(a)) 

= lira # x /2 ( f (a ) t~  A@0) # X/2({a2,A4:0}) 

< lim # x/2(f(&)loC~,A+O ) # X/2({0~ a A=#O}) 

= # x/2(f($)) - /2(f( .  )). (4.12) 

By the generality of f :  

fi > #, (4.13) 
FKG 

and by a similar argument 

# > 12. (4.14) 
FKG 

Thus #=/2, which proves the translation invariance of #. []  

Proof of  Proposition 5. Let # be an extremal Gibbs state and let us assume that 
(4.1) is not satkfied. Since ~ ? l e ~ ,  it follows by that 

#(~21) = 1. (4.15) 

In particular, ~0(o-)- the level of the lowest intersection of 7(a) with {i~ = 0}, is well 
defined for g-a.e.a and has some probability distribution on IR, given by #({alt%(o-) 
<y}). This, however, is not possible since by Lemma 3 the above distribution 
should be translation invariant. 

(4.1) holds therefore for any extremal Gibbs state and, by means of the 
decomposition to extremal elements (Proposition 1), for all the Gibbs states. []  

5. Reduction of the General Case 

Let 

f2 2 = {aEfa] in a there is at least one infinite contour}. 
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In this section, the general case would be reduced to those studied already in the 
two previous sections by proving: 

Proposition 6. V#sO, 

]~(~2\~r~1) = 0. (5.1) 

While the results obtained so far relied essentially on the FKG inequality, in 
addition of course to the basic features of the system which make the notion of 
contours so useful, our analysis would now require the following additional 
property of the f.Ls. 

Proposition 7 ([11]). Let V,.~TI" be a sequence of finite regions which are symmetric 
with respect to the reflection (x, y)P-(x, 1 -  y). Then the Gibbs states # f which are 
induced in t/~, at some fixed temperature, by the boundary conditions 

converge, and 

liln #-+ =(#+ +#_) /2 .  (5.3) 

We shall now denote A n = [ - n , n ] x [ - n , n ] .  A useful corollary of 
Propositions 7 and 3 is: 

Lemma 5. Let 

Ore, ~ = {as f21a has a - cluster which connects A n with A~m}. 

Then Vn, e > 0  ~m(n, e)< oo such that 

± 1 (5,4) 

for every symmetric VD A m, with #~ being defined as in Proposition 7. 

Using Proposition 7, L. Russo proved what amounts to : 

Lemma 6 ([13] Lemma 13 combined with Proposition 4). Let 
peExtA\{g+,,,/~_,,},.  Then #-a.e.a has exactly one ovcontour in re .  

Proof of Proposition 6. It clearly suffices to prove (5.1) for #~ Ext d(fl)\{#+,p, #_,,}. 
Let # be such a state. We shall prove (5.1) by showing that 

#(f22\O~) < 3/4, (5.5) 

which, by Proposition 1, is sufficient since ~22\f~ s N~. 
By Lemma 6, #-a.e.a has a unique contour which has an infinite connected 

piece in ~z_. We denote it by 6(a), and the two regions on its + and - sides by 
D+(~), D_(a) C~ '2. 
Claim. The conditional p-probability of there being another ovcontour in D÷ 
conditioned on : 

(i) the position of 3(a) (5.6) 

(ii) ND-¢~) 

is, uniformly, <½. 
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Proof of the Claim. WLOG we assume that the spins "below" (~(o-) are + #-almost 
surely. 

Let n, e > 0  and m=m(n,e). By the uniqueness expressed in Lemma 6, for 
#-a.e. a there are + clusters in D+(o-)cv~z_~Am and -c lus ters  :in D_(o-)ca~/l,, which 
connect 5(o-) with the {i x = 0} line. There is therefore h > m large enough so that 
with #-probability > ( 1 -  e) such + and -c lus ters  exist in n _  ¢5A h. Let us denote 
the outermost such contours in n _  (-hA h by % and r ,  including in z+ the shortest 
piece along 6(a) which connects it with r, and let Y be the complement in n_ of the 
set enclosed by z z+ and the {i x=0} line. 

Consider now the p.-probability that in D + there is a - cluster connecting A, to 
A m, conditioned: 

(i) the position of 6(cr) 
(ii) :~D_ (~,) 

(iii) ~3A~ 
(iv) the position of ~+. (5.7) 

By the F K G  inequality and the Markov property, this probability only increases 
when the + 1 boundary provided by the spins along 6(a) is replaced by + 1 
boundary condition along z_, which is further withdrawn into D_(a), and - 1  
along the reflection of % u ~  with respect to the {i~=½} line. The above 
probability is therefore uniformly smaller than #~(O,,m); V being the volume 
enclosed by z+ u z  and its reflection. [Using the "nonanticipatory" property of V ~ 
defined, for ~,A, by (4.7).] 

Using Lemma 5, averaging over ~BD+\A ~ and %,  and letting e--,0 we conclude 
that the probability of there being an o o -  cluster in D+ conditioned on (5.6) is at 
most ½. This proves the claim. []  

A direct consequence is that the to-probability of 6(a) being the only oocontour 
o f~ i s  t i 1 at least ~g = ~-. However, the number of oocontours is measurable at infinity 

{ix O} 

Ah 

-C_(o-) _ _ - - 

_~-  Am 

-- An 

~ :--- ~ -- __ ---- 

_, +++÷_ I 
%to-1 "-+ +~ 

t ................ ! 
I 
I 

Fig. 1. A reference {br the notation used in the proof of Proposition 6 

D_ (or) 

D+ (o') 
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and thus, by the extremality of #, 

#({a~ f2la has exactly one ~contour})  = 1. (5.8) 

Let now k~7Z. By Lemma 6, #-a.e.a has exactly one oocontour in each of the 
regions {i~>21k[} , {ix=<-21k[}C2g 2. If such a has only one oocontour then the 
above two are parts of it and, in particular, they are connected by a finite contour 
piece. This proves that the oocontour's intersection with {i x = k} is both finite and 
nonempty. By the countable additivity of #, for #-a.e.a the above is true for any 
k~7l, which implies (5.1). []  

Placing the three marbles together we have a proof of the main result of this 
paper. 

Proof of Theorem 1. Let #~ A(/~). Then, using Propositions 5 and 6: 

#(02) < #(f22 \f21) + #(f21) = 0. (5.9) 

Therefore the criterion provided by Proposition 4 is applicable, tt  implies: 

#~span{#+,~, #_,p}. [] (5.10) 

6. Remarks on Extensions 

1. The instability of phase coexistence may be a generic feature of two dimensional 
short range systems. The partial results of Sects. 3 and 4 can be extended to other 
two-phase systems for which contour arguments and the F K G  inequality are 
applicable, e.g. the Widom-Rowlinson lattice model which was studied in [6, 7]. In 
fact, the method of Sect. 4 yields a stronger result ; that if, for some #~ A, #-a.e.a has 
a finite number of ~contours  and if these may somehow be "labeled at infinity" 
(which would be the case if they wind only finite numbers of times around the 
origin), then # is translation invariant. In Sect. 5 additional properties of the f.I.s. 
were invoked (Proposition 7). For  some models which do not have these proper- 
ties, as in the above mentioned case, the instability of phase coexistence may still 
be proven for low temperatures using that stronger result in conjunction with 
Peierls-type arguments. The latter have the advantage of generalizability, at the 
expense of the restriction to low temperatures. 
2. It is suspected that the phase coexistence which occurs in three dimensions 
destabilizes at some temperature beIow T~, dubbed the "roughening temperature". 
It would be very interesting to see a further development of the stochastic 
geometrical methods which might shed some light on this phenomenon. 
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