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Abstract. We give a sufficient condition for a self-adjoint operator to have the 
following properties in a neighborhood of a point E of its spectrum : 
a) its point spectrum is finite; 
b) its singular continuous spectrum is empty; 
c) its resolvent satisfies a class of a priori estimates. 

Notations, Definitions, and Main Theorem 

Let H be a self-adjoint operator on a Hilbert space Jr .  We will denote by ~.(n~ Z) 
the Hilbert space constructed from the spectral representation for H with the 
scalar product: 

(4~17/), = ~ (Z 2 + 1) "/2 (~] Pn(d2) 7t). 

For functions P~L~(R), Pn will denote the associated operator given by the usual 
functional calculus. 

Pn(E, 6) will denote the spectral projection for H onto the interval ( E -  6, E + 6). 
Pfi and P~ will denote the spectral projectors respectively onto the point spec- 
trum and the continuous spectrum of H;  ac(H)=R/{EeR]E is an eigenvalue 
of H}. 

If A is a self-adjoint operator and D(A)~D(H) is dense in ~ ,  iEH, A ] will 
denote the symmetric form on D(A)c~D(H) given by 

(4~ I iEH, A] g') = i{(HcblA g')- (A~blH 7')} 

for ~, ~D(A)~D(H). If this form is bounded below and closeable, i[H, A] ° will 
denote the self-adjoint operator associated to the closure [1]. 

1. Definition. Let H be a self-adjoint operator on a Hilbert space with domain 
D(H); a self-adjoint operator A is a conjugate operator for H at a point E~ R if and 
only if the following conditions hold: 

(a) D(A)nD(H) is a core for H. 
(b) e +iA" leaves the domain of H invariant and for each 7J~D(H) 

sup TIHe+iA~7111 < o9. 
I~l<l 
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(c) The form i[H,A] = i ( H A - A H )  defined on D(A)c~D(It) is bounded below 
and closeable; moreover, the self-adjoint operator i[H,A] ° associated to its 
closure admits a domain containing D(H). 

(d) The form defined on D(A)c~D(H) by [[H, A] °, A] is bounded as a map from 
W+ z into Yf_ z- 

(e) There exist strictly positive numbers a and 6 and a compact operator K on 
W, so that: 

P~(E, 6)iEH, A]° Pn(E, 6) >= c~Prx(E, 6) + P~r(E, 6)KPn(E, 6). 

Theorem. Let H be a self-adjoint operator, having a conjugate operator A at the 
point EER, (i.e. suppose H and A satisfy conditions (a)-(e) above). Then there is a 
neighborhood ( E -  6, E + 6) of E so that : 

1. In ( E - 6 ,  E + 6) the point spectrum of H is finite. 
2. For each closed interval [a ,b]C(E-6 ,  E +6)C~ac(H), there exists a finite 

constant c o so that: 

sup Il lA+il- l(H-z)-l[A+i[- l l ]<=c0.  
Re z~[a, bl 
Imz~O 

Remark. The above theorem gives a method for obtaining a priori estimates of 
Agmon type [2] for certain self-adjoint operators, following from the existence of 
the conjugate operator A of H in the neighborhood of some point. 

The essential condition in the definition of conjugate operator is condition (e); 
the other conditions justify the algebraic manipulations. To obtain the a priori 
estimates on ( H - z )  - t  when z approaches a point E~@(H), we prove a priori 
estimates, uniform in ~ and z, on the operator ( H - z - i e B * B ) - 1  Here e and Imz 
have the same sign, Rez~ ( E -  60, E + 60), and B*B = P~(E, 26o)i[H, A] P~r(E, 260). 
This estimate is obtained by proving a differential inequality of the form: 

d J 
-d~ F~(e) < K(e, []Vz(e)[l ) 

for F~(e) = [A + il- 1 (H - z - ieB*B)- 1 IA + il- 1 
In Sect. I, we give examples and applications. As new results we obtain the 

absence of singular continuous spectrum and a priori estimates in the following 
two cases : 

(a) Relatively compact perturbations of certain pseudo-differential operators. 
(b) Three-body Schr6dinger operators with long-range two-body forces. 
In Sect. II we give the proof of the main theorem. 

I. Examples and Applications 

1. The Laplacian 

Let ~ =L2(R n, dnx), H = H  o =--A and 

A = ¼ ( x . p + p . x )  p = - i V .  

A is the generator of the dilations introduced by Combes and used in [3]. 
- A and A are defined on Y, the cg~ functions of rapid decrease. 5 P is a core for 
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H. The explicit formula: 

e + iA~(H o + i)- 1 = (e- ~H o + i)- 1 e ÷ iA~ 

shows that e ÷~A~ leave D(H) invariant. 5'~ is invariant under the dilation group and 
i [ - A , A ] = - A  in the sense of quadratic forms on ~9 ~. By Proposition II.1, 
condition (c) holds on D(A)c~D(H) and i[H, A] ° = -- A. Condition (d) then reduces 
to condition (c). Condition (e) is trivially satisfied at any point E # 0 by choosing 

2 

2. Two-Body Schrbdinger Operators 

Let 

= L2(R ", d'x), H = - A + V. 

We will often write H 0 for - A. Much work has been done on these operators and 
we refer the reader to [4] for detailed references. Moreover, recently a very 
intuitive method has been introduced by Enss to prove asymptotic completeness 
for such systems [5]. 

We shall suppose that:  
(i) V is H 0 compact; 

.[, x p + p x  x p + p x .  ) .  
(ii) the operator ~ v  ~- ~- v~ is defined on ~9° and coincides on ~9 ~ 

with an H 0 compact operator B. 
(iii) B admits a decomposition: B = B s + B  ~ where B*lxl and ]xIBs are H o 

bounded operators, and [B z, xp + px] coincides on 5 ~ with a form coming from an 
H o compact operator. 

Remark. When V is the operator of multiplication by a function v(x), IV, xp + px] 
= 2ix. Vv, so that condition (ii) is satisfied if x.  Vv is H 0 compact. Condition (iii) is 
satisfied if there is a smooth function j(x) of compact support such that the 

operators x i f  ~(1--" - j ( x ) ) x . ~ - ~  are H 0 compact for all i,j. 
~x~ [ ~ ~x~J 

Theorem 1.1. I f  V is a symmetric operator satisfying hypotheses 0)...(iii), then the 
operator (sgnE) A is conjugate to H = H o + V at all E 4: O. (A = ¼ (xp + px).) 

I f  E < 0, then 0 and ll are also conjugate operators to H at E. 

Proof. Since V is H o compact, D(H)= D(Ho). By Example 1, D(Ho) and therefore 
D(H) is left invariant by e ÷ ~A~. By hypothesis (ii) the form i[H, A] coincides on 
with the form associated to the symmetric operator H o + B  on ~ ,  hence by 
Proposition II.1, condition (c) holds with i[H, A] ° = H 0 + B. 

To show that condition (d) holds, we write: 

[A, i[H, A] °] = [A, Bs] + [A, H o + B,] 

the first term is bounded as a map from Yf+ 2 into Y f  2 by hypotheses (iii), the 
second coincides on ~ with the quadratic form of an H o bounded, self-adjoint 
operator. 
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Let us verify condition (e). 

Pn(E, 5) i[H, A] o pH(E ' c5) = PH(E, 5) {H-- V + B} Pu(E, 6). 

IE] 
Since V and B=i [V,A]  are H compact operators, by taking ~ < ~ -  we have, 

letting Pu(E, ~) = Pu, 

E 
• o /-> PH~[H,A] Pu=-~Pu+PHKPH if E > 0 .  

If E is negative, we can see that the following two relations hold 

P.i[H, --A]°PH>_ iEIp + P H _ K P  H 
- -  2 u 

PHi[H, A]°PH = nH(Ho + B)P H . 

Adding them, we see that 0 and therefore 1i are both conjugate operators for H at 
energy E <0. 

Remarks. As a consequence of Theorem I. 1, we proved that the eigenvalues of H 
can only accumulate at E = 0, and are of finite multiplicity; outsided of them, the 
resolvent ( H - z ) - 1  satisfies a priori estimate of Agmon's type [2]. 

3. Perturbations of Pseudo-Differential Operators 

In [6], among the extensions of the method introduced in [5], the author proves 
similar results for short-range perturbations of pseudo-differential operators. 

Let H = L2(R ", d'x) and denote by L2(R ", d'p) the Hilbert space obtained by 
Fourier transformation. 

Let ho(P ) be a measurable function from R" to R and h o the associated 
multiplication operator on L2(R ", d'p). Suppose that: 

lim I 1  / •1 

.._..Jn0~ml = o o .  

DefinMon. E~R  is a regular point of h o if and only if there is a neighborhood 
(E-~5o, E+6o) of E so that on 

0(E,(5o) = {pe R'l lho(P)- Ei < C5o}. 

h 0 is cg,n for an m > 3 and 

i=l\Op,/ (p )>__c~>0,  peO(E,~o). 

Definition. h o + V is a regular perturbation of h o if V satisfies the following 
conditions. 
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1. V is a symmetric ho-compact operator. 
2. For all real valued g~cg~'(R"), the cgm functions of compact support, the 

operators 

B, = (xig(p) + g(p)x,) V -  V(xlg(p ) + g(p)xi) 

are defined on 5 ° and extended to bounded, ho-compact operators. 
3. [xjg(p)+g(p)xj, Bi] is bounded as a map from Jf+z to fig-z- 

Theorem 1.2. Let H = h o + V be a regular perturbation of h o. For each regular point 
E of h o, there is an operator A conjugate to H at E. 

Corollary 1.3. Let h o + V be a regular perturbation of h o. For each regular point E 
of ho, there is a neighborhood ( E - 6 ,  E + 3) so that 

1. the point spectrum of h o + V is finite in ( E -  3, E + 6). 
2. For all [a,b] C ( E - 3 , E  +f)c~@(H) there is a finite constant c o so that: 

sup ]] (1 + ]x[)- 1 (H - z)- 1 (1 + ]x])- 1]1 __< Co . 
Reze[a, bl 
Irnz 4= 0 

Proof. Since [ho(p) ] ~ oo as IP[--' o0, O(E, ao) is a bounded subset of R", so that we 
can find a (gin-1 vector field gi(P)is {1 . . . . .  n} of compact support in R", with 

gho 
gi(p)= ~pi (p ) if p~O(E, 6o) 

gi(p)=0 if ]ho(P)]>M o. 

Let .4 the formally symmetric operator defined on L2(R ", d"p) by 

~@/ i 0gl, , 
= i_~_t gi(p)i + • 2 ~iPi I'p)= ~Ei(gixi-I-xigi)" 

By the commutator theorem [4] it is easily seen that A is essentially self-adjoint on 

the domain of x 2= ~ x/2. 
i = 1  

Let A be the self-adjoint extension so obtained. Since D(x2)c~D(ho) is a core for 
ho, D(A)c~D(ho) is a core for h o. One can easily see (cf. Appendix A.1) that the 
unitary group e + ia~ is actually the group of unitary transformations on L2(R ", d"p) 
associated with the group of diffeomorphisms F~:R"~-,II" determined by the 
differential equation : 

d F~,(p)=g~(F~(p)) 

Fo(p)= P . 

It follows that e + ~A~ leaves invariant the functions 7J(p) with support contained in 
{pER"[]ho(P) I >mo},  and hence e ia~ leaves D(ho) invariant. Conditions (c) and (d) 
are satisfied because of the regularity assumptions (2) and (3) on V. (These 
hypotheses can be easily verified for a class of long range potentials with sufficient 
regularity at infinity.) 
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Let us verify property (e). By hypothesis there exist c~ >0, a 0 >0  such that 

Pho(E, 6o)i[ho, A] ° Pho(E, 6o) ~ ePho(E, 6o). 

For any smooth function/5 such that /5  = 1 on ( E - 6 ,  E + 6) ~ < 6 o and/5  = 0 on 
R/(E--5o, E +6o), we have: 

/shoi[ho, A]°/sho>c~/sffo and P(E,6)=P(E,a)/5. 

Note that P/~-/sho is a compact operator since V is h 0 compact and/5(2) is a 
smooth function of compact support. 

Then: 

Pn(E, 6) i[ho, A] o P~(E, 6) 

= Pu( E, 6)/5H 2 g2(p)/5uP*~( E, 6) 
i 

= Pn( E, 5) f)ho E g}(P)/sho P.(E, 5) + P.(E, 6)K'P.(E, 5) 
i 

>= aP.(E, 6)/520 P.(E, 6) + P.(E, 6)K'Pn(E, 6) 

> o~P2(E, 6) + PH(E, 6)K'P.(E, 6). 

By hypothesis (2) [V,A] is h 0 compact, hence there exist numbers c~, 6 > 0  and a 
compact operator K so that condition (e) holds. This proves Theorem 1.2. The 
Corollary 1,3 follows from Theorem 1.2 and the abstract theorem since D(A) 
contains D(lxj), and hence A(t + IxJ)-1 is a bounded operator. 

4. Three-Body Schrfdinger Operators 

Let x i, m i be the coordinates and mass of the i-th particle where xieR' ,  ie {1, 2, 3}. 
For  each pair of particles (i,j) = e (such pairs are always denoted by Greek letters), 
we will denote 

m i x  i -I- m j x j  
x~ = x i -  xj ; y~ = x k k~cz 

mi+mj 

m21 =m7 ~ +m71 

n 2 ~ = m~ ~ + (m~ + m j)- 1 

when one removes the center of mass of the system, the Hilbert space is then 

~ f  = LZ(R 2", d"x~ d"y~) Vc~. 

k~ and p~ will denote -igx~ and -iVy¢ 
In iF, the Hamiltonian of the system is written 

H = H  o + V 

1 ; 1 2 

The dilation group acts in the same way independently of the representation 
L2(d~x~, d"y=) of J/~. Let A be its generator normalized so that i[Ho, A] = H o. We 
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have A = A~ + A 2 where A~ and A 2 are the generators of the dilation group on 
L2(dnxa) and L2(d"y~), respectively. 

Hypotheses on the potential V 

Suppose that V= ~ v~ where, for each ~, v~ is an operator acting on L2(d"x~) and 

satisfying hypotheses (i)-(iii) of Example 2. 
We will further denote: 

H~=Ho+v~=h~+ p2 . 
2n~ ' 

2 

h a = km~ + v s . 

By Theorem 1.1, the eigenvalues of h a have finite multiplicity and can only 
accumulate at 0. 

TheoremL3. Let H = H o +  V on L2(dnxa, d"ya) where V is a symmetric operator 
satisfying the above hypotheses. Then A = Aat + AaZ is a conjugate operator for H at 
all E ~ R  with 

E¢ ~) %(h~)w{0} .  

Corollary 1.4. 1. The point spectrum of H = H o + ~ v~ can accumulate only at 0 or 
~t 

at eigenvatues of subsystems. 

2. For all intervals [ a, b ] C R \{ ~r p( H) tJ ap(ha)u{0} }, there is a c o so that 

sup [ l ( l+[x l ) - l (H- z ) - l ( l+ l x [ )  -1 <=c o . 
Reze[a, bl 

I m z  ~ 0 

Under-the hypotheses made on the two-body potential v~, conditions (a)-(d) 
are satisfied in the same way that they were in the two-body problem. Let us now 
prove that condition (e) holds. 

Proposition 4.1. Let E~R,  and let c a be an ha-compact operator in L2(R ", dnxa). Then 
So for h a and an for every e>0  there is 60>0, a finite rank spectral projection e~ 

operator K compact in 2/t ° = L2(R 2", dnx~ dny~) so that 

P~c~P~ = PoEf c ~ f  P~ + P~KP~ + o(~t , 

where: 
Ea - ea  ®~Ya where e a (i) N_ N N is a finite rank spectral projection for h a that contains 

No 
ea 

(ii) PH is any spectral projection for H onto any Borel set contained in 

(E -6o ,  E +6o); 

(iii) /Io(8)11 _-< ~. 

Proof. Since c a is an h~-compact operator, we can find e~ ° so that 

~Nor, ~No D P  ,~ pp II ~ - -  
11~ ~a~ - ~  h ~  h~, = 12" 
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Furthermore, from general properties of the continuous spectrum, one can find a 
50>0 and a smooth function /5 with /5=1 on (E-5o, E+5o) and 0 on 
R \ ( E -  25 o, E + 25o) so that 

P~. }/SH I] e 

Hence for all 5 ~ go and all spectral projections Pu on ( E - 3 ,  E + 3) we have 

PHC~PH = PHEyC.ENPH + PH {ca - Pt~c~P~ } PH + °1 (~) 

with I]o1(~)}1 _< ~[~. 

On the other hand PH = PH/SH and thus 

+ P . ~ . ~ { c ~ -  ~ ~ " PL c~PL } P .~P.  , 

where the first two terms on the right hand side are compact operators in 54f and 

the last has norm less than 1~" 

Proposition 4.2. For all e >0, we can find go >0, E N° = No e~ ®~y~, and a compact 
operator K so that: 

Pui[Ho + ~ v . , A ] P . : P . ( 1 -  ~E:°)Ho(1  - ~E:°)PH 

+ Z PHE~°{Ho + i[v~, A~]} Ef°P. 
o: 

+ o(~) + P . K P .  

I[o(e)ll<e, Jbr any spectral projection PH onto an interval contained in with 
(E - 5 o, E + (5o). 

Proof. We have 

+ ~ {E~Uo(l_Ey)+(1 N N -E~)HoE~} 
cz 

- E EE Ho  . 
a*p 

The terms in the last sum are all compact operators in ~ f  and E~Ho( t -E~)  
N =-E.v~(1--E~) since E~ ~ commutes with H~=Ho+v ~. We consider spectral 

projections e~ for h~ so that 

Z E~Ho(1 - E~)= E P],~(- vp)P~ + o(e) 
P B 

with I]o(@ I < ~. 
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Next, we apply Proposition 4.1 to each of the operators 

c~=i[G,A~]- P~ v~P~ - P;~GP~ . 

By Proposition 4.1, we can find E~ ° and 5 o > 0  satisfying Proposition 4.2. 

Proposition 4.3. Let % =dist(E, {0} U ap(h@. We can find 5 o so that 

2 PHE~{Ho +i[G, Aj-]} E~PH=N > ~ o  pHE~pn+ PHKPH;PH=Pu(E, 
ct 

Proof. If we choose 5 o so that 

5 < !inr infl;: -  l 0= 4 • i , j  

(X o 50 < ~-. 

2i:, being the eigenvalues of h:)'= 
If we pick a function P equal to 1 on (E-5o, E+5o) and 0 on 

R\(E-- 250, E + 25o), 

~HE~{Ho+i[G, 1 Ej~ A~]} ~ H = 0  if i=#j 

since E~['H~ and i - E~PH~ viewed as functions of p~ have support in disjoint intervals 

( ( : ) )  Ei . E~P(H~)~ ~ = P~ 2~+ 2G Furthermore, by the Virial Theorem, 

Pn~,E~ { Ho + i[G, Ai]} E2'I)m, 

i 

~ p2 ~ 

= 2PnEi~ "~ E~PH 
i 2G 

~o ~ ~N ~, 
> 2 "H~'H~" 

Propositions 4.2 and 4.3 enable us to find, for all e>0 ,  (e~) and 3 0 >0  so that 

Pu(E, 5) i[H, A-] o PH(E ' 5) 

C%Vp ~Np 
+ 2 ~ ' n ~ :  

+ PuKPH + PHO(e)PH, 

where IIo(e)ll <e, for all 5<5 o. 
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To verify condition (e), since e > 0 is arbitrary, it now suffices to show that there 
is a finite constant c o so that 

P,  <-Co{PH(I-- ~ E : )  1/o(1-- ~ E:) PH + ~ P~E:PH} 

which is immediate if E 4= 0; the constant c o evidently does not depend on N and 5. 

H. Proof of Theorem I 

We start the proof of the abstract theorem by the following proposition which is 
useful in applications to verify the hypothesis (c) when D(A)~D(H) is not explicitly 
known. 

Proposition H.1. Let H and A be self-adjoint operators that satisfy conditions (a), (b) 
and the following conditions (c'). 

(c') There is a set Y C D(A)c~D(H) such that 
i) e+iA~:~ CY, 

ii) ~ is a core for H, 
iii) the form i[H, A] on 5 f is bounded below and closeable, and the associated 

se~-adjoint operator i[H, A]°so satisfies 

D(i[H, A] °) D D(H) 

then for all q~, T~D(A)c~D(H) 

(~Ii[H, A] T) = (~li[H, A] ° T) 

and hence the form i[H, A] on D(A)c~D(H) is closeable and the associated se~'- 
adjoint operator satisfies: 

i[H, A] ° = i[H, A] ° . 

Proof. It suffices to check that for each ~, T~D(A)c~D(H) 

(~li[tI, A] T) = (~[i[H, A] ° T). 

By hypothesis (b), the operators He+iA~(H+i) -1 are closed and everywhere 
defined, hence bounded by the closed graph theorem. For each T e J f ,  by (b) 

sup IlHe+iA~(H+i)-lTll < oo and by the principle of uniform boundedness in 
ae[- i, + i] 

Banach spaces, this family of operators is uniformly bounded: there is a c o < oo 
such that : 

sup llHe+iA~(H +i)-llt <=c o. (II.1) 
~e[-  1, + 1] 

Consequently, for each ¢, Te  D(A)~D(H), (H(~) = e-iA~He+ ia~), 

lira 1 (~ [ (H(~)-  H) T) 
a-~0 

= lim !-(¢l(e-~A=- 1)He+~A=T)+ I(~IH(e+*A~-- 1)T) 
a ~ 0  ~ 

= (4~1 i[H, A] T). 
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Since He+ia~'~P is uniformly bounded in ~, this family of vectors converges weakly 
to HT" when a~0 .  

For each ~, 7"~D(H) there are sequences u. and G such that 

II(H-t-i)(u.-q~)l[~O, Ij(H + i)(v.- goll--,O 

with u., G~ S e. Thus: 

1 (~t (H(c~)- H) gO = lim 1_ (G I (H(~)- H) v.). 

By hypothesis (c'), the derivative 

d 
~/~ (G [H(c0 v n) -- (u n[e -ia~i[H, A] ° e + iA~G) 

is a continuous function: one can then use the mean value theorem to obtain: 

1 
(~t (H(~)- H) 7') = lirn (G Ie-~a~'qEH, A] ° e + iA~V,), 

where G~ [0, c@ Since D(i[H, A]°)DD(H), (II.1) assures that as n--+ oe, ~ 0  

(~[i[H, A] go = lim 1 (~ ](H(a)- H) 7") 
~ 0 ~  

= (~1 i[U, A]~ 7"). 

Proposition II.2. Suppose that the two self-adjoint operators H and A satisfy 
conditions (a)-(c). Then (H-- z)- 1 leaves D(A) invariant for all z~a(H). 

Pro@ Since A is self-adjoint, it suffices to show that the family of operators 

e- i A a ( u  - -  Z ) -  1 (A + i)- t = (H(c 0 _ z)- 1 e- iAa(A q- i) - 1 

is strongly differentiable; it suffices to show that the family H(a)(H-z)-1 is 
strongly differentiable, or equivalently to show that for each 7~D(H) 

lim H ( ~ - H  9g_i[H,A]OT" =0 .  
¢t~0 ( z  

Let 7".eD(A)nD(H) so that [[(H+i)(~.-got[  ~0.  Then 

H (cz)- H 7" _ i[ H, A] ° ~ = lim H (ct)- H 7". _ i[ H, A] ° 7". 
n~ce 

exactly as in Proposition I1.1. Since e +~a~ leaves D(A)~D(H) invariant for each 
• eD(A)c~D(H), Jl ~ll = 1, there exist G,~s [0, ~] so that 

(~ H(e)-  H tp,,)=(,igle-iA~,.q)i[H,A]O e+iA~,~,~,~p.). 

Bound (ILl) and the hypothesis that D(H)CD(i[H, A]°), together imply 

]l (H(~) - / 4 )  ~l[ < ec0 [l (H +/) ~ II (II.2) 
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for all Tc  D(H). Furthermore,  

(4  H ( ~ -  H T,,) -(q~[i[H,A] ° T.) 

<= clI(H + i ) (T , -  T)II + I](~1 {e-iA . . . .  i[H, A]°e + ia . . . . .  i[H, A] °} T)I [ 

<°(-ln) + ~'~[o,~sup N{e-ia~'i[H,A]°e+ia~'--i[H,A]°}T[] 

< o (  1] + sup ][i[H,A]°(e+iA~'-~I)T[] + [b(e-'A~'--IDi[H,A]°T]I 
\n/ ~'e[O,~] 

~o(_-1t +o(~)+  sup Co,lH(e+iA~'--l)~[l. 
\n/ ~'e[O,~] 

But finally 

HH(e + iA~' - 1) T[I = H(H(~')- e-iA~' H) T[[ 

< !l(H(a')- H) Tll + If(1 - e-~A~')HT{I 
which goes to zero as ~ 0  by (11.2) 

Proposition II.3. I f  the operators H, A satisfy conditions (a)-(c), then (A + i2)-1 
leaves D(H) invariant for sufficiently large 2. Further (H + i) i,~(A + i2)- 1 (H + i)- 1 
converges strongly to 1 as 12[--.oo. 

Proof. By Proposition II.2, we have in the operator sense 

(A + i2) - 1 (H + i) - 1 _ (H + i) - a (A + i2)- ~ 

=(A +i2) --~ {(H+i)-IA-A(H.+i)-~}(A+i)~) -1 

= (A + i2)-1 (H + i)-~ [a, H] (H + i)-~ (A + i2)-1o 

where the last equality holds in the sense of quadratic form on ~,4f. By condition (c), 
there is a bounded operator B(2) = [A, HI  o (H + i)- t (A + i2)- i with IF B(2)ff ~ 0 as 
121-,oo such that 

(A + i2) - 1 (H + i) - 1 (1 - B(2)) = (H + i)- 1 (A + i2)- 1. 

This proves Proposit ion II.3 since when 121 is sufficiently large, 1 - B(2) is invertible 
and i2(A + i2)- 1 (1 - B(2))- 1 converges strongly to 11 as 121-~ o9. 

Proposition II.4 (The Virial Theorem). Let H and A be two self-adjoint operators 
satisfying conditions (a)-(c). Then 

1. For all T6D(H) 

[H, A] ° T = lira [H, Ai2(A + i2)- 1] T .  

2. I f  T is an eigenvector of H, we have 

( T I [ H , A ] °  T ) = 0 .  
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Proof. Let 'Pc D(H), q~eD(A)c~D(H). By Propositions II.2 and II.3, for sufficiently 
large ]2J, 

(~1 [H, Ai2(A + i2)- ~] 7 t) 

= (~I{HAi2(A + i),.)- ~ -- Ai2(A + i2)- all} ~P) 

= (q~l (HA - A I t )  i2(A + i,~)-1 ~) 

+ (A~I {Hi2(A + i2)- ~ - i2(A + i2)- a H} 7 t) 

= ((b [ [H, A] ° i2(A + i2)- 1 7/) 

+ (~IA(A + i2)- 1 [H, A] o i2(A + i2)- 1 7t)" 
(II.3) 

Since [A, HI ° i2(A + i2)- 1 7j__+ [A, HI ° 7 j by Proposition II.3 and condition (c), and 
since A(A + i) O- ~ s ~0, Proposition II.3 implies that 

lim [H, Ai2(A+i2) -1] ~ = [ H ,  Al° 7 j .  

Proving (1). Finally, if 7 ~ is an eigenvector for H, ~ D ( H )  and H7 ~ = E7 j, so that 

(7~t [H, A] ° ~) = lim (~P I [H, Ai2(A + i2)- 1] ~p) = O. 

Proof of" Part (1) of Theorem 1 

If one supposes that the self-adjoint operators H, A satisfy conditions (a)-(c), and if 
furthermore they satisfy condition(e) at E e R  then the point spectrum in 
( E - 6 ,  E + 8) is finite. Suppose not. Then there is a sequence k~, of orthonormal 
eigenvectors H7~. = E~TJ,. By Proposition II.4 

0 = ( ~ ,  l i[H, A] o ~ , ) :  ( 71 1PH( E, 6) i[H, A] o P~(E, 6) 7s,) 

> ~ll 7~,1I 2 + (7'.[ KT',). 

Since the kg, are orthonormal, ~ ,  w ~0 in ~ and since K is compact 

lirn (7~, l i[H, A] ° ~,) ~ c~ which is impossible. 

Proposition II.5 (Quadratic Estimate). Let H be a self-adjoint operator with domain 
D(H) and B*B a bounded positive operator on ~ .  Then 

1. H - z - i e B * B  is invertible if Imz and e have the same sign. 
2. I f  Imz and e have the same sign, let 

Gz(e ) = (H - z - ieB* B)- ~ 

Let B' an operator with B'*B' <-_B*B and C any bounded self-adjoint operator on 
Jt ¢, then: 

< ±  Jl B'G~(~) CII = 1 F  II CG~(~) CII ~/~. 
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Proof. Since B*B is bounded H - z - i e B * B  is a closed opera tor  on D(H). When 
7~sD(H) and e and Imz have the same sign, we have 

II ( H -  z -  ieB*B) ~ll 2 = 11 (H-- Re z) ~ll 2 + II ( Im  z + eB*B) ~ll 2 

- 2 I m ( ( H -  Rez) ~v ] eB*B~V) 

--> (Imz) z II ~112. (11.4) 

F r o m  this inequality and the fact that H - z - i e B * B  is a closed operator ,  it 
follows that  H - z - i e B * B  is injective with closed range in ~¢~. By the open 
mapping theorem, its inverse exists as a bounded  opera tor  from 
Rang ( H -  z -  i~B*B) into ~(+ 2. But Rang(H - z - ieB*B) = 3/f since if q~o ~ ~ f  is 
or thogonal  to this range, then ~b o ~ D(H) and (H--~ + ieB*B)~b o = 0 which by (II.4) 
implies ~ o = 0 .  Finally: 

I} B' G~(e) C H 2 = It CG*(g) B'* B' G ~(e) C II 

1 
< - [I C ( H -  "~ + ieB*B)- ~ (Imz + eB*B)(H - z -  ieB*B)- ~ CII 

g 

1 
< ~-~ II C(G*(e)- Gz(e)) C II 

< 1_ Ilca~(e)Cll = 1_ Itca*(~)Cll. 
g 

Proof of Part (2) of Theorem 1 

We will prove the following 
Theorem 1. 

lemma which clearly implies statement (2) of 

Lemma. Let H be a se!f-adjoint operator with conjugate operator A in a 
neighborhood of  E, i.e. suppose H, A, and E satisfy conditions (a)-(e). Then for any 
E' e ( E -  g), E + 6)~ G(H), there is a neighborhood (a, b) of E' and a constant c o so that 

sup 
Rez~[a,b] 
Imz 4:0 

II IZ + il- l ( H -  z)-  l [A + i[- l l[ <=Co. 

Pro@ By hypothesis (e), there are numbers  ~, 6 > 0 and a compact  opera tor  K on 
such that  

Pn(E, 6)iE H, A]° Pn(E, 3) > aPZ(E, 6) + Pn(E, 6)KPu(E, 3), 

where Pn(E, 6) is the spectral projector  of H onto  the interval ( E - 6 ,  E + 6). By 
hypothesis E'eac(H), hence the spectral projector  for H onto  (E ' - e ,E '+e )  
converges weakly to zero as e-+0. Hence one can find 6' > 0  and a smooth  function 
P < 1, P = 1 on (E' - 6', E' + 6'), P = 0 on R / ( E -  & E + 3) so that  (denoting by P~ the 
opera tor  associated to this P) 

2 + P~KP~__< ~e~, 
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and hence 

pi.1i[H, A]opn > ~_ p2 

Let B*B = Pni[It, A]°P1~. 
By Proposition II.5, Gz@ ) = ( H - z - i ¢ B * B ) - 1  exists if Imz and ¢ have the same 

sign. Let 

F~(e) = IA + iI-1 G~(e)IA + iI-1 

We have by Proposit ion II.5 

C 
[iPuG~(c)[A + i[- ' [[ < 1/~ Ilf~@)f['/2" 

Furthermore,  

II(1 - PH)G~(e)}A + i[- 1ti 

--< [1 (1 - P~) Gz(0)][ [[ (1 - ieB*BG~@))IA + i[- 111 

=<cr[(1 - P u )  G~(0)[I. 

(H.5) 

(II.6) 

Remark. (II.5) and (II.6) remain true if one replaces PH and ( 1 - P n )  by ( H +  i)P H 
and (H + i)(1 - PH). If we restrict Re z to a closed interval [a, b] strictly contained in 
(E' -5 ' ,  U+6'),(1-PH)G~(O ) is uniformly bounded, and there is a constant  c so 
that  : 

[[F~(e)[[ =< c Reze[a,b] .  (II.7) 

Fur thermore  

We can write 

d 
-~e F~(e) = ]A + il- ' Gz(z) Pni[ H, A] ° PHG~(e) IA + il- ~ 

P~[H, A]°Pn = [H, A] ° - (1 - Pu) [H, A] ° P~ 

- P ~ [ H ,  A ]  ° (1 - P H ) -  (1 - Pn) [ H ,  A ]  ° (t - PH) 

so that  by Eqs. (II.5) and (II.6) and the remarks following them, there are constants 
c 1, c 2 so that  

J~-F~(e) < 11 ]A + il G~@)i[H, A] ° G~(e)[A + i[ ~11 1 

1 
-I- C I -t- C 2 ~ II Fz(e)II 1/2. (II.8) 

By condition (d) and Proposit ion II.6 (see the appendix), Gz(e ) :D(A)~D(A)c~D(H) 
and [B*B, AJ is bounded as a map from ~4Q2 into ~gf- z. Hence in (II.8), we can 
write [H, AJ ° as [ H -  z -  ieB*B, A] + ie[B*B, A]. Substituting this relation into 
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(II.8), we find that 

d ~ F s )  1/2 F~(8) < ~ + ~  II ~( 1t +~3IIF~(~)11 

for constants ~ ,  ~2, ~3 independent of e and z such that RezE [a, b] and Imz and 
with the same sign. 

This differential inequality together with the relation (II.7) shows that there 
exists a constant c o so that 

ttF~(~)II 5Co 

for all z with Rez~[a,b], Imz~:O and Imz, e having the same sign. 

Appendix I 

Let {gi(P)}i~{1 . . . . .  n} be a ~2 vector field, and let .4 be the symmetric operator 
defined on LE(R ", d"p) by 

i ~gl, , 
~t = i= ~':, gi(p)i ~"  + -~ -~Pi tp' 

= ~22 (g,x, +x,g,). 

If each gl is ~z the quadratic form defined by ~] admits a form domain containing 

the form domain of x 2= ~ x~, the same holds for the quadratic form Ax 2 -  x2A. 
i=1 

By the commutator theorem ([4, Vol. II]), ~ defines a self-adjoint operator A 
which is essentially self-adjoint on any core for x 2. On the other hand, the system 
of differential equations 

d F~(p)=gi(F~(P)) 

ro(p)= p 

defines a group of homeomorphism F~ : R"~-~R" and the following group of unitary 
transformations on L2(R ", d"p) 

we then have 

/~F i \I~/2 detl- ) 

(u~%= o(p) = 2 g~(p) (p) + • . ~ tP)" T(P) 

= - i(A T)(p), 

where A is the self-adjoint extension of .4. 
Let us finally note that D(A) contains D(]x]). 
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A p p e n d i x  II 

Propos i t ion  II.6. Let H, A be operators that satisfy conditions (a)...(d), Then : 
1. Let g be any function with tO(t)~Lt(R, dt), then 

g(H) : D(A)~D(H)~ D(A). 

2. Let B*B = P~i[H, A]°Pn as defined in the lemma of Sect. II. Then [B'B, A] is 
a bounded map from Jr+ 2 into W_ 2. 

3. G~(e) : D(A)~ D(A)c~D(H). 

Proof. Let ~ D(A)c~D(H), A() 0 = Ai2(A + i2)- ~ for some sufficiently large 12l. 
Then 

sup i (~{e+i(~-t)U[H,A()o)]e-iSn~)ds . {{ { AO.)e-im-e-m'A()~)} ~II <_ 
- -  O e D ( B )  0 

IIoH = t 

Since e-~t/~ leaves D(H), and also A(2) by Proposition II.3, we then have 

It is now enough to use the identity g(H)= 

g(H)" D(A) c~ D(H) ~ D(A) 

and that 

t{{AOo)e-im-e-imA()O} 7s{l <it{ sup sup {(~'{[H,A().)Je-i~utP)t. 
Isl_-< Itl ffY~D(A)nD(H) 

I I¢ , ' l /=  {. 

By Eq. (11.3) in Propositions 11.4 and 11.3, one then sees that 

{{Ae-im~/'lt< lim {{A(~)e-lmgql -- {z{ 

<clt{ [I(H+ i)7'll + [ { A ' / ' ( I .  

+oo 

O(t)e-imdt to see that 
- -00  

if ItlO(t)eL~(R, dt), 

-}-oo 

11 {Ag(H)- g(H)A} 7ill N clI(H + i) ~P{I ~ {tl {0(t){ dr. (II.9) 
- . c o  

Let B*B=Pui[H,A]°Pw Since P(£) is smooth, its Fourier transform decays 
rapidly. Hence Pu takes D(A)c~D(H) into D(A)c~D(H) and so [B'B, Al in the sense 
of quadratic forms on D(A)nD(H) can be written" 

[B'B, A] = [Pn, A] [H, A] o Pu + PRE[ H, A] o, A] Pn + P~EH, A] o [p~, A] . 

By hypothesis (d) and the relation (II.9), the form [B*B,A] on D(A)c~D(H) is 
bounded as a map from 24Q 2 into ~ _  2 and in particular if 

~ ~ D(/-/)11 [ ( / 4 -  z -  i~8*B), A(;~)] ~'LL 
< sup {I(q)IEH-z-ieB*B,A]iX(A+iX)-~g')] 

O ~ D ( A ) ~ D ( H )  
{l~{{ ~ 2 = 1 

+ {(~ l A(A + i~.)- i [H- z- i~B*B, A] iX(A + i~)- ' ~)[}. 
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By  P r o p o s i t i o n  II.3, the  o p e r a t o r s  ,~,(A + i2) -  i a n d  A(A + i2 ) -  1 = 1 - i2(A + i2 ) -  1 

a re  u n i f o r m l y  b o u n d e d  f r o m  ~ +  2 in to  ~ +  z for 2 la rge  enough .  I t  fo l lows  t h a t  
[ H -  z -  ieB*B, A(,~)] a re  u n i f o r m l y  b o u n d e d  (in 2) f r o m  ~ +  2 in to  ~ _  z- I t  fo l lows  
t h a t  G=(e) = ( H -  z -  ieB*B)- 1 prese rves  D(A) a n d  hence  : 

G=(~) : D(A)--> D(A)nD(H). 
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