

Absence of Singular Continuous Spectrum for Certain Self-Adjoint Operators

E. Mourre

Centre de Physique Th6orique, CNRS MarseilIe, F-13288 Marseille Cedex 2, France

Abstract. We give a sufficient condition for a self-adjoint operator to have the following properties in a neighborhood of a point E of its spectrum:

- a) its point spectrum is finite;
- b) its singular continuous spectrum is empty;
- c) its resolvent satisfies a class of a priori estimates.

Notations, Definitions, and Main Theorem

Let H be a self-adjoint operator on a Hilbert space \mathcal{H} . We will denote by \mathcal{H} _n $n \in \mathbb{Z}$) the Hilbert space constructed from the spectral representation for H with the scalar product:

$$
(\Phi|\Psi)_n = \int (\lambda^2 + 1)^{n/2} (\Phi) P_H(d\lambda) \Psi).
$$

For functions $P \in L^{\infty}(\mathbf{R})$, P_n will denote the associated operator given by the usual functional calculus.

 $P_H(E, \delta)$ will denote the spectral projection for *H* onto the interval $(E - \delta, E + \delta)$. P_{H}^{p} and P_{H}^{c} will denote the spectral projectors respectively onto the point spectrum and the continuous spectrum of H; $\sigma_c(H) = R/\{E \in R | E$ is an eigenvalue of H .

If A is a self-adjoint operator and $D(A) \cap D(H)$ is dense in \mathcal{H} , *i*[H, A] will denote the symmetric form on $D(A) \cap D(H)$ given by

$$
(\Phi | i[H, A] \Psi) = i \{ (H\Phi | A\Psi) - (A\Phi | H\Psi) \}
$$

for Ψ , $\Phi \in D(A) \cap D(H)$. If this form is bounded below and closeable, *i*[H, A]⁰ will denote the self-adjoint operator associated to the closure [1].

1. Definition. Let H be a self-adjoint operator on a Hilbert space with domain $D(H)$; a self-adjoint operator A is a conjugate operator for H at a point $E \in \mathbb{R}$ if and only if the following conditions hold:

- (a) $D(A) \cap D(H)$ is a core for H.
- (b) $e^{+iA\alpha}$ leaves the domain of H invariant and for each $\Psi \in D(H)$

$$
\sup_{|\alpha|<1}\|He^{+iA\alpha}\Psi\|<\infty.
$$

0010-3616/81/0078/0391/\$03.60

(c) The form $i[H, A] = i(HA - AH)$ defined on $D(A) \cap D(H)$ is bounded below and closeable; moreover, the self-adjoint operator $i[H, A]$ ⁰ associated to its closure admits a domain containing *D(H).*

(d) The form defined on $D(A) \cap D(H)$ by $[[H, A]$ ⁰, A] is bounded as a map from \mathcal{H}_{+2} into \mathcal{H}_{-2} .

(e) There exist strictly positive numbers α and δ and a compact operator K on \mathscr{H} , so that:

$$
P_H(E,\delta) i[H, A]^0 P_H(E,\delta) \ge \alpha P_H(E,\delta) + P_H(E,\delta) K P_H(E,\delta).
$$

Theorem. *Let H be a self-adjoint operator, having a conjugate operator A at the point E* \in **R**, *(i.e. suppose H and A satisfy conditions (a)–(e) <i>above*). Then there is a *neighborhood* $(E - \delta, E + \delta)$ *of E so that :*

1. In $(E-\delta, E+\delta)$ the point spectrum of H is finite.

2. For each closed interval $[a, b] \subset (E - \delta, E + \delta) \cap \sigma_a(H)$, there exists a finite *constant* c_0 *so that*:

$$
\sup_{\substack{\text{Re }z\in[a,b]\\ \text{Im }z\,+\,0}} \| |A+i|^{-\,1} (H-z)^{-\,1} |A+i|^{-\,1} \| \leqq c_0.
$$

Remark. The above theorem gives a method for obtaining a priori estimates of Agmon type [2] for certain self-adjoint operators, following from the existence of the conjugate operator A of H in the neighborhood of some point.

The essential condition in the definition of conjugate operator is condition (e); the other conditions justify the algebraic manipulations. To obtain the a priori estimates on $(H-z)^{-1}$ when z approaches a point $E \in \sigma_a(H)$, we prove a priori estimates, uniform in ε and z, on the operator $(H-z-i\varepsilon B^*B)^{-1}$. Here ε and Imz have the same sign, $\text{Re } z \in (E - \delta_0, E + \delta_0)$, and $B^*B = P_H(E, 2\delta_0)i[H, A] P_H(E, 2\delta_0)$. This estimate is obtained by proving a differential inequality of the form:

$$
\left\| \frac{d}{d\varepsilon} F_z(\varepsilon) \right\| \le K(\varepsilon, \|F_z(\varepsilon)\|)
$$

for $F_{\nu}(e) = |A+i|^{-1} (H - z - i e B^* B)^{-1} |A+i|^{-1}$.

In Sect. I, we give examples and applications. As new results we obtain the absence of singular continuous spectrum and a priori estimates in the following two cases :

(a) Relatively compact perturbations of certain pseudo-differential operators.

(b) Three-body Schrödinger operators with long-range two-body forces.

In Sect. II we give the proof of the main theorem.

I. Examples and Applications

1. The Laplacian

Let $\mathcal{H} = L^2(\mathbf{R}^n, d^n x)$, $H = H_0 = -\Delta$ and

$$
A = \frac{1}{4}(x \cdot p + p \cdot x) \quad p = -i\nabla.
$$

A is the generator of the dilations introduced by Combes and used in [3]. $-\Delta$ and A are defined on \mathscr{S} , the \mathscr{C}^{∞} functions of rapid decrease. \mathscr{S} is a core for H. The explicit formula:

$$
e^{+iA\alpha}(H_0+i)^{-1} = (e^{-\alpha}H_0+i)^{-1}e^{+iA\alpha}
$$

shows that $e^{+iA\alpha}$ leave $D(H)$ invariant. $\mathscr S$ is invariant under the dilation group and $i[-A,A]=-A$ in the sense of quadratic forms on \mathscr{S} . By Proposition II.1, condition (c) holds on $D(A) \cap D(H)$ and *i*[H, A]⁰ = - Λ . Condition (d) then reduces to condition (c). Condition (e) is trivially satisfied at any point $E+0$ by choosing $\delta < \frac{|E|}{2}$.

2. Two-Body Schrbdinger Operators

Let

$$
\mathscr{H}=L^2(\mathbf{R}^n,d^n\mathbf{x}),\qquad H=-A+V.
$$

We will often write H_0 for $-\Delta$. Much work has been done on these operators and we refer the reader to [4] for detailed references. Moreover, recently a very intuitive method has been introduced by Enss to prove asymptotic completeness for such systems [5].

We shall suppose that:

(i) V is H_0 compact;

(ii) the operator $i\left\{V\frac{xp+px}{4}-\frac{xp+px}{4}V\right\}$ is defined on $\mathscr S$ and coincides on $\mathscr S$ with an H_0 compact operator B.

(iii) B admits a decomposition: $B = B_s + B_t$ where $B_s^* |x|$ and $|x|B_s$ are H_0 bounded operators, and $[B_t, xp + px]$ coincides on $\mathscr S$ with a form coming from an H_0 compact operator.

Remark. When V is the operator of multiplication by a function $v(x)$, $[V, xp + px]$ $= 2ix \cdot Fv$, so that condition (ii) is satisfied if $x \cdot Fv$ is H_0 compact. Condition (iii) is satisfied if there is a smooth function $j(x)$ of compact support such that the operators $x_i \rightarrow (1-j(x))x_i \rightarrow \text{ are } H_0$ compact for all *i,j.* ∂x_i $\left[\begin{array}{cc} & \cdots & \cdots & \partial x_i \end{array}\right]$

Theorem I.1. *If V is a symmetric operator satisfying hypotheses (i)...(iii), then the operator* (sgnE) *A* is conjugate to $H = H_0 + V$ at all $E = 0$. $(A = \frac{1}{4}(xp+px)$.

If $E < 0$, then 0 and 1 are also conjugate operators to H at E.

Proof. Since V is H_0 compact, $D(H) = D(H_0)$. By Example 1, $D(H_0)$ and therefore $D(H)$ is left invariant by $e^{\frac{1}{T} i A\alpha}$. By hypothesis (ii) the form *i*[H, A] coincides on $\mathscr S$ with the form associated to the symmetric operator $H_0 + B$ on \mathscr{S} , hence by Proposition II.1, condition (c) holds with $i[H, A]^0 = H_0 + B$.

To show that condition (d) holds, we write:

$$
[A, i[H, A]^0] = [A, B_s] + [A, H_0 + B_l]
$$

the first term is bounded as a map from \mathcal{H}_{+2} into \mathcal{H}_{-2} by hypotheses (iii), the second coincides on $\mathscr S$ with the quadratic form of an H_0 bounded, self-adjoint operator.

Let us verify condition (e).

$$
P_H(E, \delta) i[H, A]^0 P_H(E, \delta) = P_H(E, \delta) \{H - V + B\} P_H(E, \delta).
$$

Since V and $B=i[V,A]$ are H compact operators, by taking $\delta < \frac{|E|}{2}$ we have, letting $P_{H}(E, \delta) = P_{H}$,

$$
P_H i[H, A]^0 P_H \ge \frac{E}{2} P_H + P_H K P_H \quad \text{if} \quad E > 0.
$$

If E is negative, we can see that the following two relations hold

$$
P_{H}i[H, -A]^{0}P_{H} \ge \frac{|E|}{2}P_{H} + P_{H} - KP_{H}
$$

$$
P_{H}i[H, A]^{0}P_{H} = P_{H}(H_{0} + B)P_{H}.
$$

Adding them, we see that 0 and therefore $\mathbb 1$ are both conjugate operators for H at energy $E < 0$.

Remarks. As a consequence of Theorem I.1, we proved that the eigenvalues of H can only accumulate at $E = 0$, and are of finite multiplicity; outsided of them, the resolvent $(H-z)^{-1}$ satisfies a priori estimate of Agmon's type [2].

3. Perturbations of Pseudo-Differential Operators

In [6], among the extensions of the method introduced in [5], the author proves similar results for short-range perturbations of pseudo-differential operators.

Let $\mathcal{H} = L^2(\mathbb{R}^n, d^n x)$ and denote by $L^2(\mathbb{R}^n, d^n p)$ the Hilbert space obtained by Fourier transformation.

Let $h_0(p)$ be a measurable function from R^n to R and h_0 the associated multiplication operator on $L^2(\mathbf{R}^n, d^n p)$. Suppose that:

$$
\lim_{|p|\to\infty} |h_0(p)| = \infty.
$$

Definition. $E \in \mathbf{R}$ is a regular point of h_0 if and only if there is a neighborhood $(E-\delta_0, E+\delta_0)$ of E so that on

$$
O(E, \delta_0) = \{ p \in \mathbf{R}^n | |h_0(p) - E| < \delta_0 \} \, .
$$

 h_0 is \mathscr{C}^m for an $m \geq 3$ and

$$
\sum_{i=1}^n \left(\frac{\partial h_0}{\partial p_i}\right)^2(p) \ge \alpha > 0, \qquad p \in O(E, \delta_0).
$$

Definition. $h_0 + V$ is a regular perturbation of h_0 if V satisfies the following conditions.

Absence of Singular Continuous Spectrum 395

1. *V* is a symmetric h_0 -compact operator.

2. For all real valued $g \in \mathcal{C}_0^m(\mathbf{R}^n)$, the \mathcal{C}^m functions of compact support, the operators

$$
B_i = (x_i g(p) + g(p)x_i) V - V(x_i g(p) + g(p)x_i)
$$

are defined on $\mathscr S$ and extended to bounded, h_0 -compact operators.

3. [$x_i g(p) + g(p)x_i, B_i$] is bounded as a map from \mathcal{H}_{+2} to \mathcal{H}_{-2} .

Theorem 1.2. *Let* $H = h_0 + V$ *be a regular perturbation of* h_0 *. For each regular point E* of h_0 , there is an operator A conjugate to *H* at *E*.

Corollary I.3. *Let* $h_0 + V$ *be a regular perturbation of* h_0 *. For each regular point E of* h_0 , there is a neighborhood $(E-\delta, E+\delta)$ so that

- *1. the point spectrum of* $h_0 + V$ *is finite in* $(E \delta, E + \delta)$ *.*
- 2. For all $[a,b] \subset (E-\delta,E+\delta) \cap \sigma(x)$ there is a finite constant c_0 so that:

$$
\sup_{\substack{\text{Re }z\in[a,b]\\ \text{Im }z+0}}\|(1+|x|)^{-1}(H-z)^{-1}(1+|x|)^{-1}\|\leqq c_0.
$$

Proof. Since $|h_0(p)| \to \infty$ as $|p| \to \infty$, $O(E, \delta_0)$ is a bounded subset of \mathbb{R}^n , so that we can find a \mathscr{C}^{m-1} vector field $g_i(p)$ *i* \in {1, ..., *n*} of compact support in **R**^{*n*}, with

$$
g_i(p) = \frac{\partial h_0}{\partial p_i}(p) \quad \text{if} \quad p \in O(E, \delta_0)
$$

$$
g_i(p) = 0 \quad \text{if} \quad |h_0(p)| > M_0.
$$

Let \hat{A} the formally symmetric operator defined on $L^2(\mathbf{R}^n, d^n p)$ by

$$
\hat{A} = \sum_{i=1}^n g_i(p) i \frac{\partial}{\partial p_i} + \frac{i}{2} \frac{\partial g_i}{\partial p_i}(p) = \frac{1}{2} \sum_i (g_i x_i + x_i g_i).
$$

By the commutator theorem [4] it is easily seen that \hat{A} is essentially self-adjoint on the domain of $x^2 = \sum x_i^2$. $i=1$

Let A be the self-adjoint extension so obtained. Since $D(x^2) \cap D(h_0)$ is a core for h_0 , $D(A) \cap D(h_0)$ is a core for h_0 . One can easily see (cf. Appendix A.1) that the unitary group $e^{+iA\alpha}$ is actually the group of unitary transformations on $L^2(\mathbf{R}^n, d^np)$ associated with the group of diffeomorphisms $\Gamma_{\alpha}: \mathbb{R}^n \to \mathbb{R}^n$ determined by the differential equation :

$$
\frac{d}{d\alpha} \Gamma_a^i(p) = g_i(\Gamma_\alpha(p))
$$

$$
\Gamma_0(p) = p.
$$

It follows that $e^{+iA\alpha}$ leaves invariant the functions $\Psi(p)$ with support contained in ${p \in \mathbf{R}^n | h_0(p) > M_0}$, and hence $e^{iA\alpha}$ leaves $D(h_0)$ invariant. Conditions (c) and (d) are satisfied because of the regularity assumptions (2) and (3) on V. (These hypotheses can be easily verified for a class of long range potentials with sufficient regularity at infinity.)

Let us verify property (e). By hypothesis there exist $\alpha > 0$, $\delta_0 > 0$ such that

$$
P_{h_0}(E, \delta_0) i[h_0, A]^0 P_{h_0}(E, \delta_0) \ge \alpha P_{h_0}(E, \delta_0).
$$

For any smooth function \tilde{P} such that $\tilde{P} = 1$ on $(E - \delta, E + \delta)$ $\delta < \delta_0$ and $\tilde{P} = 0$ on $R/(E-\delta_0, E+\delta_0)$, we have:

$$
\widetilde{P}_{h_0}i[h_0, A]^0 \widetilde{P}_{h_0} \ge \alpha \widetilde{P}_{h_0}^2 \quad \text{and} \quad P(E, \delta) = P(E, \delta) \widetilde{P}.
$$

Note that $P_H-P_{h_0}$ is a compact operator since V is h_0 compact and $P(\lambda)$ is a smooth function of compact support.

Then:

$$
P_{H}(E, \delta) i[h_{0}, A]^{0} P_{H}(E, \delta)
$$

\n
$$
= P_{H}(E, \delta) \tilde{P}_{H} \sum_{i} g_{i}^{2}(p) \tilde{P}_{H} P_{H}(E, \delta)
$$

\n
$$
= P_{H}(E, \delta) \tilde{P}_{h_{0}} \sum_{i} g_{i}^{2}(p) \tilde{P}_{h_{0}} P_{H}(E, \delta) + P_{H}(E, \delta) K' P_{H}(E, \delta)
$$

\n
$$
\geq \alpha P_{H}(E, \delta) \tilde{P}_{h_{0}}^{2} P_{H}(E, \delta) + P_{H}(E, \delta) K' P_{H}(E, \delta)
$$

\n
$$
\geq \alpha P_{H}^{2}(E, \delta) + P_{H}(E, \delta) K'' P_{H}(E, \delta).
$$

By hypothesis (2) [V, A] is h_0 compact, hence there exist numbers α , $\delta > 0$ and a compact operator K so that condition (e) holds. This proves Theorem I.2. The Corollary 1,3 follows from Theorem 1.2 and the abstract theorem since *D(A)* contains $D(|x|)$, and hence $A(1+|x|)^{-1}$ is a bounded operator.

4. Three-Body Schrödinger Operators

Let x_i , m_i , be the coordinates and mass of the *i*-th particle where $x_i \in \mathbb{R}^n$, *i* $\in \{1, 2, 3\}$. For each pair of particles $(i, j) = \alpha$ (such pairs are always denoted by Greek letters), we will denote

$$
x_{\alpha} = x_{i} - x_{j}; \qquad y_{\alpha} = x_{k} - \frac{m_{i}x_{i} + m_{j}x_{j}}{m_{i} + m_{j}} \qquad k \notin \alpha
$$

$$
m_{\alpha}^{-1} = m_{i}^{-1} + m_{j}^{-1}
$$

$$
n_{\alpha}^{-1} = m_{k}^{-1} + (m_{i} + m_{j})^{-1}
$$

when one removes the center of mass of the system, the Hilbert space is then

$$
\mathscr{H} = L^2(\mathbf{R}^{2n}, d^n x_{\alpha} d^n y_{\alpha}) \qquad \forall \alpha \, .
$$

 k_{α} and p_{α} will denote $-iV_{x_{\alpha}}$ and $-iV_{y_{\alpha}}$.

In \mathcal{H} , the Hamiltonian of the system is written

$$
H = H_0 + V
$$

$$
H_0 = \frac{1}{2m} k_x^2 + \frac{1}{2n} p_x^2 \qquad \forall \alpha.
$$

The dilation group acts in the same way independently of the representation $L^2(d^n x_\alpha, d^n y_\alpha)$ of \mathcal{H} . Let A be its generator normalized so that $i[H_0, A] = H_0$. We

have $A = A_{\alpha}^1 + A_{\alpha}^2$ where A_{α}^1 and A_{α}^2 are the generators of the dilation group on $L^2(d^n x)$ and $L^2(d^n y)$, respectively.

Hypotheses on the potential V

Suppose that $V = \sum v_\alpha$ where, for each α , v_α is an operator acting on $L^2(d^n x_\alpha)$ and satisfying hypotheses (i)-(iii) of Example 2.

We will further denote:

$$
H_{\alpha}=H_0+v_{\alpha}=h_{\alpha}+\frac{p_{\alpha}^2}{2n_{\alpha}}\,;\qquad h_{\alpha}=\frac{k_{\alpha}^2}{2m_{\alpha}}+v_{\alpha}\,.
$$

By Theorem I.1, the eigenvalues of h_{α} have finite multiplicity and can only accumulate at 0.

Theorem I.3. Let $H = H_0 + V$ on $L^2(d^n x_a, d^n y_a)$ where V is a symmetric operator *satisfying the above hypotheses. Then* $A = A_a^T + A_a^2$ *is a conjugate operator for H at all* $E \in \mathbb{R}$ *with*

$$
E\notin \bigcup_{\alpha}\sigma_p(h_{\alpha})\cup\{0\}.
$$

Corollary 1.4. 1. *The point spectrum of* $H = H_0 + \sum_{\alpha} v_{\alpha}$ *can accumulate only at 0 or*

at eigenvatues of subsystems.

2. For all intervals $[a, b] \subset \mathbf{R} \setminus \{\sigma_p(H) \cup_{\alpha} \sigma_p(h_{\alpha}) \cup \{0\}\}$, there is a c_0 so that

$$
\sup_{\substack{\text{Re }z\in[a,b]\\ \text{Im }z+0}}\|(1+|x|)^{-1}(H-z)^{-1}(1+|x|)^{-1}\|\leqq c_{0}.
$$

Under the hypotheses made on the two-body potential v_{α} , conditions (a)-(d) are satisfied in the same way that they were in the two-body problem. Let us now prove that condition (e) holds.

Proposition 4.1. *Let* $E \in \mathbb{R}$, and let c_a be an h_a -compact operator in $L^2(\mathbb{R}^n, d^n x_a)$. Then *for every* $\epsilon > 0$ *there is* $\delta_0 > 0$, *a finite rank spectral projection* $e_{\alpha}^{N_0}$ *for* h_{α} *and an operator K compact in* $\mathcal{H} = L^2(\mathbf{R}^{2n}, d^n x, d^n y)$ so that

$$
P_H c_\alpha P_H = P_H E_\alpha^N c_\alpha E_\alpha^N P_H + P_H K P_H + o(\varepsilon),
$$

where:

(i) $E^N_a = e^N_a \otimes \mathbb{1}_{\mathcal{Y}_a}$ where e^N_a is a finite rank spectral projection for h_a that contains $e^{N_0}_{\alpha}$

(ii) P_H is any spectral projection for H onto any Borel set contained in $(E-\delta_0, \vec{E}+\delta_0);$

(iii) $\|\rho(\varepsilon)\| \leq \frac{\varepsilon}{6}.$

Proof. Since c_{α} is an h_{α} -compact operator, we can find $e_{\alpha}^{N_0}$ so that

$$
||e_{\alpha}^{N_0}c_{\alpha}e_{\alpha}^{N_0}-P_{h_{\alpha}}^pc_{\alpha}P_{h_{\alpha}}^p||\leq \frac{\varepsilon}{12}.
$$

Furthermore, from general properties of the continuous spectrum, one can find a $\delta_0 > 0$ and a smooth function \tilde{P} with $\tilde{P} = 1$ on $(E-\delta_0, E+\delta_0)$ and 0 on $\mathbf{R} \setminus (E - 2\delta_0, E + 2\delta_0)$ so that

$$
\|\tilde{P}_{H_{\alpha}}\{c_{\alpha}-P_{h_{\alpha}}^pc_{\alpha}P_{h_{\alpha}}^p\}\tilde{P}_{H_{\alpha}}\|\leq \frac{\varepsilon}{12}.
$$

Hence for all $\delta \leq \delta_0$ and all spectral projections P_H on $(E-\delta, E+\delta)$ we have

$$
P_H c_{\alpha} P_H = P_H E_{\alpha}^N c_{\alpha} E_{\alpha}^N P_H + P_H \{c_{\alpha} - P_{h_{\alpha}}^p c_{\alpha} P_{h_{\alpha}}^p\} P_H + o_1(\varepsilon)
$$

with $||o_1(\varepsilon)|| \leq \frac{\varepsilon}{12}$.

On the other hand $P_H = P_H \tilde{P}_H$ and thus

$$
P_{H}\{c_{\alpha}-P_{h_{\alpha}}^{p}c_{\alpha}P_{h_{\alpha}}^{p}\}P_{H} = P_{H}(P_{H}-P_{H_{\alpha}})\{c_{\alpha}-P_{h_{\alpha}}^{p}c_{\alpha}P_{h_{\alpha}}^{p}\}P_{H}
$$

+
$$
P_{H}\tilde{P}_{H_{\alpha}}\{c_{\alpha}-P_{h_{\alpha}}^{p}c_{\alpha}P_{h_{\alpha}}^{p}\}(\tilde{P}_{H}-\tilde{P}_{H_{\alpha}})P_{H}
$$

+
$$
P_{H}\tilde{P}_{H_{\alpha}}\{c_{\alpha}-P_{h_{\alpha}}^{p}c_{\alpha}P_{h_{\alpha}}^{p}\}\tilde{P}_{H_{\alpha}}P_{H},
$$

where the first two terms on the right hand side are compact operators in $\mathcal H$ and the last has norm less than $\frac{\varepsilon}{12}$.

Proposition 4.2. For all $\varepsilon > 0$, we can find $\delta_0 > 0$, $E_{\alpha}^{N_0} = e_{\alpha}^{N_0} \otimes \mathbb{1}_{v_{\alpha}}$, and a compact *operator K so that:*

$$
P_{H}i\left[H_{0} + \sum_{\alpha} v_{\alpha}, A\right]P_{H} = P_{H}\left(1 - \sum_{\alpha} E_{\alpha}^{No}\right)H_{0}\left(1 - \sum_{\alpha} E_{\alpha}^{No}\right)P_{H}
$$

+
$$
\sum_{\alpha} P_{H}E_{\alpha}^{No}\left\{H_{0} + i[v_{\alpha}, A_{\alpha}^{1}]\right\}E_{\alpha}^{No}P_{H}
$$

+
$$
o(\varepsilon) + P_{H}KP_{H}
$$

with $||o(\varepsilon)|| < \varepsilon$, *for any spectral projection* P_H *onto an interval contained in* $(E - \delta_0, E + \delta_0).$

Proof. We have

$$
H_0 = \left(1 - \sum_{\alpha} E_{\alpha}^N\right) H_0 \left(1 - \sum_{\alpha} E_{\alpha}^N\right) + \sum_{\alpha} E_{\alpha}^N H_0 E_{\alpha}^N
$$

+
$$
\sum_{\alpha} \left\{E_{\alpha}^N H_0 (1 - E_{\alpha}^N) + (1 - E_{\alpha}^N) H_0 E_{\alpha}^N\right\}
$$

-
$$
\sum_{\alpha \neq \beta} \sum_{\alpha} E_{\alpha}^N H_0 E_{\beta}^N.
$$

The terms in the last sum are all compact operators in \mathscr{H} and $E_n^{\scriptscriptstyle\wedge} H_0(1-E_n^{\scriptscriptstyle\wedge})$ $N=-E_{\alpha}^{N}v_{\alpha}(1-E_{\alpha}^{N})$ since E_{α}^{N} commutes with $H_{\alpha}=H_{0}+v_{\alpha}$. We consider spectral projections e^N_a for h_a so that

$$
\sum_{\beta} E_{\beta}^N H_0 (1 - E_{\beta}^N) = \sum_{\beta} P_{h_{\beta}}^p (-v_{\beta}) P_{h_{\beta}}^c + o(\varepsilon)
$$

with $\|\rho(\varepsilon)\| < \frac{\varepsilon}{2}$.

Next, we apply Proposition 4.1 to each of the operators

$$
c_{\alpha} = i[v_{\alpha}, A_{\alpha}^{1}] - P_{h_{\alpha}}^{p} v_{\alpha} P_{h_{\alpha}}^{c} - P_{h_{\alpha}}^{c} v_{\alpha} P_{h_{\alpha}}^{p}.
$$

By Proposition 4.1, we can find $E_{\alpha}^{N_0}$ and $\delta_0 > 0$ satisfying Proposition 4.2.

Proposition 4.3. *Let* $\alpha_0 = \text{dist}\left(E, \{0\} \bigcup_{\alpha} \sigma_p(h_{\alpha})\right)$. We can find δ_0 so that

$$
\sum_{\alpha} P_H E_{\alpha}^N \{H_0 + i[v_{\alpha}, A_{\alpha}^1] \} E_{\alpha}^N P_H \ge \sum_{\alpha} \frac{\alpha_0}{2} P_H E_{\alpha}^N P_H + P_H K P_H; P_H = P_H(E, \delta_0)
$$

Proof. If we choose δ_0 so that

$$
\delta_0 \leq \frac{1}{4} \inf_{\alpha} \inf_{i+j} |\lambda_{\alpha}^i - \lambda_{\alpha}^j|
$$

$$
\delta_0 \leq \frac{\alpha_0}{4}.
$$

 λ^i_{α} , being the eigenvalues of $h_{\alpha}e^N_{\alpha}$.

If we pick a function P equal to 1 on $(E-\delta_0, E+\delta_0)$ and 0 on $\mathbf{R} \setminus (E-2\delta_0, E+2\delta_0),$

$$
\tilde{P}_{H_{\alpha}} E_{\alpha}^i \{ H_0 + i[v_{\alpha}, A_{\alpha}^1] \} E_{\alpha}^j \tilde{P}_{H_{\alpha}} = 0 \quad \text{if} \quad i+j
$$

since $E^j_\alpha \tilde{P}_{H_\alpha}$ and $E^i_\alpha \tilde{P}_{H_\alpha}$ viewed as functions of p^2_α have support in disjoint intervals $\left(E^i_\alpha \tilde{P}(H_\alpha) = \tilde{P} \left(\lambda^i_\alpha + \frac{p^2_\alpha}{2n_\alpha} \right) E^i_\alpha \right)$. Furthermore, by the Virial Theorem,

$$
\tilde{P}_{H_{\alpha}}E_{\alpha}^{N}\lbrace H_{0}+i[v_{\alpha}, A_{\alpha}^{1}]\rbrace E_{\alpha}^{N}\tilde{P}_{H_{\alpha}}\n= \sum_{i}\tilde{P}_{H_{\alpha}}E_{\alpha}^{i}i[h_{\alpha}, A_{\alpha}^{1}]E_{\alpha}^{i}\tilde{P}_{H_{\alpha}}\n+ \sum_{i}\tilde{P}_{H_{\alpha}}E_{\alpha}^{i}\frac{p_{\alpha}^{2}}{2n_{\alpha}}E_{\alpha}^{i}\tilde{P}_{H_{\alpha}}\n= \sum_{i}\tilde{P}_{H_{\alpha}}E_{\alpha}^{i}\frac{p_{\alpha}^{2}}{2n_{\alpha}}E_{\alpha}^{i}\tilde{P}_{H_{\alpha}}\n\geq \frac{\alpha_{0}}{2}\tilde{P}_{H_{\alpha}}E_{\alpha}^{N}\tilde{P}_{H_{\alpha}}.
$$

Propositions 4.2 and 4.3 enable us to find, for all $\varepsilon > 0$, (e_{α}^{N}) and $\delta_0 > 0$ so that $P_H(E, \delta)$ *i*[H, A]^o $P_H(E, \delta)$

$$
\geq P_H \Big(1 - \sum_{\alpha} E_{\alpha}^N \Big) H_0 \Big(1 - \sum_{\alpha} E_{\alpha}^N \Big) P_H
$$

+
$$
\frac{\alpha_0}{2} \sum_{\alpha} P_H E_{\alpha}^N P_H
$$

+
$$
P_H K P_H + P_H o(\varepsilon) P_H,
$$

where $\|\rho(\varepsilon)\| < \varepsilon$, for all $\delta < \delta_0$.

To verify condition (e), since $\varepsilon > 0$ is arbitrary, it now suffices to show that there is a finite constant c_0 so that

$$
P_H \leq c_0 \Big\{ P_H \Big(1 - \sum_{\alpha} E_{\alpha}^N \Big) H_0 \Big(1 - \sum_{\alpha} E_{\alpha}^N \Big) P_H + \sum_{\alpha} P_H E_{\alpha}^N P_H \Big\}
$$

which is immediate if $E = 0$; the constant c_0 evidently does not depend on N and δ .

H. Proof of Theorem I

We start the proof of the abstract theorem by the following proposition which is useful in applications to verify the hypothesis (c) when $D(A) \cap D(H)$ is not explicitly known.

Proposition H.1. *Let H and A be self-adjoint operators that satisfy conditions* (a), (b) *and the following conditions* (c').

(c') *There is a set* $\mathcal{S} \subset D(A) \cap D(H)$ *such that*

i) $e^{+iA\alpha}\mathcal{G} \subset \mathcal{G}$.

ii) $\mathscr S$ is a core for H,

iii) the form $i[H, A]$ on \mathcal{S} is bounded below and closeable, and the associated *self-adjoint operator* if H , A ^{$\int_{\mathscr{C}}^0$ satisfies}

$$
D(i[H, A]\mathcal{G}) \supset D(H)
$$

then for all Φ *,* $\Psi \in D(A) \cap D(H)$

$$
(\Phi | i[H, A] \Psi) = (\Phi | i[H, A]_{\mathscr{S}}^0 \Psi)
$$

and hence the form i[H, A] on $D(A) \cap D(H)$ is closeable and the associated self*adjoint operator satisfies:*

$$
i[H,A]^0 = i[H,A]_{\mathscr{S}}^0.
$$

Proof. It suffices to check that for each Φ , $\Psi \in D(A) \cap D(H)$

 $(\Phi | i \in H, A] \Psi) = (\Phi | i \in H, A]_{\varphi}^{0} \Psi).$

By hypothesis (b), the operators $He^{+iA\alpha}(H+i)^{-1}$ are closed and everywhere defined, hence bounded by the closed graph theorem. For each $\Psi \in \mathcal{H}$, by (b)

 $\sup_{\alpha \in [-1, +1]} ||He^{+iA\alpha}(H+i)^{-1}\Psi|| < \infty$ and by the principle of uniform boundedness in Banach spaces, this family of operators is uniformly bounded: there is a $c_0 < \infty$

such that:

$$
\sup_{\alpha \in [-1, +1]} \|He^{+iA\alpha}(H+i)^{-1}\| \leq c_0.
$$
 (II.1)

Consequently, for each Φ , $\Psi \in D(A) \cap D(H)$, $(H(\alpha) = e^{-iA\alpha}He^{+iA\alpha})$,

$$
\lim_{\alpha \to 0} \frac{1}{\alpha} (\Phi | (H(\alpha) - H) \Psi)
$$
\n
$$
= \lim_{\alpha \to 0} \frac{1}{\alpha} (\Phi | (e^{-iA\alpha} - 1)He^{+iA\alpha}\Psi) + \frac{1}{\alpha} (\Phi | H(e^{+iA\alpha} - 1) \Psi)
$$
\n
$$
= (\Phi | i[H, A] \Psi).
$$

Since $He^{+iA\alpha}\Psi$ is uniformly bounded in α , this family of vectors converges weakly to $H\Psi$ when $\alpha \rightarrow 0$.

For each Φ , $\Psi \in D(H)$ there are sequences u_n and v_n such that

$$
||(H+i)(u_n-\Phi)||\to 0
$$
, $||(H+i)(v_n-\Psi)||\to 0$

with $u_n, v_n \in \mathcal{S}$. Thus:

$$
\frac{1}{\alpha}(\Phi|(H(\alpha)-H)\Psi)=\lim_{n\to\infty}\frac{1}{\alpha}(u_n|(H(\alpha)-H)v_n).
$$

By hypothesis (c'), the derivative

$$
\frac{d}{d\alpha}(u_n|H(\alpha)v_n) = (u_n|e^{-iA\alpha}i[H, A]\varphi^0 e^{+iA\alpha}v_n)
$$

is a continuous function: one can then use the mean value theorem to obtain:

$$
\frac{1}{\alpha}(\Phi|(H(\alpha)-H)\Psi)=\lim_{n\to\infty}(u_n|e^{-iA\alpha_n}i[H,A]\circ_{\mathscr{S}}e^{+iA\alpha_n}v_n),
$$

where $\alpha_n \in [0, \alpha]$. Since $D(i[H, A]\circledcirc) \supset D(H)$, (II.1) assures that as $n \to \infty$, $\alpha \to 0$

$$
\begin{aligned} (\Phi|i[H,A]\,\Psi) &= \lim_{\alpha \to 0} \frac{1}{\alpha} (\Phi|(H(\alpha) - H)\,\Psi) \\ &= (\Phi|i[H,A]_{\mathscr{S}}^0\,\Psi). \end{aligned}
$$

Proposition II.2. *Suppose that the two self-adjoint operators H and A satisfy conditions (a)-(c). Then* $(H-z)^{-1}$ *leaves* $D(A)$ *invariant for all* $z \notin \sigma(H)$ *.*

Proof. Since A is self-adjoint, it suffices to show that the family of operators

$$
e^{-iA\alpha}(H-z)^{-1}(A+i)^{-1} = (H(\alpha)-z)^{-1}e^{-iA\alpha}(A+i)^{-1}
$$

is strongly differentiable; it suffices to show that the family $H(\alpha)(H-z)^{-1}$ is strongly differentiable, or equivalently to show that for each $\Psi \in D(H)$

$$
\lim_{\alpha \to 0} \left\| \frac{H(\alpha) - H}{\alpha} \Psi - i[H, A]^0 \Psi \right\| = 0.
$$

Let $\Psi_n \in D(A) \cap D(H)$ so that $||(H+i)(\Psi_n - \Psi)|| \rightarrow 0$. Then

$$
\frac{H(\alpha)-H}{\alpha}\Psi - i[H, A]^{\circ}\Psi = \lim_{n \to \infty} \frac{H(\alpha)-H}{\alpha}\Psi_n - i[H, A]^{\circ}\Psi_n
$$

exactly as in Proposition II.1. Since $e^{+iA\alpha}$ leaves $D(A) \cap D(H)$ invariant for each $\Phi \in D(A) \cap D(H)$, $\|\Phi\| = 1$, there exist $\alpha_{n,\Phi} \in [0, \alpha]$ so that

$$
\left(\phi\left|\frac{H(\alpha)-H}{\alpha}\Psi_n\right\right)=(\phi\,|e^{-iA\alpha_n}\varphi\,i[H,A]^\circ e^{+iA\alpha_n}\varphi\Psi_n).
$$

Bound (II.1) and the hypothesis that $D(H) \subset D(i[H, A]^0)$, together imply

$$
||(H(\alpha) - H)\Psi|| \leq \alpha c_0 ||(H+i)\Psi|| \tag{II.2}
$$

for all $\Psi \in D(H)$. Furthermore,

$$
\begin{split}\n&\left|\left\langle \Phi \left| \frac{H(\alpha)-H}{\alpha} \Psi_n \right\rangle - (\Phi |i[H,A]^\circ \Psi_n) \right|\right. \\
&\leq c \left\|(H+i) (\Psi_n - \Psi) \right\| + \left\| (\Phi | \{e^{-iA\alpha_n \Phi} i[H,A]^\circ e^{+iA\alpha_n \Phi} - i[H,A]^\circ \} \Psi) \right\| \\
&\leq o \left(\frac{1}{n}\right) + \sup_{\alpha' \in [0,\alpha]} \left\| \{e^{-iA\alpha'} i[H,A]^\circ e^{+iA\alpha'} - i[H,A]^\circ \} \Psi \right\| \\
&\leq o \left(\frac{1}{n}\right) + \sup_{\alpha' \in [0,\alpha]} \left\| i[H,A]^\circ (e^{+iA\alpha'} - 1) \Psi \right\| + \left\| (e^{-iA\alpha'} - 1) i[H,A]^\circ \Psi \right\| \\
&\leq o \left(\frac{1}{n}\right) + o(\alpha) + \sup_{\alpha' \in [0,\alpha]} c_0 \left\| H(e^{+iA\alpha'} - 1) \Psi \right\|.\n\end{split}
$$

But finally

$$
||H(e^{+iAx'}-1)\Psi|| = ||(H(\alpha') - e^{-iAx'}H)\Psi||
$$

\n
$$
\leq ||(H(\alpha') - H)\Psi|| + ||(1 - e^{-iAx'})H\Psi||
$$

which goes to zero as $\alpha \rightarrow 0$ by (II.2).

Proposition II.3. *If the operators H, A satisfy conditions* (a)–(c), *then* $(A + i\lambda)^{-1}$ *leaves D(H) invariant for sufficiently large* λ *. Further* $(H+i)i\lambda(A+i\lambda)^{-1}(H+i)^{-1}$ *converges strongly to 1 as* $|\lambda| \rightarrow \infty$ *.*

Proof. By Proposition II.2, we have in the operator sense

$$
(A+i\lambda)^{-1}(H+i)^{-1} - (H+i)^{-1}(A+i\lambda)^{-1}
$$

= $(A+i\lambda)^{-1}\{(H+i)^{-1}A - A(H+i)^{-1}\}(A+i\lambda)^{-1}$
= $(A+i\lambda)^{-1}(H+i)^{-1}[A,H](H+i)^{-1}(A+i\lambda)^{-1},$

where the last equality holds in the sense of quadratic form on \mathcal{H} . By condition (c), there is a bounded operator $B(\lambda) = [A, H]^0 (H + i)^{-1} (A + i\lambda)^{-1}$ with $||B(\lambda)|| \rightarrow 0$ as $|\lambda| \rightarrow \infty$ such that

$$
(A+i\lambda)^{-1}(H+i)^{-1}(1-B(\lambda))=(H+i)^{-1}(A+i\lambda)^{-1}.
$$

This proves Proposition II.3 since when $|\lambda|$ is sufficiently large, $1 - B(\lambda)$ is invertible and $i\lambda(A+i\lambda)^{-1}(1-B(\lambda))^{-1}$ converges strongly to 1 as $|\lambda| \rightarrow \infty$.

Proposition II.4 (The Virial Theorem). *Let H and A be two self-adjoint operators satisfying conditions* (a)-(c). *Then*

1. For all $\Psi \in D(H)$

$$
[H, A]^0 \Psi = \lim_{|\lambda| \to \infty} [H, Ai\lambda (A + i\lambda)^{-1}] \Psi.
$$

2. If Ψ is an eigenvector of H , we have

$$
(\Psi|[H,A]^0 \Psi) = 0.
$$

Proof. Let $\Psi \in D(H)$, $\Phi \in D(A) \cap D(H)$. By Propositions II.2 and II.3, for sufficiently $large$ $|\lambda|$,

$$
(\Phi | [H, Ai\lambda(A + i\lambda)^{-1}] \Psi)
$$

= $(\Phi | \{H Ai\lambda(A + i\lambda)^{-1} - Ai\lambda(A + i\lambda)^{-1}H\} \Psi)$
= $(\Phi | (HA - AH) i\lambda(A + i\lambda)^{-1} \Psi)$
+ $(A\Phi | \{Hi\lambda(A + i\lambda)^{-1} - i\lambda(A + i\lambda)^{-1}H\} \Psi)$
= $(\Phi | [H, A]^0 i\lambda(A + i\lambda)^{-1} \Psi)$
+ $(\Phi | A(A + i\lambda)^{-1} [H, A]^0 i\lambda(A + i\lambda)^{-1} \Psi).$ (II.3)

Since $[A, H]^0 i\lambda (A + i\lambda)^{-1} \Psi \rightarrow [A, H]^0 \Psi$ by Proposition II.3 and condition (c), and since $A(A+i\lambda)^{-1} \longrightarrow 0$, Proposition II.3 implies that

$$
\lim_{|\lambda| \to \infty} [H, Ai\lambda (A + i\lambda)^{-1}] \Psi = [H, A]^0 \Psi.
$$

Proving (1). Finally, if Ψ is an eigenvector for *H*, $\Psi \in D(H)$ and $H\Psi = E\Psi$, so that

$$
(\Psi|[H,A]^0 \Psi) = \lim_{|\lambda| \to \infty} (\Psi|[H,A\lambda(A+i\lambda)^{-1}] \Psi) = 0.
$$

Proof of Part (1) of Theorem 1

If one supposes that the self-adjoint operators H , A satisfy conditions (a)–(c), and if furthermore they satisfy condition(e) at $E \in \mathbb{R}$ then the point spectrum in $(E-\delta, E+\delta)$ is finite. Suppose not. Then there is a sequence Ψ_n of orthonormal eigenvectors $H\Psi_n = E_n \Psi_n$. By Proposition II.4

$$
0 = (\Psi_n | i[H, A])^0 \Psi_n = (\Psi_n | P_H(E, \delta) i[H, A])^0 P_H(E, \delta) \Psi_n
$$

\n
$$
\geq \alpha ||\Psi_n||^2 + (\Psi_n | K \Psi_n).
$$

Since the Ψ_n are orthonormal, $\Psi_n \xrightarrow{w} 0$ in $\mathcal H$ and since K is compact $\lim (\Psi_n | i[H, A]^{\circ} \Psi_n) \geq \alpha$ which is impossible.

Proposition II.5 (Quadratic Estimate). *Let H be a self-adjoint operator with domain* $D(H)$ and B^*B a bounded positive operator on \mathcal{H} . Then

1. $H-z-i\epsilon B^*B$ is invertible if $\text{Im } z$ and ϵ have the same sign.

2. If Imz *and e have the same sign, let*

$$
G_z(\varepsilon) = (H - z - i\varepsilon B^* B)^{-1}.
$$

Let B' an operator with $B^*B' \leq B^*B$ and C any bounded self-adjoint operator on \mathscr{H} , then:

$$
\|B'G_z(\varepsilon)C\|\leqq \frac{1}{\sqrt{\varepsilon}}\,\|CG_z(\varepsilon)C\|^{1/2}\,.
$$

Proof. Since B^*B is bounded $H - z - i\varepsilon B^*B$ is a closed operator on $D(H)$. When $\Psi \in D(H)$ and ε and Imz have the same sign, we have

$$
||(H-z-i\varepsilon B^*B)\Psi||^2 = ||(H-\text{Re}z)\Psi||^2 + ||(\text{Im}z+\varepsilon B^*B)\Psi||^2
$$

$$
-2 \text{Im}((H-\text{Re}z)\Psi|\varepsilon B^*B\Psi)
$$

$$
\geq (\text{Im}z)^2 ||\Psi||^2.
$$
 (II.4)

From this inequality and the fact that $H-z-i\epsilon B*B$ is a closed operator, it follows that $H-z-i\epsilon B*B$ is injective with closed range in \mathcal{H} . By the open mapping theorem, its inverse exists as a bounded operator from $\text{Rang}(H-z-i\epsilon B^*B)$ into \mathcal{H}_{+2} . But $\text{Rang}(H-z-i\epsilon B^*B) = \mathcal{H}$ since if $\Phi_0 \in \mathcal{H}$ is orthogonal to this range, then $\Phi_0 \in D(H)$ and $(H - \bar{z} + i\varepsilon B^*B)\Phi_0 = 0$ which by (II.4) implies $\Phi_0=0$. Finally:

$$
\|B'G_z(\varepsilon)C\|^2 = \|CG_z^*(\varepsilon)B'^*B'G_z(\varepsilon)C\|
$$

\n
$$
\leq \frac{1}{\varepsilon} \|C(H - \overline{z} + i\varepsilon B^*B)^{-1}(\text{Im}\,z + \varepsilon B^*B)(H - z - i\varepsilon B^*B)^{-1}C\|
$$

\n
$$
\leq \frac{1}{2\varepsilon} \|C(G_z^*(\varepsilon) - G_z(\varepsilon))C\|
$$

\n
$$
\leq \frac{1}{\varepsilon} \|CG_z(\varepsilon)C\| = \frac{1}{\varepsilon} \|CG_z^*(\varepsilon)C\|.
$$

Proof of Part (2) *of Theorem 1*

We will prove the following lemma which clearly implies statement (2) of Theorem 1.

Lemma. *Let H be a se!f-adjoint operator with conjugate operator A in a neighborhood of E, i.e. suppose H, A, and E satisfy conditions (a)-(e). Then for any* $E' \in (E-\delta, E+\delta) \cap \sigma_c(H)$, there is a neighborhood (a, b) of E' and a constant c_0 so that

$$
\sup_{\substack{\text{Re }z\in[a,b]\\ \text{Im }z+0}} \| |A+i|^{-1} (H-z)^{-1} |A+i|^{-1} \| \leq c_0.
$$

Proof. By hypothesis (e), there are numbers α , δ > 0 and a compact operator K on $\mathscr H$ such that

$$
P_H(E,\delta)i[H,A]^{\circ}P_H(E,\delta)\geq \alpha P_H^2(E,\delta)+P_H(E,\delta)KP_H(E,\delta),
$$

where $P_H(E, \delta)$ is the spectral projector of H onto the interval $(E - \delta, E + \delta)$. By hypothesis $E' \in \sigma_c(H)$, hence the spectral projector for H onto $(E' - \varepsilon, E' + \varepsilon)$ converges weakly to zero as $\varepsilon \rightarrow 0$. Hence one can find $\delta' > 0$ and a smooth function $P \le 1$, $P = 1$ on $(E' - \delta', E' + \delta')$, $P = 0$ on $\mathbb{R}/(E - \delta, E + \delta)$ so that (denoting by P_H the operator associated to this P)

$$
\pm P_H K P_H \leq \frac{\alpha}{2} P_H^2
$$

Absence of Singular Continuous Spectrum 405

and hence

$$
P_H i[H, A]^0 P_H \geq \frac{\alpha}{2} P_H^2.
$$

Let $B^*B = P_{H}i[H, A]^0 P_{H}$.

By Proposition II.5, $G_z(\varepsilon) = (H - z - i\varepsilon B^*B)^{-1}$ exists if Imz and ε have the same sign. Let

$$
F_z(\varepsilon) = |A + i|^{-1} G_z(\varepsilon) |A + i|^{-1}.
$$

We have by Proposition II.5

$$
||P_H G_z(\varepsilon)|A+i|^{-1}|| \leq \frac{c}{\sqrt{\varepsilon}} ||F_z(\varepsilon)||^{1/2}.
$$
 (II.5)

Furthermore,

$$
\begin{aligned} || (1 - P_H) G_z(\varepsilon) | A + i |^{-1} || \\ &\le || (1 - P_H) G_z(0) || || (1 - i\varepsilon B^* B G_z(\varepsilon)) | A + i |^{-1} || \\ &\le c || (1 - P_H) G_z(0) || \,. \end{aligned} \tag{II.6}
$$

Remark. (II.5) and (II.6) remain true if one replaces P_H and $(1-P_H)$ by $(H+i)P_H$ and $(H+i)(1-P_H)$. If we restrict Rez to a closed interval [a, b] strictly contained in $(E'-\delta', E'+\delta'), (\bar{1}-P_H)G_z(0)$ is uniformly bounded, and there is a constant c so that :

$$
||F_z(\varepsilon)|| \leq \frac{c}{\varepsilon} \qquad \text{Re } z \in [a, b]. \tag{II.7}
$$

Furthermore

$$
\frac{d}{d\varepsilon} F_z(\varepsilon) = |A + i|^{-1} G_z(\varepsilon) P_H i[H, A]^{\,0} P_H G_z(\varepsilon) |A + i|^{-1}.
$$

We can write

$$
P_H[H, A]^0 P_H = [H, A]^0 - (1 - P_H)[H, A]^0 P_H
$$

-
$$
P_H[H, A]^0 (1 - P_H) - (1 - P_H)[H, A]^0 (1 - P_H)
$$

so that by Eqs. (II.5) and (II.6) and the remarks following them, there are constants c_1 , c_2 so that

$$
\left| \frac{d}{d\varepsilon} F_z(\varepsilon) \right| \le || |A + i|^{-1} G_z(\varepsilon) i[H, A]^0 G_z(\varepsilon) |A + i|^{-1} ||
$$

+ $c_1 + c_2 \frac{1}{\sqrt{\varepsilon}} || F_z(\varepsilon) ||^{1/2}$. (II.8)

By condition (d) and Proposition II.6 (see the appendix), $G_z(\varepsilon)$: $D(A) \rightarrow D(A) \cap D(H)$ and [B*B, A] is bounded as a map from \mathcal{H}_{2} into \mathcal{H}_{2} . Hence in (II.8), we can write $[H, A]$ ⁰ as $[H-z-ieB*B, A]+ie[B*B, A]$. Substituting this relation into (II.8), we find that

$$
\left\| \frac{d}{d\varepsilon} F_z(\varepsilon) \right\| \leq \tilde{c}_1 + \tilde{c}_2 \frac{1}{\sqrt{\varepsilon}} \left\| F_z(\varepsilon) \right\|^{1/2} + \tilde{c}_3 \left\| F_z(\varepsilon) \right\|
$$

for constants $\tilde{c}_1, \tilde{c}_2, \tilde{c}_3$ independent of ε and z such that $\text{Re } z \in [a, b]$ and $\text{Im } z$ and ε with the same sign.

This differential inequality together with the relation (II.7) shows that there exists a constant c_0 so that

$$
||F_z(\varepsilon)|| \leq c_0
$$

for all z with $\text{Re } z \in [a, b]$, $\text{Im } z \neq 0$ and $\text{Im } z$, ε having the same sign.

Appendix I

Let $\{g_i(p)\}\in\{1, ..., n\}$ be a \mathcal{C}^2 vector field, and let \hat{A} be the symmetric operator defined on $L^2(\mathbf{R}^n, d^n p)$ by

$$
\hat{A} = \sum_{i=1}^{n} g_i(p) i \frac{\partial}{\partial p_i} + \frac{i}{2} \frac{\partial g_i}{\partial p_i}(p)
$$

$$
= \frac{1}{2} \sum_{i} (g_i x_i + x_i g_i).
$$

If each g_i is \mathscr{C}^2 the quadratic form defined by \hat{A} admits a form domain containing the form domain of $x^2 = \sum x_i^2$, the same holds for the quadratic form $Ax^2 - x^2A$. $i=1$ By the commutator theorem ([4, Vol. II]), \hat{A} defines a self-adjoint operator A which is essentially self-adjoint on any core for x^2 . On the other hand, the system of differential equations

$$
\frac{d}{d\alpha}\Gamma_{\alpha}^{i}(p) = g_{i}(\Gamma_{\alpha}(p))
$$

$$
\Gamma_{0}(p) = p
$$

defines a group of homeomorphism $\Gamma_{\alpha} : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and the following group of unitary transformations on $L^2(\mathbf{R}^n, d^n p)$

$$
(U_{\alpha}\Psi)(p) = \left| \det \left(\frac{\partial \Gamma_{\alpha}^{i}}{\partial p_{j}}(p) \right) \right|^{1/2} \Psi(\Gamma_{\alpha}(p))
$$

we then have

$$
\frac{d}{d\alpha}(U_{\alpha}\Psi)_{\alpha=0}(p) = \sum_{i} g_i(p) \frac{\partial \Psi}{\partial p_i}(p) + \frac{1}{2} \sum_{i=1}^n \frac{\partial g_i}{\partial p_i}(p) \cdot \Psi(P) \n= -i(A\Psi)(p),
$$

where A is the self-adjoint extension of \hat{A} .

Let us finally note that $D(A)$ contains $D(|x|)$.

Absence of Singular Continuous Spectrum 407

Appendix II

Proposition II.6. *Let H, A be operators that satisfy conditions* (a)...(d), *Then :* 1. Let *a* be any function with $t\hat{a}(t) \in L^1(\mathbf{R}, dt)$, then

 $g(H): D(A) \cap D(H) \rightarrow D(A)$.

2. Let $B^*B = P_{\bf{u}}i[H, A]^{\rm o}P_{\bf{u}}$ as defined in the lemma of Sect. II. Then $[B^*B, A]$ is *a bounded map from* \mathcal{H}_+ *, into* \mathcal{H}_{-2} *.*

3. $G_{\epsilon}(\epsilon): D(A) \rightarrow D(A) \cap D(H)$.

Proof. Let $\Psi \in D(A) \cap D(H)$, $A(\lambda) = Ai\lambda(A + i\lambda)^{-1}$ for some sufficiently large $|\lambda|$. Then

$$
\|\left\{A(\lambda)e^{-iHt}-e^{-iHt}A(\lambda)\right\}\Psi\|\leq \sup_{\substack{\Phi\in D(H)\\ \|\Phi\|=1}}\left|\int\limits_0^t\left(\Phi\left|e^{+i(s-t)H}[H,A(\lambda)]\right|e^{-isH}\Psi\right)ds\right|.
$$

Since e^{-iHs} leaves $D(H)$, and also $A(\lambda)$ by Proposition II.3, we then have

$$
\|\{A(\lambda)e^{-iHt}-e^{-iHt}A(\lambda)\}\Psi\|\leq |t|\sup_{\substack{|s|\leq |t|\\\|\Phi^\prime\|=1}}\sup_{\substack{\Phi^\prime\in D(A)\cap D(H)\\\|\Phi^\prime\|=1}}|\Phi^\prime|\big[H,A(\lambda)\big]e^{-isH}\Psi\rangle|.
$$

By Eq. (11.3) in Propositions 11.4 and 11.3, one then sees that

$$
||Ae^{-iHt}\Psi|| \leqq \lim_{|\lambda| \to \infty} ||A(\lambda)e^{-iHt}\Psi||
$$

$$
\leqq c|t| ||(H+i)\Psi|| + ||A\Psi||.
$$

It is now enough to use the identity $g(H)$ = $\int_{-\infty}^{+\infty} \hat{g}(t) e^{-iHt} dt$ to see that

$$
g(H): D(A) \cap D(H) \to D(A)
$$
 if $|t| \hat{g}(t) \in L^1(\mathbf{R}, dt)$,

and that

$$
\|\{Ag(H) - g(H)A\}\,\Psi\| \le c\|(H+i)\,\Psi\|\int_{-\infty}^{+\infty} |t|\,|\hat{g}(t)|\,dt\,.
$$
 (II.9)

Let $B^*B = P_{\mu}i[H, A]^0P_{\mu}$. Since $P(\lambda)$ is smooth, its Fourier transform decays rapidly. Hence P_H takes $D(A) \cap D(H)$ into $D(A) \cap D(H)$ and so $[B*B, A]$ in the sense of quadratic forms on $D(A) \cap D(H)$ can be written:

$$
[B^*B, A] = [P_H, A][H, A]^0 P_H + P_H[[H, A]^0, A] P_H + P_H[H, A]^0 [P_H, A].
$$

By hypothesis (d) and the relation (II.9), the form $[B^*B, A]$ on $D(A) \cap D(H)$ is bounded as a map from \mathcal{H}_{+2} into \mathcal{H}_{-2} and in particular if

$$
\Psi \in D(H) \|\left[(H - z - i\epsilon B^* B), A(\lambda) \right] \Psi \|_{-2}
$$
\n
$$
\leq \sup_{\substack{\Phi \in D(A) \cap D(H) \\ \|\Phi\|_{+2} = 1}} \{\left| (\Phi | \left[H - z - i\epsilon B^* B, A \right] i\lambda (A + i\lambda)^{-1} \Psi) \right|
$$
\n
$$
+ \left| (\Phi | A(A + i\lambda)^{-1} \left[H - z - i\epsilon B^* B, A \right] i\lambda (A + i\lambda)^{-1} \Psi) \right| \}.
$$

By Proposition II.3, the operators $\lambda(A + i\lambda)^{-1}$ and $A(A + i\lambda)^{-1} = 1 - i\lambda(A + i\lambda)^{-1}$ are uniformly bounded from H_{+2} into H_{+2} for λ large enough. It follows that $[H-z-i\epsilon B^*B, A(\lambda)]$ are uniformly bounded (in λ) from \mathcal{H}_{+2} into \mathcal{H}_{-2} . It follows that $G_z(\varepsilon) = (H - z - i\varepsilon B^*B)^{-1}$ preserves $D(A)$ and hence:

$$
G_z(\varepsilon):D(A)\to D(A)\cap D(H).
$$

Acknowledgements. I am grateful to P. Perry for his careful reading of the French version of this work and for his translation, and to B. Simon for encouraging its publication.

References

- 1, Kato, T. : Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966
- 2. Agmon, S.: Ann. Scuola Norm. Sup. Pisa, Set. 4, 2, 151-218 (1975)
- 3. Aguilar, J., Combes, J.M.: Commun. Math. Phys. 22, 269-279 (1971) Balslev, E., Combes, J.M. : Commun. Math. Phys, 22, 280-294 (1971)
- 4. Reed, M., Simon, B.: Methods of modern mathematical physics. Tomes II and III. New York: Academic Press 1979
- 5. Enss, V. : Commun. Math. Phys. 61, 285 (1978)
- 6. Simon, B.: Duke Math. J. 46, 119-168 (1979)

Communicated by B. Simon

Received March 19, 1980; in revised form July 21, 1980