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Abstract. In this article a series of results concerning Yang-Mills fields over the 
euclidean sphere and other locally homogeneous spaces are proved using 
differential geometric methods. One of our main results is to prove that any 
weakly stable Yang-Mills field over S ~ with group G = SU 2, SU 3 or U 2 is either 
self-dual or anti-self-dual. The analogous statement for SO~-bundles is also 
proved. The other main series of results concerns gap-phenomena for Yang- 
Mills fields. As a consequence of the non-linearity of the Yang-Mills equations, 
we can give explicit C°-neighbourhoods of the minimal Yang-Mills fields 
which contain no other Yang-Mills fields. In this part of the study the nature of 
the group G does not matter, neither is the dimension of the base manifold 
constrained to be four. 

1. Introduction and Statement of Results 

The purpose of this article is to prove a series of results concerning Yang-Milts 
fields over the euclidean sphere and other locally homogeneous spaces by using 
differential geometric methods. Many of these results were announced in [7 I. 

Our basic set-up is the following. We consider a compact riemannian manifold 
M and a principal G-bundle P over M where G is a compact Lie group. On the 
space ~e  of connections on G we consider the Yano-Mills functional 

q~/M/l(V) =½ S [tRV[/2, 
M 

where R ~ is the curvature of the connection V in ~e  and where the norm is defined 
in terms of the riemannian metric on M and a fixed AdG-invariant scalar product 
on the Lie algebra 8 of G. 

Critical points of the smooth function 0#~//g:cgp~]R are precisely those 
connections whose curvature tensors are "harmonic". These critical points are 

* Laboratoire Associ6 au C.N.R.S. No. 169 
** Research partially supported by Volkswagen Grant and NSF Grant MCS-77-23579 

0010-3616/81/0079/0189/$08.40 



190 J.-P. Bourguignon and H. B. Lawson, Jr. 

called ~hng-MiIts connections and their associated curvature tensors are called 
Yang-Mills fields. Of particular interest are those Yang-Milts connections which 
minimize the functional locally, i.e., among nearby connections. At such a 
connection I7, the second variation of the functional is non-negative, i.e., 

d 2 
(1.1) d F Y/d~(P) t=o > 0  

for any smooth family of connections V ~, ttl <e, with V°= V. Connections with this 
latter property (1.1) are called stable. This study was motivated by the following 
result of J. Simons, announced in Tokyo in September of 1977. 

Theorem A (J. Simons). There are no weakly stable Yang-Mills fields over the 
euclidean n-sphere S" for n > 5. 

Recently much effort has been put into studying Yang-Mills fields over S 4. 
(This corresponds to studying fields over IR 4 with certain asymptotic behavior.) In 
this dimension there are lower bounds for the Yang-Mills functional which depend 
only on the topology of the bundle. This global lower bound is achieved, for 
example, if the field R is self-dual, that is if *R = R where * is the Hodge star 
operator on exterior 2-forms. (This is also true if *R = - R, i.e., if the field is anti- 
self-dual.) Self-dual fields are known to exist. In fact there are now explicit 
constructions of the moduli space of such fields when G is a simple group [2, 9]. 
One of our main results is the following (see Sect. 7). 

Theorem B. Any weakly stable Yang-Mills field over S 4 with group G = SU 2, SU 3 or 
U 2 is either self-dual or anti-selJ:dual. 

The corresponding theorem for SO4-bundles is proved in Sect. 8. Here the 
conclusion of self-duality is replaced by one of two-fold self-duality which occurs 
when the topologically determined lower bound for ~t jg  is achieved. In Sect. 10 
we prove similar results over general homogeneous spaces of dimension 4. 

It is unknown at this moment whether there exist unstable Yang-Mills fields 
over S 4. 

The instability argument of Simons uses a space ~ of conformal vector fields 
on S" in an essential way. This argument cannot be applied directly in dimension 4 
because the functional ~#JC{ is conformally invariant. In this case we must use the 
splitting of the field under the *-operator. However, here it suffices to use Killing 
vector fields. This allows us to extend the results to general homogeneous 
(orientable) 4-manifolds. 

Theorem B'. Any weakly stable Yang-Mills field with group SU 2 on any compact 
orientabIe homogeneous riemannian 4-manifold is either self-dual, or anti-self-dual, 
or reduces to an abeIian field. 

The instability argument also breaks down on manifolds S"/F which are non- 
trivial quotients of the sphere (real projective space, for example). On each such 
manifold S"/F, n > 4, we show that stable Yang-Mills fields exist (see Sect. 9). In 
fact, these fields are strictly stable in the sense that the second variation is strictly 
positive on a transversal to the orbit of the gauge group (the group of 
automorphisms of P acting on Up). 
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Our other main series of results concerns "gap-phenomena" for Yang-Mills 
fields. This is one of the interesting consequences of the non-linearity of the Yang- 
Mills equations. To state the results we introduce a scalar product ( . , - )  on g by 
setting (A, B)  = -½ trace[~(A) o~(B)] where 0 :g ~ ~oN is any faithful representation. 

Theorem C. Let R be any Yang-MiIls field over S n, n >= 3, which satisfies the pointwise 
condition 

LIRtt2<  (t) = (z/  

Then either R=O or IIRII2-½(~) and R is parallel. 

I f  n = 3 or 4, then either R -  0 or R is the curvature of the tangent fi'ame bundle of  
S ~ with its Levi-Civita connection. 

I f  n>5,  then R - O .  

Theorem D. Let R be any Yang-Mills field on S ~. I f  R + satisfies the pointwise 
condition II R + ]1-'<3, then R + =-0. The same statement is true for R - .  

Note that in Theorems C and D there is no hypothesis concerning the bundle 
or the group. 

Theorem D gives an explicit C°-neighborhood of the self-dual (or anti-self- 
dual) fields on S 4 in which no other critical points occur. (See [8] for a related 
result.) 

These theorems can be restated in terms of vector bundles with connection. 

Theorem E. Let E be any riemannian vector bundle with connection over S", n = 3 or 
4, whose curvature R is harmonic and satisfies ( t ). Then either E is flat, or E = S Q E o 
where E o is fiat and where S is one of  the 4-dimensional bundles of  tangent spinors 
with the canonical riemannian connection. 

I rE  is 3-dimensional over S 3 and if  R is harmonic and satisfies the condition I] R ]12 
< 3, then either E is flat or E = T S  3 with its canonical riemannian connection. 

The paper is organized as follows. In Sect. 2 we develop a setting for the Yang- 
Mills functional using vector bundle theory. In Sect. 3 we establish the Bochner- 
Weitzenbrck formulas for harmonic forms with values in a bundle of Lie algebras. 
In Sect. 4 we examine in detail some algebraic facts specific to dimension 4, 
especially in relation to the curvature. In Sect. 5 we establish the Gap Theorems C, 
D, and E above. In Sect. 6 we derive several versions of the second variational 
formula. 

The main arguments concerning stability occur in Sect. 7 where Theorems A 
and B are proved. Experts interested in these results could begin reading here and 
refer backwards if and when it becomes necessary. In Sect. 8 we give the examples 
of stable fields over S"/F, n > 4. We also prove that the index of T(S3/F) is exactly 
one for any F. In Sect. 9 we treat the case of Yang-Mills fields with group SO 4 over 
an oriented 4-manifold. We examine the topological restrictions coming from the 
Pontryagin and Euler numbers, and we develop the condition of double self- 
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duality. The analogue of Theorem B for SO4-bundles is proved. In Sect. 10 we 
generalize Theorem B to compact riemannian homogeneous spaces (Theorem B'). 

We point out that Sect. 5 is completely independent of Sects. 6 - t0  and may be 
skipped if the reader wishes. 

2. A Differential Geometric Setting for the Yang-Mills Functional 

For the entire discussion of this paper we fix a compact Lie group G and a 
principal G-bundle P over a compact riemannian n-manifold M. We also fix a 
G-vector bundle E = P  × IR ~, associated to P by a faithful orthogonal repre- 

Q 

sentation Q:G-~O~. (Recall that if P is given by transition functions 
fI~B:Uj~U/~G where {U~}~ A is an open cover of M, then E is given by the 
transition functions ~ og~p: Uj~  Up~ON.) We shall develop most of our ideas using 
E rather than P since it is most often the vector bundle that is of central interest. Of 
course this is also a matter of taste. 

Recall that an inner automorphism of P is a G-equivariant diffeomorphism of P 
which projects down to the identity on M. The group of all inner automorphisms 
is called the gauge group of P and will be denoted fee. It can be easily identified with 
the group of smooth cross-sections of the bundle of groups Gp =- P × G. Related to 

Ad 
fge is the infinitesimal gauge group or gauqe algebra, which will be denoted ~e. It is 
the Lie algebra of smooth cross-sections of the bundle of Lie algebras g e -  P × g, 

Ad 
where 9 is the Lie algebra of G. The exponential map exp :g-->~i induces a natural 
map expe :ge~Ge and, therefore, a mapping 

exPe : O e ~  ~e" 

The gauge group can be easily re-expressed in terms of E. Let O E be the bundle 
over M whose fibre at x is the group of orthogonal transformations of E~. Let ~o E 
be the bundle over M whose fibre at x is the Lie algebra of skew-symmetric 
transformations of E x. Then the representation Q :G-~O N (used to define E) gives 
embeddings G e'+O E and ge ~ o E  which are homomorphisms on the fibres. We 
denote the images by G E and g~ respectively. 

Of course, G r ~ G e and gr ~ ge- We may express the gauge group as the space 
f#r of smooth cross-sections of G r. Similarly the gauge algebra is just the space (5 e 
= t?°(gr) of smooth cross-sections of g~. 

Note that the fibre of G r at _x is just the group of orthogonal transformations of 
E x which fix the tensors defining the G-structure. For example, if G = SU, and 
Q:SU,~+O2, is the standard homomorphism, then there is a global complex 
structure J :E-*E(J 2 :  -1), and a global nowhere vanishing section co of A~.E. In 
this case, the sections of G~ are those sections of O r which commute with J and 
fix co. 

There is a similar definition of gE. Its fibre at x is just the set of skew-symmetric 
endomorphisms o fE  x which, when extended as derivations to the tensor algebra of 
E~, annihilate the tensors defining the G-structure. This vector bundle ge plays a 
central role in the theory. 
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We now set some notation. Given a smooth vector bundle F over M, let 
QP(F)-F(APT*M ® F) denote the space of exterior differential p-forms on M with 
values in F. Note that (2°(F) is just the space of smooth cross-sections of F. 

We want to study the space of connections c~, on P, or equivalently on the 
G-vector bundle E. Recall that a connection on P is conventionally defined as a 
G-equivariant field of projections rCp :TvP~C/'p, ps  P, where ~ is tangent space to 
the fibre through p, i.e., the G-orbit ofp. (The kernel of~zp is the horizontal subspace at 
p.) On the other hand, a connection on E is a linear differential operator 
V:~2°(E)~Y21(E) such that 

(2.1) rz(f a ) = d f  ®~ + fga  

for all f~C°°(M), a~'2°(E), and such that the natural extension of V to tensor 
bundles of E annihilates the tensors which define the G-structure. These definitions 
are related as follows. Given o-E~°(E), let Vxa denote the evaluation of Va on a 
tangent vector X at a point x. Then 

where ~ is the field of vertical projections on E induced by the trivial extension of 
to P x IR N. Note that Ta maps T~M to T~(~)E and the vertical subspace at a(x) is 
identified with E x by translation. In this paper we shall work exclusively with 
connections on E. 

One can easily see that the difference of two connections A =  V-V'  is an 
element of Ol(gE). Indeed, for any tangent vector field X, A x = V x -  g) is a zero 
order operator, i.e., a bundle homomorphism A x : E ~ E  which lies in g~ because 
both V and [7' annihilate the tensors defining the G-structure. Consequently, the 
space cge of connections on E is an affine space with f21(ge) as the vector group of 
translations. In particular if we fix V in cg~ then there is a natural identification 

(2.2) T~(gE) ~ f~t(g~). 

To each connection 17 on E there is associated a curvature 2-form R v in Qe(g~) 
given by the formula 

(2.3) RVx, y-= [Vx, Vd - V~x, Yl 

for tangent vectors X and g 
We note that there is a natural action of the gauge group fgE on the space cg e; 

given g in f¢~ and V in cg we define 

(2.4) Vg = g o Vog- 1 

Here g is considered as an automorphism of E. Hence, 

w(~) = g(v(g- 1(O)). 

One can easily verify" that V g is again a connection on E. It is clear from (2.2) that 

(2.5) R v~ = g oR og- i .  
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We now observe that the connection V on E induces a natural connection on 
gE- Indeed for q~t2°(gE) we define 

(2.6) V(cp) = [17, q~], 

i.e., V(q~)(a)= 17(¢(o-))- ¢(Vo-) for any section a of E. Similarly, the curvature of this 
connection on g~ is given by the formula 

(2.7) R v r(~o)= R ~ [ x,r,¢3 
where R v on the right denotes the curvature of E. The spaces t?P(g~) for p = 0, 1, 
and 2 are deafly of central importance here. For each connection V, there are 
important operators d¢:g2v(ge)~t2 p+ I(gE), p >0, which we now describe. 

Let F be any vector bundle over M. Then for each linear connection V on F we 
define an exterior differential dr: t2P(F)--+t2 p+ I(F), p > 0, as follows. For each real- 
valued differential p-form c~ and each section a of F, we set 

(2.8) dV(o:®a)=(d~)®~r + ( - 1)Pc~® Va , 

and extend the definition to general ~ 2 P ( F )  by linearity. Note that dr= V on 
g2°(F). It is an easy excercise to prove that 

(2.9) (dV(dVa))x, r = RVx, r(a) 

for any a~f2°(F). More generally, for any tp~OP(F), 

(2.10) v. (d (d hO))x, ..... x,.+,= ~ RVx.,,,.x~,,=,(~Px~,,3, ..... x~,,+2,)" 

Consequently dVodV=O if and only if the bundle F is flat. 
Suppose now that F is furnished with an inner product preserved by V. We 

define an inner product in A P T ~ * M ® F ~  by setting 

(2.11) (*p, q)) = ~ (~& ........ ,, :.P~ ...... %) ,  
i~ <... <ip 

where (el, ..., e,) is any orthonormal basis of T~M. Integrating this pointwise inner 
product over M gives an inner product in t2P(F). (Integration on M shall always be 
with respect to the riemannian volume measure.) We then define the operator 
6v:Q p+ I(F)--+g2P(F), p>=0, to be the formal adjoint of the operator d v. 

The connection V on F together with the Levi-Civita connection D in A P T * M  
induces a natural tensor product connection in A P T * M ® F  which we again call V 
Using this connection we have the following simple formulas. For (p~t2P(F), 

P 

(2.12) (dVq~)xo ..... x ,  = E ( - -  1)k(Vx~CP)Xo ..... x~ ..... x~, 
/¢=0  n 

(2.13) (avq))x, ..... x,_, = -  ~ (E/P)~j,x, ..... x~-,, 
j = l  

where (e,, ..., e,) is an orthonormal basis of T~M at the point x in question. 
We now introduce an inner product on the bundle g~ as follows. Recall that we 

have gE c~E ,  the bundle of skew-symmetric endomorphisms of E. Given two 
endomorphisms A and B of E~, we define 

(2. t4) (At, B) --= ½trace(A t oB). 
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For the purposes of the theory, any metric on gE defined by an Ado-invariant inner 
product on g would do. Our choice is adapted to the bundle E, in accord with our 
general emphasis. We shall discuss this inner product in detail at the end of this 
section. 

Given a connection Vc~ E we now have defined a sequence of operators (and 
their adjoints) 

(2.15) f2O(g~) f2~(a. ) ~ f22(a~ ) av 
~ot~ ,W o ~  '( ~V . . . .  

Given an element Gc Qo(g~)~ ~ t ,  consider the corresponding curve gt--Exp(to-) in 
~ ,  and note that (d/dt)V% = 0 = [V. a] = V(a)= dr(a). This means that the tangent 
space to the orbit of  the Gauge group at V, considered as a subspace ofQl(gE)~ ~¢~, 
is exactly the image, d~(O°(~E)). Hence, the infinitesimal variations of connection in 
these directions are infinitesimal variations through gauge equivalent connections. 
A transversal subspace to image(d v) in ~2~(g~) is given naturally by ker(6V). These 
infinitesimal variations slice across the orbits. 

" v  

(2.16) Definition. The subspace ker(bV)cl21(g~)_~TvCgE is called the space of in- 
finitesimal deformations of the connection V (Fig. 1) 

Fig.  i 

Note that ker(3 p) can be thought of as the tangent space of ~/NE at [V]. 
Recall that the curvature 2-form R is an element of f22(g~). This tensor satisfies 

the Bianchi Identity 

(2.17) dVRV=O, 

since dVRV=dVoRV-RVodV=(dV)3-(dV) 3. By (2.12) this means that for all tangent 
vectors X, 7(,, Z 

(2.18) (Vx Rv) r, z + (VrRV)z, x + (VzR ~)x, r = O. 

We now present the concepts central to our paper. 

(2.19) Definition. The function ¢g,/g :cgg-~]R defined by 

~ '~ (V)=½ j" [IRVrl 2 
M 
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is called the Yang-Mills functional. A critical point VeCg~ of the Yang-Mills 
functional is called a Yang-Mills connection. The curvature R v of a Yang-Mills 
connection is called a Yang-Mitls field. 

Note that by (2.5) the functional ~ / g  is clearly invariant under the gauge 
group ~¢~ acting on cg E. It is, in fact, invariant under an "enlarged gauge group" 
which we shall discuss presently. 

Fix VE ~gE and consider a smooth family of connections V t, - e  < t < e, such that 
V°= V. The statement that V is a critical point of Y/J¢/ means simply that 
(d/dt)~to/g(F)]t= o = 0  for all such families. We write 

Vt =V + A t, 

where A ~  f~l(gE) for ttl <e  and A ° =0. The corresponding curvature is given by 

(2.20) RYe= RV+ dVA' + ½[A */x At], 

where we define the bracket of gE-vatued 1-forms ~o and ~p by the formula 
[rp A ~2]x,r= [q~x,~Pr]- [~Pr, ~Px]" The following basic fact is an immediate con- 
sequence of (2.20) and the definition of the adjoint of an operator. 

(2.21) Theorem. The first variation of the Yang-MilIs functional is given by the 
formula 

d 63/~(Vt)t ~ <6VRV, B>, 
= 0 ~ -  M 

where 

B =  d v t t =  ° • 

Consequently, V is a Yang-Mills connection if and only if 

(2.22) 6VRv =O. 

This equation is non-linear in E Using the Bianchi Identity (2.18) and the 
compactness of M we see that (2.22) is equivalent to the condition that 

AVRV =O , (2.23) 

where 

(2.24) AV= dV6V + 6Vd v 

is the generalized Hodge-deRham LapIacian for vector bundle valued exterior 
p-forms. Any form q~ef~P(gE) satisfying the equation AV~o=O will be called 
harmonic. Thus, Yang-Mills connections are connections with harmonic 
curvature. 

There is another second order operator V'V, called the rough Laplacian, 
defined on gE-valued differential forms. It is given by the formula 

(2.25) V*Vq~ ~ V 2 = - ( e ~ , , e ~ 0 ) ,  
j = l  
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where 

(2.26) V~,r=- V x ~ -  ~D~r) 

is the invariantly defined Hessian operator. The operator V*V is symmetric and 
non-negative. Its kernel is the space of parallel forms. The operators A v and V*V 
have the same principal symbol, and their difference is of zero order. The 
relationship between these operators will be crucial in this paper. 

In the case that M is an oriented manifold, we may introduce the Hodge star- 
operator *:f~P(g~)-~"-P(g~) into our formulas. In particular we have that on 
~'(~), 

(2.27) (-- 1)p + ldVo* = • o j .  

Moreover, the Yang-Mills functional can be rewritten as 

(2.28) ~ ( V )  =½ S ( RvA *Re), 
M 

where the notation <q)A~p) for q~, tpeA*T*M®g E means exterior product on 
A ' T * M  tensored with the interior product on g~. 

We now return briefly to the inner product defined on the bundle ~o E (and 
thereby on gE) by formula (2.14). Recall that there is a natural bundle isomorphism 
A2E ~ >  ~% determined by the requirement that 

(2.29) (u A v) (w) = <u, w > v -  <v, w>u 

for u, v, w e E  x. In the metric (2.11), the elements {e~ A ej}~<j form an orthonormal 
basis of (~oE) x whenever (el, "-,eN) is an orthonormal basis of E x. This scalar 
product is related to the standard Killing form K on the bundle of Lie algebras ~o E 
by the formula K(A, B) = - 2 ( N -  2) <A, B>. 

(2.30) Lemma. The norm If" II induced by the inner product (2.14) has the property 
that 

II[A,B]JI N ]//2tlAIJ flBII 

for all A, B with equality if and only if the pair A, B is orthogonally equivalent to the 
pair of Pauli matrices (Fi 9. 2) 

0 0 I -so 0 O0 S ;0 

0 
01 
0 

Fig. 2 
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Proof. Maximize the function (A,B)~,II[A,B]II 2 under the constraints IIAlt 2 
-- IlBll 2 = 1. At any critical point, we find that 

(ad B)2 A = )~A 

(adA)2B=pB 

for multipliers 2 and #. An easy calculation shows that )~=#= -H [A, B] II 2, Put B 
in (skew) diagonal form and examine the first equation above. The remainder of 
the argument is straightforward and we omit the details. []  

(2.31) Note. Recall that in ~% ~IR 3 the Lie algebra product is equivalent to the 
classical cross-product in IR 3. Thus when dim(E)= 3, the inequality (2.30) can be 
improved to : tL [A, B] II < I1A II IIB [I, with equality iff A_I_ B. 

We finish this section with a word concerning the enlarged gauge group. We 
define an outer automorphism of P to be any G-equivariant diffeomorphism of P, 
and we denote the group of all outer automorphisms by Diff,(P). Every outer 
automorphism f : P ~ P  projects to a diffeomorphism rc(f):M--+M. This yields an 
exact sequence of groups : 

(2.32) 1--+N e ,DiffG(P)-~Diff(M). 

Given a connection on P and a vector field X on M, we have a unique lifting of X 
to a horizontal vector field X on P. Let qot, Ot be the 1-parameter groups of 
diffeomorphisms generated by X and X respectively. Since X is G-invariant, we 
have that gptog=gogp, for g~G and for all t. Hence, ~ DiffG(P)and clearly n(~t) 
= opt for all t. From the work of Thurston [15] we know that the diffeomorphisms 
belonging to flows generate the identity component Diff°(M). Hence, the image of rc 
contains this group and we have the short exact sequence. 

(2.33) 1 - - ~ f e  --~Dif~(P)---+ Diff°(M)--+ 1. 

Any connection on P determines a splitting of the sequence of vector spaces 
(2.33)'e obtained by differentiating (2.33) at the identity. It is given by the cor- 
respondence X>-~)7 constructed above. Conversely, each splitting of (2.33)'~ 
determines a connection on P. Hence, a connection could be defined as such a 
splitting. 

The entire group DiffG(P ) obviously acts on the space cg l, of connections. A 
subgroup which always preserves the Yang-Mills functional is the group 
Ne=rt-I(IM) where t M denotes the group of isometries of M when n4=4 and the 
group of all conformat transformations of M when n = 4. We call @ the enlarged 
gauge group of P. 

It is interesting to consider the variations of connection that come from 
Diff,(P). Fix Ve cg and consider a vector field X on M. Then the infinitesimal 

d ~ t=o  variation of connection B = dt , where 17t = gp*V and where #Pt is associated to 

as above, is given by the formula 

(2.34) B = ix Re, 
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where i x denotes contraction withX. For  a quick proof of this, let ~'TP--,~/~ be the 
G-equivariant field of projections along the horizontal subspaces J4 ~ onto the field of 

vertical subspaces ~¢f. The tensor B is nothing but a ~ ,~  viewed as a linear map 
t = O  

from J¢~ to ~ where each ~K'p is canonically identified with g (and with the 
d , 

corresponding fibre in ge). Of course ~ ~t n t :  o = - ~x(n) where ~2 denotes the Lie 

derivative. Furthermore for any tangent vector field Y on M let 7~ denote the 
horizontal lift to P and note that 

( ~ )  ( ~ :  ~ (~  ~) - ~ (~  

= IX, rcY] - ~([X, r ] )  
: - 

_~ -- Rx, ~. : _ (ixR)y. 

These last remarks add insight to the discussion of Sect. 7. 

3. The Bochner-Weitzenbiick Formulas for Lie Algebra-Bundle-Valued Forms 

The purpose of this section is to establish formulas relating the Hodge-de Rham 
Laplacian and the rough Laplacian of g~-valued 1- and 2-forms. They involve 
both the curvature of the riemannian base manilbld and of the bundle with 
connection. We deduce from them an algebraic expression of the rough Laplacian 
of a harmonic gr-valued p-form (p = 1 or 2). These formulas are of fundamental 
importance in the theory. 

To begin we define a basic (zero-order) operator Rv: f21(ge)._.f2J(gE) by setting 

(3.1) s~(~o)~-: ~ R ~ , [ e~,x, %j] 
y=l  

where R v denotes the curvature of the connection V on E and where (el . . . .  , e,) is an 
orthonormal basis of the tangent space TxM at the point x in question. Recall 
that the Ricci transformation Ric: ~ M - ~  TxM is defined by 

Ric(X)= ~ Rx, ee j ,  
j = l  

where R here denotes the riemannian curvature tensor. Given q~ in O~(ge) we 
define 

(q~ ° Ric)x = q~mc(x) - 

We recall that on the standard sphere Ric(X)= (n-1)X.  

(3.2) Theorem. For any q~ in f21(ge), we have 

A Vq~ = V* Vq~ + q~o Ric + !~tv(q0). 

Proof  Fix a point x in M and choose X, el , . . , ,  e, in TxM so that (e 1 .. . . .  e,) is an 
orthonormal basis. Extend X to a local vector field and (e 1 . . . .  ,e,) to a local 
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orthonormal frame field so that (DX)  (x) = (De 0 (x) = ... = (De,,) (x) = 0. Then, at 
the point x, 

(3.3) (dVtVq))x = Vx(tVcp)= - V x ~= ~ (V~sq~)e s 
J 

= _  ~ (V~:,~,(o)e# 
j = l  

and 

(3.4) (SVdV(olx = - ~ (V~dV~ol~s,x 
j = l  

=- ~ Vej{(Vej~9)x-(Vxq))ej} 
j=i 

j = l  

2 2 

Adding (3.3) and (3.4) we find that 

(3.5) (d %)x = (v* V )x + (R j, x O)ej 
j = l  

(here we keep the notation R v for the curvature of the connection on the bundle 
T * M ® g ~  induced by the Levi-Civita connection D on the base and the connection 
V on the bundle E). 

The operator R v acts as a derivation. H e n c e  (RVx, y(p)z = [RV, r, q)z]-(PRx,rZ" 
Applying this formula to the second term in (3.5) gives the result. []  

(3.6) Corollary. I f  (p is a gE-valued V-harmonic 1-form on the s tandard sphere S n, 
then 

V* V~p = - (n - 1)~p - RV(~o). 

Similar calculations can be carried out for any p-form. Of particular interest 
here is the case p=2 .  In analogy with (3.1) we define Rv:~22(9~)~Dz(gg) by 

(3.7) Rv((0)x,r - ~ R v [ es r,~O~j ]} {[ ~s ,x ,%s,r]-  RV,  ,x  • 
j = l  

For a linear map co on 2-vectors we define 

(3.8) % . . . . . .  
j = i  

(this is indeed the composition of m and cp viewed as maps from A 2 T M  to gE). 
Notice that with our convention ~Ox, y = q~(X i Y). 

Notice then that the extension of the Ricci transformation to 2-forms as Ric/~ I 
is given by 

(3.9) (Ric/x 1)x ' y = Ric (X) i Y +X/x Ric (Y). 

(3.10) Theorem. For  any  q) in ~2(gE) 

A v(o = V* Vco + cpo (Ric/x g + 2R) + RV((o). 
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Proof. Fix x in M. Choose X, Y,, e~ . . . .  , e, in T~M and extend them as in the proof of 
Theorem (3.2). Then at the point x 

(3.11) (dVSVq~)x, r = (VxSVq~)Y - (Vrf%)x 

= -- ~X~= l ([7ej(P)ej, y) + VY (j=~ t (Vei(P)e,i,x) 

~_~ V 2 V~ 2 = -  {( x.~j~oL~,~-( ~,~/oL~,x} 
./=1 

and 

(3.12) (~d~0)x. y = -  
j = l  

= - ~  
j = l  

= - Z  
j = l  

Combining (3,1.1) and (3.12) we find that 

(3.13) (AVq))x,r=(F*V(P)x,r+ ~ {(RVj, xq))~,r-(R,Vrq~)~j,x}. 
j = I  

By using the identity 

( Rv YCP)z w = Rv , , [ X,y,q?z,w]--(tgRx,yZ,  W--q?z,  Rx,YW, 

Equation (3.13) can be expressed as 

(A v~O)x, y = (V* V~o)x, y + £~(~O)x, y + ~o~,io ~x). 

-i%,.o,,xY-c'.~o,y,,x+iq%,..~,~x. j=1 j=1 

By using the first Bianchi identity 

(Ve,dVq~)es, x, r 

% {(v.,q~)x. ~ + (vyq%,x + (Vx~O)~.o) 

V 2 V 2 V 2 {( ~j,~q~)x, Y + ( e j, ~0)ej, x -  ( e j, x~0L~, ~}. 

Rx, rZ + Rr, zX + Rz, xY=O 

together with the Definitions (3.8) and (3,9), we get the expected relation. [] 

Remarks. i) The sign in the formula of Theorem (3.10) in front of R may change 
with conventions. 

ii) This way of expressing the formula has the advantage of incorporating the 
influence of the curvature of the base manifold into one term. This is especially 
interesting in dimension 4, where one can check (cf. [5]), by decomposing the 
riemannian curvature into irreducible components under the action of 0 4 or SO4, 
that Ric/x I+2R does not involve the Ricci tracetess part of the riemannian 
curvature. For an application see Sect. 5. 

(3.14) Corollary. I f  (o is a gg-valued harmonic 2-form on the standard sphere S", then 

V* Vq~ = - 2(n - 2)(o - Rv(cp). 
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Proof On the standard spheres S", we have 

Rx, rZ= - ( X  A Y)(Z)= (Y,, Z ) X -  (X, Z)  Y. 

Therefore, 

(Ric/x I + 2R)x, r = 2(n - 2)X/x Y. []  

We conclude this section with an elementary fact that will be of use in Sect. 10. 

(3.15) Proposit ion.  Suppose q~Ef~2(gE) takes values in a 1-dimensional subbundle of 
.%, i.e., suppose ~p = f®o-  where f is a scalar-valued 2-form and where cr is a section of 
g~ with II ~I[ 2= 1. Suppose further that ~v(cp)= O. Then p is harmonic if and only if f is 
harmonic and ~ is parallel. 

Proof A direct computation shows that 
(3.16) V*Vcp=(D* Df)®~-- ~ (D eJ)®(VeF) + f ®(V*17a). 

J 

The term Rv((p) in Theorem (3.10) vanishes. Thus, since q~ is harmonic, we have 
that 

(3.17) 17* 17q0 = - (p o(Ric/x I + 2R). 

Taking the derivative of the condition tlatl2-=l, we find that (Vo-,o-)--0. 
Consequently, 

<v,w, - 2  llv<l 2 
) J 

From (3.16) and (3.17) we then conclude that 

(3.18) ( 17" Vgo, q~) = (D'Dr, f )  + f2  t117a II 2 

= - (fo(Ric/x I + 2R) , f ) .  

The Bochner-Weitzenb6ck formula (3.10) applied to scalar-valued 2-forms (let ge 
be trivial), states that ADf=D*Df+fo(RicAI+2R) .  Therefore, (3.18) can be 
rewritten as : 

( ADJ;f) + f2Ij Vail 2 = 0 .  

Since AD>0 on M we conclude that ADf=O and that Va=0 away from the zeros 
off [] 

4. Some  Algebraic Facts  Specific to Dimension 4 

When dim M = 4 ,  the Hodge Star operator * is an involution of AZT*M, giving 
rise to the decomposition 

AZT*M = A + T * M O A -  T*M 

into eigenspaces for the eigenvalues _+ 1. Hence, for any vector bundle F over M, 
every q~ in ~2(F) can be written uniquely as rp = q~++ q~- where 

(4.1) q~ +- = ½(Id__+ *)~0 
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and 

(4.2) *~-+ = _ q~±. 

If q)= (p +, then (p is called self-dual. 
If ~0 = ~0-, it is called anti-self-dual. 
From (2.27) and (4.2), we have the following. 

(4.3) Lemma. On a compact oriented 4-manifold M, a vector-valued differential 
2-form (p is harmonic if and only if both q~ + and q~- are harmonic. 

Any vector bundle E over a compact oriented 4-manifold M has associated 
with it a number pl(E) called the Pontryagin number of E. This number is a 
topological invariant of E and can be computed by the formula 

(4.4) pl(E)= l ? g  ~ (R%~ Re), 
q-7~ M 

where R ~ is the curvature of any connection V on E. Writing RV=R v+ + R  ¢-, we 
have 

( R Z / x R ~  =(RV/,, **R2) = (RVA (,Re+ _ , R e - ) )  = tIRe+ [[2 _ [iRV-[[2. 

Of course IrRP[[ 2 = ltRV+ II 2 + ILR v- Ii 2 Consequently, we have the fundamental 
inequality 

(4.5) 4 = 2 [Pl (E)[ =< ~Jd(V) 

with equality attained if and only if R v is either self-dual or anti-self-dual. In 
particular, the self-dual (or anti-self-dual) curvatures realize an absolute minimum 
of the Yang-Mills functional. Such curvatures are, of course, Yang-Mills fields. 

All these facts are by now quite standard. 
Further topological restrictions of this type for SO4-bundles will be presented 

in Sect. 8. 
There is another algebraic fact which seems less well known, but will be at the 

heart of our proof of the stability Theorem B: the SO ¢-bundles A + T M  and A - T M  
are both irreducible and their tensor product is isomorphic to the S 0  4-bundle S~ T M  
oftraceless symmetric 2-tensors. We will use it in the following form (which after a 
moment's thought is equivalent to the preceeding statement). 

(4.6) Lemma. Let qo + and q)- be respectively a self-dual and an anti-self-dual 
(vector-valued) 2-Jorm on 1R 4. Then jor vectors X ,Y~IR 4, the quantity 

4 

qo~, x ® q)~, r is symmetric in X and Y For ordinary forms, the resulting map from 
j = l  
A+IR4®A-tR4~-Hom(A+IR4,A-IR 4) to So21R4=-{h~Hom(IR4,1R4): h is traceless 
and symmetric} is an S04-isomorphism of S04-modules. Its inverse is given by 
h~-,½h A I where, after restriction, the homomorphism h/~ I gives a linear map .from 
A+IR 4 to A-IR 4. 
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Proof We can suppose tha tX and Yare unit vectors orthogonal to each other. We 
then pick the orthonormal basis (ei) such that e: =X,  e 2 = Y Then 

4 

2 + =goes,e:@('Pe3,e2+goea, el@goea,e= " % ,  e~ ® go2j, ~2 + - + - 
j = l  

From the equalities analogous to + + go~a,e,=go~2,~, go~,e2=go~,~4 we get the an- 
nounced symmetry. The map considered is obviously an SO¢-map. Since its image is 
non-trivial and S21R 4 irreducible, the map is surjective. Since both spaces have 
dimension 9, it must be an isomorphism. One then checks that the inverse is indeed 
given by the extension to 2-forms of a symmetric transformation. []  

This fact has the following consequences for the riemannian curvature. Viewed 
as an operator on 2-forms, the curvature splits into three irreducible components 
under the action of O,(n ~ 4) : the Weyl conformal curvature tensor W,, the Ricci ( 1 ) 
traceless part which is ~ Ric o/x I if Ric o is the traceless part of Ric and the 

constant curvature part. In dimension 4, the Ricci traceless part anticommutes 
with the Hodge Starloperator * ; the other parts commute with *. This fact allows 
us to identify again the traceless symmetric 2-tensors with linear maps from 
A + T M  into A-  TM,  giving another viewpoint on Lemma (4.6). 

In fact, more is taking place : there is a further decomposition under the group 
SO 4. The Weyl part W splits into W + +  W-  (where W ± operates trivially on 
A ~ TM). This gives rise to a special family of Riemannian 4-manifolds the half- 
conformaIlyflat spaces. Among them we find some complex manifolds such as t rP 2 
with its canonical metric for which W- = 0, or the K3-surfaces with their Ricci-flat 
metrics for which W + =0. (For more on these spaces, see [3, 5].) As a consequence 
in the Weitzenb6ck formula for anti-self-dual 2-forms on (I;P2, the contribution of 
the curvature of the base is diagonal as on the standard sphere. This contribution 
even drops out on self-dual 2-forms on a Ricci-flat K3 surface. 

5. Isolation Theorems 

In this section we prove a series of isolation results for Yang-Mills fields. The basic 
idea is to exploit the non-linearity of the Bochner-Weitzenb6ck formula (3.14). For  
go = R  v, this formula implies that 

([7* VR v, R ~  = - (RVo (Ric A I + 2R), R v) - ~(R 9 , (5.1) 

where 

(5.2) 
n_ 

o(R~ ~ /rR~ R v 1 R v . 
k k  ei~ej~ ej~ekJ~ ~k~el) 

i,j,k= l 

When n =4,  the analogous formulas hold with R r everywhere replaced by R 7+ 
which we abbreviate R +. Recall that R + is harmonic and so formula (3.14) applies 
[see Lemma (4.3)J. We then examine the last term ~(R +) of this formula. Writing 
RV= R + + R -  gives a splitting of this into two terms, the second of which is of the 
form 

= _ { [ R ; , x , R ; . , . ] - [ R ; , , , R ; , x ] } .  
i = 1  
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By Lemma (4.6), this expression vanishes. We conclude that (~/(R+), R + ) =  Q(R +) 
and so formula (5.1) holds for R + as claimed. Of course, by the same argument (or 
by a reversal of orientation) we see that this formula also holds for R- .  

In Sect. 8 we show that when n =4  and G =  SO 4, there is a further decom- 
position of the curvature, R ~ - R  + R ÷ - + + _ + R ;  + R 2 ,  into harmonic components. 
Since IRis, R - I = 0  and since R + -  + - R ÷  +R+_, we see easily that (St(R;), R 2 )  
=0(R++). It follows immediately that R~ (also R_ +, etc.) satisfies (5.1). 

Now we examine the term Q given by (5.2). For any Lie algebra g with a fixed 
invariant inner product ( . , . ) ,  we have the associated fundamental 3-form ~0g 
given by 

+~(u, K H4-([u, y], w> 

for U, V, Weg. Now there is a canonical isometry A 2 T M ~ O M  given by (2.29) and 
so we may consider R as a linear map 

R : 9D M--~ gE" 

In sO M we have the identities: 

(5.3) [ e i A e j, e k A ez] = 5,e  k A e j -b 6 jle l A e k + 5ike j A e~ + g) jkel A e i 

for all i,j, k, l. Hence, we may rewrite (5.2) as 

(5.4) e(R~) = i v R v 

= ~, (RV*~g~:) (e i/x e i , e i/~ ek, e k/x el) 
i , j , k=  l 

= (RV*¢~, q)~o~,), 

where, for notational convenience, we define the inner product in A35o * by 

~,fl, 7 

where e, fi, and ~ each run over an orthonormal basis of ~o M. 
Combining (5.1) and (5.4) and integrating by parts gives the following basic 

result. 

(5.5) Theorem. Let  R v be a Yang-Mills f ie ld and let 2 be the minimal eigenvalue o f  
the operator Ric A I + 2R on 2-forms over a compact riemannian manifold M. Then 

M M 

When n = 4 ,  this formula holds with R v replaced by R v+ and with 2 replaced by )~+, 
the minimal eigenvaIue o f  Ric/x I + 2R on A + T M .  (The  corresponding statement 
holds with + ' s replaced by - ' s.) If, in addition, G = SO,~, the Jbrmula also holds with 
R replaced by R +, R +, etc. 

We now observe that the term 0(RV)= (R~*~,~, ~5~o~) is a homogeneous cubic 
function of R v, whereas I[RVN 2 is homogeneous quadratic. For R v sufficiently small 
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and 2>0,  this quadratic term will dominate the right hand side of formula (5.5) 
causing it to become negative. (This, of course, is not possible.) The point at which 
IIRV[I 2 dominates the expression can be estimated concretely, and in some cases, 
quite accurately. To do this we want to estimate (L*~b~,~b~o,) in terms of IILtl 2 
where L:~on--+g is a linear map and where g is any Lie sub-algebra of ~%. Recall 
that the inner product on g is induced from the canonical one on ~o N [defined by 
(2.14)]. Consequently L * ~ g = L * ~ o  ~ and for the moment we can ignore g. 

(5.6) Proposition. Let L : ~ o , ~ o ~  be any Iinear map. I f  lIL[12 < ½(~), then 

(L* ~o~, ¢~,,,) < 2(n-- 2)tt Ltt 2. 

t f  n > 5, this inequality is strict. 
When n = 4  (respectively n=3) ,  equality holds if  and only i f  there is an 

orthogonaI splitting IR ~ = S o @S 1 (dimS 1 = 4) with respect to which L = 0 ® a  where 
~r is one of  the two irreducible spin representations of  ~o 4 (respectively where a is the 
irreducible spin representation of ~o3). 

W h e n n = N = 3 ,  theinequalityholdsforIlLH2<=(~)=3. In thiscaseequal i ty is  

attained if  and only if  L :~o3--+~o 3 is a Lie algebra isomorphism. 

L 2--1(l'l) since for Proof. Note that it suffices to prove the inequality for II II - g  2 ' 
\ / 

0_< t < 1 we then have that 

2 (n -  2)II tLH 2 = 2(n - 2)t 2 [1 LIt 2 ~ tNl(L,~b~ou, ~o.)l > t31(L* ~oN, ~o.)[ 

= I((tL)* @~o~,, ¢~o.)f > ((tL)*¢~o m ~o.) .  

let {eiA ej}f<j denote the standard orthonormal basis of To compute we 
~0,, ~- AZlR n. Then 

and 

[ILII 2= ~ LlL(ei/~ ej)l[ 2 
i < j  

(L*~b~o~,~o~)= ~ ([L(e i/x ej),L(ej /x ek)],L(e k/x el) 5. 
i , j , k=  l 

We now introduce the (n x n)-symmetric matrix a = ((s~j)) with non-negative entries 

s l j -  ]/2LIL(ei A e~)[1. By assumption 

trace(o-2)= ~, sZ=4tlLIt2=n(n - 1 ) .  
i , j = t  

We claim that it suffices to prove that 

trace(a 3) = ~ s~js~skl ~ n (n -  1)(n- 2) 
i , j , k = I  
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with equality if and only if sq-- 1 -6~j. Indeed if this is so, then by Lemma (2.30) we 
have that 

(5.7) (L*~o~,  4 ~ , ) <  ~ l([L(e i/x ej),L(ej/x ek)],L(e ~ ,x el))l 
i , j , k =  1 

< L 
i , j , k =  l 

< i  
i , j , k  = 1 

_ !  
m 2 

[l [L(ei A ej),L(e2 /x ek) ] I[ tlL(ek A ei)ll 

l/~llL(ei /x ej)lt I!L(ej A ek)ll IIL(e k/x ei)ll 

sijsjeski < 2(n - 2)II L 112. 
i , j , k = l  

Suppose now that we have equality in each line of (5.7). From the last line we get 

that sq= 1 -cSij , and so [[L(e i/x ej)H = 1 / y ~  for i 4 j .  From the first and second lines 
we conclude that, when i,j, k are distinct, 

[L(e i/x e j), L(ej /x ek) ] = tokL(e k A ei) 

where tqk > 0. Taking the inner product with L(e k/x e~) and using the (term by term) 
equality in (5.7) we see that tijk=SijSjkSik = 1. Hence, we have 

(5.8) [L(e i/~ ej),L(ej /x ek) ] =L(e  k/~ ei) for all i , j ,k distinct. 

This equation has a number of consequences. For  example, 

(5.9) (L(e  i/x e j), L(ej /x ek) ) = 0 for all i,j, k 

since, setting Lij = L(e~/x e j), we have that 

( L,j, Ljk> = ([  Ljk, L j ,  Lj~> = - ( L~,, ILia, Lj~3> = O. 

More generally, 

(5.10) (L(e i A eft, L(e k A el) ) = - ( L ( e  k/x e j), L(e i A el) ) for all i,j, k, l 

since 

(Lij ,  L~l) = ([Ljk,  L j ,  Lkl) = (Lj~, [Lki, Lkz]) = -- (Lkj, L , ) .  

Another consequence is that setting Cqjkl = [Lo, L j ,  we have 

(5.11) eijkt+CqZjk+~ikzj=O for all i,j,k,1 distinct. 

To see this, note that 

[Lij, Lki] = [L O, [L u, Lik]] = [Lu, [Lij, L J ]  + [Lik , [Lu, Lift ] 

= EL,,, Lj~3 + [L,~, Lj ,] .  

We now see that cqj~z has the first two symmetries of a Riemann curvature tensor. 
A standard argument proves that it therefore has the third symmetry, i.e., 
Cqjkg=%u j. However, from the definition we see that e~jk~=--C~kuj, and so we 
conclude that 

(5.12) [L(e~ Ix ej),L(e k A e~)] = 0  for i,j,k, 1 distinct. 
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Comparing (5.8) and (5.12) with (5.3) we conclude that L : ~ o , ~ o ~  is a Lie algebra 
homomorphism. 

Finally, we observe that by Lemma (2.30) each pair(L(ei A ej), L(ej Aek)), for 
i,j, k distinct, is conjugate to a pair of Pauli matrices. In particular, each of the 
endomorphisms L(e i/x e j) is supported in the same 4-dimensional subspace, and 
by (5.8) each triple (L(e~/x ej), L(ej /x ek) , L(e k/x e~))for i,j, k distinct is orthogonally 
equivalent to the standard orthonormal basis of Pauli matrices. The conclusion for 
n = 3 and 4 now follows easily. 

For n > 5 the situation described above is impossible since there exist no non- 
trivial homomorphisms ~ o , ~ o  4 for n ~ 5  ~o, being simple. To see this directly 
we note that if n > 5 and if i,j, k, l are distinct, then 

(5.13) (L(e  i/x e~),L(e k/~ el) ) = 0 .  

This is proved by choosing m distinct from i,j, k, 1 and using (5.11) and (5.10) as 
follows : 

o = ( [L~j, L~,], Lm~> + ([L., L~J, L,~k> + ([L~, L,~], L ~ )  

= (L~j, [L~, L , j )  + (L., ILia, L j )  + (L~j, [L~, L j )  

= (Lit, LZk) + (Liz, Lk~) + (Llj,  Lik) 

= _ (Lik , Ll j )  + (Lit, Lkj) -1- (Lij, Lik) 

= (Lit, Lkj)  = -- (Li j  , Lkt) .  

It follows that if n > 5, the matrices { ]/~Lij}i <j are orthonormal. In particular, L is 
injective and L : ~ o , ~ o  4 is impossible. 

In the case where n = N =  3, we can improve (5.7) by using the refinement of 
Lemma (2.30) given in (2.31). The conclusion in this case is easily obtained. 

To complete our proof it remains only to establish the following. 

(5.14) Lemma. Let a=((sij)) be a symmetric n x n matrix with sij>O and si~=0. I f  
trace(~r 2) = n ( n -  1), then 

trace(o -a) < n ( n -  1)(n- 2) 

with equality i f  and only i f  sij = 1 -  (~i~. 

Proof.  To find the maximum of the function F(cr)= trace(a 3) on the space of 
symmetric matrices subject to the constraints: trace(a 2) = n ( n -  1), s u = 0 and sij > 0 
we look for all critical points. By the usual Lagrange multiplier technique the 
matrix a is critical for F if there exist real numbers, 2, 21 ( l < i < n ) ,  and 2ij 
(1 =< i <j-< n) such that 

(5.15) cr2=)va+ 2"~.ie* ®ei + 2 2~j(e*®ej + e* ®e~), 
i i < j  

where 2i~ ~ 0 only if sij = O. (This is the boundary effect.) We conclude that F(o-) 
= ,~ trace (~r 2) = ~n(n - 1). 

Our objective is therefore to show that 2 is bounded by n - 2 .  
We first note that the multipliers )~i~ are unnecessary when one is interested in a 

maximum. Indeed suppose ~r is critical and lies on the boundary {s~=0} of our 
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space of matrices. Then the matrices o" t defined for t > 0 by 

i +  2?  ]1/2 
~ n - ~ ]  ~t=a+t(e*®ej+e*®e') 

are non-negative and satisfy the constraints. Moreover, we have 

I 2t: ]3j2 
1 + n(-~---1)] F(cr,) = F(a) + 6t k=Z ~ Sjki" 

Note that by (5.15), we have Ai~ = (o-:)~j = ~ SikSi~. Assuming 2~j > 0, we see that F(o-~) 
k 

> F(o-) for all t sufficiently small. Consequently, if F(a) is a maximum, all 2~j must 
vanish. 

By a permutation of indices we can reduce o- to a block matrix (r = a 1 • ... Oak 
where each block crj of size nj cannot be further reduced in this fashion (see [11, 
Chap. III], for example). It is clear that each block satisfies the equation 

(5.16) ~ =2o-j+ A j, 

where Aj is a diagonal n i x nj matrix. Notice then that Aj is in fact a scalar matrix 
#jI since Aj and cr# commute and o-j is irreducible. Taking the trace of (5.16) we get 
that #j = (l/n#) trace o- 3 (since trace o-# = 0). On the other hand, since o-j is a solution 
of a polynomial equation of degree 2 with scalar coefficients, a# has at most two 
eigenvalues, say ej and fit, which necessarily have opposite signs. We suppose 
c~j<0. 

By the Perron-Frobenius theorem (cf. [11, p. 53]) the positive eigenvalue of _a~ 
must be simple. Therefore, flj = (n j -  1)e~, and 2 =e~ + fl~ = - ( n ~ - 2 ) e  j, and trace aj 
= nj(n~- 1)c~. 

Consequently, n i > 2 (since 2 > 0) and trace a} = [nj(nj- 1)/(n j -  2)2122. It fol- 
lows that 

(5.17) n(n- 1)=trace~ 2 = ~ traceo-~ = n~(nj- 1))2 >_k22. 
j = l  j = l  (n j -2)  2 - 

From (5.17) it is clear that 2 is maximal when k = l .  In this case 2 = ( n - 2 )  as 
expected. 

We have now deduced that if F(o-) is maximal, then the minimal polynomial of 
a is p ( a ) = ( o ' - n +  1)(a+ I), and the eigenvalue (n -1 )  appears with multiplicity 
one. The matrix a + I has only ones on the main diagonal. Moreover, its rank is 
one, so that for each i,j (i #~j) there must exist non-zero real numbers/~, flj so that 

Consequently, we have that 

/~s~j +/~j = 0 

Since s~j = s~i > 0 we conclude that s~j = 1 for all i +j. This completes the proof of 
Lemma (5.14) and of Proposition (5.6). [] 
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2 1/n\ 
(5.18) Remark. The proof of Proposition (5.6) also shows that if 0 <  tILIt <~2) 
then (L*~o,¢, ~o~) < 2(n-  2)11Lli 2. 

Combining Theorem (5.5) and Proposition (5.6) gives the following immediate 
results. 

(5.19) Theorem. Any Yang-Mills field R on S n, n~5 ,  which satisfies the pointwise 

es ,oa e 

Proof. By Proposition (5.6) the integrand on the right in (5.5) is _>_0 since 
2 = 2 ( n - 2 )  on S ~. Hence, this integrand vanishes identically (as does VR). By 
Proposition (5.6), this implies R - 0 .  

(5.20) Theorem. Let R be a Yang-MilIs field on S 4. I f  R + satisfies the pointwise 
condition IIR + 112< 3, then R + -  O. The corresponding statement holds for R-% 

Moreover, if the group of the field is SO 4 and if R + satisfies the condition 
ItR + 112<3, then R + =-0. The corresponding statements hold for R+, R ; ,  R?_ (see 
Sect. 8). 

Proof. One argues as in (5.19) with R replaced by R +, R- ,  R+ +, etc. 
Theorem (5.20) gives an explicit C O neighborhood of the self-dual fietds on S 4 

in which no other Yang-Mills fietds appear. The self-dual fields are "isolated". 
We next examine what happens when equality is allowed in the condition 

11R ti 2< 3 on S 4. To state the result it is nice (although not necessary) to mention 
the associated bundle E. 

(5.21) Theorem. Let (E, G, F, R) be a Yang-MilIs set-up on S ~ such that R satisfies 
the pointwise condition tlR I i 2~ 3. Then either E is f iat  or E = E o O S where E o is f iat  
and where S is one of the (two) 4-dimensional bundles of tangent spinors with the 
canonical riemannian connection. 

Proof. Arguing as above we see that either R - 0  or 11RIt2-3 and VR-O.  In the 
latter case, Proposition (5.6) implies that there is an orthogonal splitting E = E o OS 
where E 0 is flat, where S is 4-dimensional, and where - R  :sa M-~ so s is one of the 2 
fundamental spin representations o -÷ or ~r- at each point. Let us assume that it is 
the positive one at each point. (The other case is similar.) Then R - - 0  and 
-R'so~so s is an isometric bundle injection which, since V(R)= IV, R] =0, is 
connection preserving. Hence, 

(5.22) so s = ~o~ Oso 3 , 

where ~o 3 denotes the flat bundle. (Note that so 3 corresponds to a parallel 
quaternion structure on S.) Equation (5.22) implies that S, pulled back over the 
principal Spin4-bundle of S ~, is canonically trivialized and transforms according to 
the representation cr +. This completes the proof. [] 

The same argument can be applied to R- .  We conclude that if I[R-[I e<  3, then 
either R-  = 0 or the following is true. There is an orthogonal splitting E = E o ® V 
where V is 4-dimensional, and 

- -R-  : so~-~so~, CgE 
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is a connection preserving bundle isometry. (Recall that since dim V= 4, there is a 
canonical splitting ~o v = ~o~ ®~Ov.) This means that E 0 is self-dual and that 

where ~o~ is also self-dual. It follows that the principal Spin4-bundle of V can be 
written as a Whitney sum 

(5.23) Pspin 4(V) = Psv2 ® Psv2( S -  ), 

where S-  is the canonical spin bundle above and where the connection on Psu2 is 
self-dual. This is one of the connections satisfying the minimum conditions (8.7). 
From (8.12) we see that ½pl(V)-x(V)--2. (The reader should consult Sect. 8 for 
fuller details.) Summarizing the above gives the following. 

(5.24) Theorem. Let (E, G, V, R) be a Yang-Mills set-up on S ~ and assume that R 
satisfies the pointwise condition II R-iI 2< 3. Then either E is self-dual or E = E o @ V 
where E o is self-dual and where V is a 4-dimensional bundle satisfying (5.23) and the 
connection on the first factor is also self-duaL 

A corresponding theorem for R ÷ is obtained by reversing orientations. 
We now consider the 3-sphere. Here the results are simple to state. 

(5.25) Theorem. Let (E, G, 17, R) be a Yang-MilIs set-up on S 3. I f  IIRlj 2 <~, then E is 
flat. I f  [fell 2<~=2, then either E is f lat  or E = E o ® S  where E o is f lat  and S is the 
4-dimensional tangent spin bundle with the riemannian connection. 

I f  dim(E) = 3 and IiRlr 2 < 3, then either E is f lat  or E = TS 3 with the riemannian 
connection. 

Proof. The argument for the first part is entirely similar to the argument for 
Theorem (5.21). For the second part, we use the last statement in (5.6) to conclude 
that if R~e0, then - R  :soM-*~o E is a connection preserving bundle isometry. 
Hence, taking the composition 

T M  , ~ A a T M = ~ o u  -R ~o~=A2 E * ~E 

gives an equivalence TM = E, and the proof is complete. [] 
In order to be able to apply Theorem (5.5) for general dimensions n we need 

Ric A I + 2R to be a positive operator. This is insured for example if the curvature 
operator of M is positive (see [6, p. 74]). In this case it is known that M must be a 
homology sphere by a nice theorem of Galtot and Meyer [10]. The results we just 
proved still hold with the uniform bound on [IRVlT 2 reduced to 

[iRVl[2 =_< ~ n(n- 1) 22 
(n_2)~ " 

The 4-dimensional case is more interesting since one can consider separately 
the positive and the negative 2-forms. In particular we have the following. 

(5.26) Theorem, Let M be a compact riemannian 4-manifold which is half confor- 
mally f lat  (say, W -  = O) and has positive scalar curvature ~. Then any Yang-Mills 
field R on M which satisfies the pointwise condition 

fIR- [[2<¼~c 
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is self-dual. (A similar statement with - ' s  replaced by + 's is obtained by reversal of 
orientation.) 

This theorem covers the case of II~P 2 with the Fubini-study metric where 
t¢ =24. 

It is a theorem of N. Hitchin that half conformally flat Einstein manifolds with 
positive scalar curvature are isometric to either S 4 or tI2P 2. It is conjectured that 
this conclusion remains if one supposes the manifold to have non vanishing 
signature and the scalar curvature to be constant. 

6. The Second Variation 

In this section we establish the second variational formula for the Yang-Mills 
functional at a critical point, i.e., at a Yang-Mills connection. In fact we shall 
derive three distinct formulas. The first is completely general. The other two are 
valid only for infinitesimal deformations of the connection, i.e., for elements 
Be Ol(g~)~ TvCgE which satisfy the transversality hypothesis 6VB = 0 [see (2.15) and 
(2.16)]. However, in these latter cases the formula involves an elliptic second order 
operator. 

We shall work in the general setting developed in Sect. 2. We suppose that V t, 
It[ < e, is a smooth family of connections on E where V= V ° is Yang-Mills, and we 
write 

(6.t) Vt = V + A t, 

where At~OI(9~) for each t. Letting R t denote the curvature of V t, we then have 

(6.2) R t= RV + dVAt + ½ [At A A t] 

[see (2.20)]. The infinitesimal variation of connection associated to V t at t = 0 is just 

(6.3) B -  dA' 
dt It=o" 

Note that Be f21(gE), and thereby we have the natural identification: £21(g~)~ TvCg. 
We have defined an endomorphism Rv of this space by setting 

(6.4) W(q~)x -= ~ R v [ e j, X' ~gej] 
j = l  

for ~oe Ol(g~), where (e 1 . . . . .  en) is any orthonormal basis of tangent vectors to M at 
the point in question. Our first version of the formula is as follows. 

(6.5) Theorem. Suppose V= V ° is a Yang-Mills connection. Then the second 
variation of the Yang-MitIs functional is given by 

d 2 
qYJl(Vt)[, = o = .[ ( 6vdvB + RV(B), S ) ,  3V 

d 
where B= ~ F]~= o. 
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Proof. It follows immediately from (6.2) that: ½(d2/dt2)llRtl[21t=o=(dVB, dVB ) 
+ (dvC+ [B A B], R v> where C =(d2/dt 2) Vtlt=o . Integrating (by parts) and using 
the condition 

(6.6) 8VRv=O, 

we see that the term involving C vanishes. (This was expected since at a critical 
point the Hessian of a functional is intrinsic and hence depends only on the first 
order part.) 

(6.7) ([B/x B ] , R ~  = ~ (2[Be , ,BJ ,  R V ~ )  
i<j 

= ~. (Be,, [Bes , R~,efl> 
l ,y  

= ( B e , ,  
i 

= <B, R~(B)>, 

and the formula is now obvious. [] 
We now restrict our variations to those whose first order part is transversal to 

the orbit of the gauge group. The next result follows 
Theorem (6.5) and the Bochner-WeitzenbSck formula (3.2). 

immediately from 

d 
(6.8) Theorem. Suppose V= V ° is a Yang-Mitls connection and B=-dt Vt[t=o . 

Suppose also that (~vB=O. Then 

where 

d 2 
d~Z///Z(V~)l~=o= j" (~V(B),B>, 

M 

oSeV(B) = AVB + RV(B) 

= V* VB + B o Ric + 2RV(B). 

(6.9) Coronary. Let V and B be as in (6.8) and suppose M is an Einstein manifold 
with Ric = k. Id.. Then 

d 2 
d~2-~J¢/(Vt)lt=o = S (V*VB+kB+2RV(B),B> • 

M 

Observe that the operator 5ev is elliptic and self-adjoint, and that the operator 
17, Vis > 0. It follows that the restriction of 5 ev to the subspace T o -ker(6 v) C O l(gE) 
has eigenvalues 21 <2  2 < . . .  ~ 0% with associated finite dimensional eigenspaces 
Eal, E~. 2, .... We can therefore introduce the following concepts from Morse theory 
(cf. [13, 14]). 

(6.10) Definitions. The index of a Yang-Mitls connection V is the dimension 

  )The nu,,,t, is the dimension n  --dim Eol 
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Certainly one of the major problems in the field is to understand the 
relationship of these numbers to the topology of the gauge group f¢~. The Yang- 
Mills functional descends to a function 

(6.11) ~/0/¢/o : cgE/ff _~I R 

and, roughly speaking, the space (gE/N~ can be identified with the classifying space 
BNe. [In some cases, for example that of a non-trivial SU2-bundle over S ~, we 
actually have <gE/~E--~ B fiE' However, in general one must worry that the action of 
Ng on cg~ is not free, i.e., that there may exist VeCgE and g~Nr, g4= 1, such that 
V ° = V. In this case we note that Vog = g o V, i.e., V(g) = 0, which implies a reduction 
of the structure group of E.] Nevertheless, a naive application of standard Morse 
theory to the function (6.11) gives direct relationships between the topology of Bff E 
and the number of critical points of ~J¢/ with a fixed index. Just recently 
Uhlenbeck [16] has succeeded in establishing the analytic tools required for an 
appropriate Morse theory when d im(M)=2 or 3. If the Morse theory can be 
successfully completed, Atiyah and Bott have shown that one obtains new proofs 
of a number of profound results in algebraic geometry. 

The fields of interest in this paper are those which are local minima of the 
functional. Thus we introduce the following notion. 

(6.12) Definition. A Yang-Mills connection V is said to be stable if i(V)= n(V)=0, 
that is, if 

S ( S ( B ) ,  B) > 0 
M 

for all non-zero Be T°v=ker(6V). 

(6.13) Note that if 27v>0 on (2t(gE), then SPY>0 on the subspace T °, and V is 
stable. We caution the reader to note, however, that the second variation is given 
by 5 Pv only on the subspace T°v. 

(6.14) Note that weak stability (second variation >0) is equivalent to the 
condition i(g)=0. Thus, in particular, stability implies weak stability. 

7. The Stability Theorems 

In this section we shall explore the structure of weakly stable Yang-Mills fields on 
the euclidean n-sphere S"={x~IR "+1 :Hx[[ =1}. It turns out that on S" there is a 
finite dimensional family of vector fields which tend to decrease the energy of any 
Yang-Mills field. Using this family we find strong restrictions on any weakly stable 
field on S 4. In particular, when G = SU 2, SU 3 or U2, we show that any such field is 
either self-dual or anti-self-dual. 

We begin with a general observation. Fix a Yang-Mills connection on a 
riemannian manifold M and consider a 2-form ~oe faz(g~). Then for each tangent 
vector field V on M, the contraction ivq~e ~21(g~) defined by setting 

(7.1) (ivq))x - q)v, x 
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is an infinitesimal variation of the connection. Suppose now that V is of gradient 
type, i.e., that 

(7.2) ( D x V  , Y ) = ( D ~ V , X )  for all X, Y, 

where D is the Levi-Civita connection on M. [Condition (7.2) is equivalent to the 
fact that the dual t-form co(.)~_ (V, • ) is closed.] 

(7.3) Lemma. Let  B=ivq)  where ~o~ f22(gE) satisfies 5Vq~=0 and where V is a vector 
f ield o f  gradient type. Then 6VB = O. 

Proof. Fix x ~ M  and let (e 1 . . . . .  e,) be a local orthonormal tangent frame field such 
that (Dej)(x)=O for eachj. Write D ~ V =  ~ai je j ,  and note that aij=aj~ for all i,j by 
(7.2). Consequently, at x we have 

5VB = - 2(VesB)~j = - ~, V~j(B~) 
J J 

= - E 
J 

J 

= - (6~p)v + ~ %q~. . . j  = 0 
1,J 

since 5rgo=O and ~o~,~j is skew-symmetric in i andj .  [] 
We now consider on S" the special, finite-dimensional space of vector fields 

~ - { g r a d f : f = F l s ~  and F : lR '+ l -~IRis l inear} .  

There is a natural isomorphism IR "~ ~ - ~  which associates to each VelR  "+~ the 

vector field V given by 

(7.4) V(x) = v -  (v, x )  x 

for x ~ S ' .  Note that V = g r a d f  where f ( x ) =  (v, x ) .  

(7.5) Lemma. Each Ve~K" satisfies 
(i) D x V =  - f X  , 
(ii) D * D V =  V, 

where D denotes the Levi-Civita connection o f  the standard metric on S" and where f 
is as above. 

Proof. Let /) denote the riemannian connection on IR "+1, and let 
( . ) T : T x l R ' + I ~ T x S "  denote orthogonal projection. Then it is standard that 
DY=( f f )Y )  T for any tangent vector field Y on S ". It then follows from (7.5) that 

D x V = [ D x ( v -  (v, x )  x)3 T = _ (V, x ) X  = - f ( x ) X  

since v is parallel in IR "+ 1 and since x is normal to S n at x. This proves (i). For  (ii) 
we fix x e S  ~ and choose a local :frame field (e 1 . . . .  ,e,) near x. Then, D * D V  
= - ~ ( D e ~ D e j V - D D , ~ V ) =  ~ (V, e j ) e j  = vT= V, and the proof is complete. []  
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(7.6) Remark. The vector fields belonging to V are exactly the gradients of the 
eigenfunctions of the Laplacian corresponding to the first non-zero eigenvalue on 
S ~. It follows immediately from 7.5(i) that  these fields are conformal.  In fact ~U is 
the or thogonal  complement  to the Killing vector fields in the space of all 
conformal  vector fields on S ~. 

Note  that  the isomorphism IR ~ ÷ ~ ~ ¢/~ transfers an inner product  to ¢/~ which is 

invariant under the natural  action of  O,+ r 
We are now in a position to state one of  our  key results. 

(7.7) Theorem. Let (E, P, G, V) be any Yang-Mills set-up over the euclidean sphere 
S ~, and suppose cp~¢22(g~) is harmonic, i.e., 6¢cp =dVq~ =0.  Associate to cp a quadratic 
form Q~o on V by setting 

d 2 
g~(v) = d 7  ~ ( F ) I , =  o, 

where V t = V + t(ivCP). Then 

trace(Qe) = 2 ( 4 -  n) ~ I] ~o II 2. 

Proof. By Lemma (7.3) we know that  cS¢(ivCp) = 0 for all V~ V and so we may use 
formula (6.8) for the second variation. Consequent ly  

trace(Q~,)= ~ trace(q~), 
S n 

where %(V)-(SeV(ivq~),ivCP ). To compute  the trace of qe at a point  x ~ 5  °n we 
choose an o r thonormal  basis (eo, el . . . .  ,~,) of ~¢~ adapted to this point. We let 
eo . . . . .  e, correspond,  under  the isomorphism ~_---IR "+ 1 to the vectors x, e 1 . . . . .  e,  
where (e 1 . . . . .  en) form an o r thonormal  basis of  TS". We see from (7.4) that  

(7.8) %(x) = 0, ~l(x) = el, ..., e,(x) = e, .  

To  apply the formula (6.9) we need to compute  V*V(ivq)) for Va~U. Choose 
local o r thonormal  tangent fields e t . . . . .  e, on S" such that  (Dej)(x)=O, and let 
X = ~ afi~ be any linear combinat ion of these fields. Then at the point  x, 

(7.9) [V*V(iv~O)]x = - ~ [V~,~flivCP)]x = - 2 [V~V~:(ivq))]x 

= - ~ { v~[(V~/vq,)x]- (v~/vq,)~x} 
= - 2 V~j[V~j[(ive)x] - (ivCp)D~x] 

= - Y v~EVd~v,~)- ~Ov,~o,x] 
= - y. v~E(v~/o)~,,~ + ~o~,~] 

= (V* Vcp)v, x -  2 Z ( V~°)D~v,x + ~P.*~v,x • 

Consequently,  using (7.5) and the fact that  cSv~o=0, we conclude that  

(7.9) (V* V(ivCP))x = (V* Vcp)v, x + (Pv,x • 
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Since R i c = ( n - 1 ) I d .  on S ", we have from (6.9) and (7.10) that 

5pV(ivq~). = (g* V(P)v . + nov ' + 2 ~ IRe,,. , q0v,e, ] . 
i = 1  

Since ~0 is harmonic, we have the following Bochner-Weitzenb6ck formula [see 
(3.14)] 

(V* Vq~)v ,. = - 2 (n -  2) ~Ov,. ~ e v R v - {E ~,,v,q~e, .] , - E  ~ , . , ~ O ~ , v ] } .  
i = 1  

Combining these two equations we see that 

(7.10) 5:V(ivq~)=(4-n)iv~O - ~ R v R v [ e,v,~O~, .]} {[ ~ , , ,%,v]+ 
i = l  

Therefore, we have at x that 

t race(%)= ~ (.yv(i~fl~),i~fl~)=(4-n) ~ ~ <q~,~k,q~j,~k). 
j = 0  j = 0  k = i  

Note that the contribution from the second term of (7.11) drops out because we 
have taken the inner product of a symmetric and a skew-symmetric form. 

Using (7.8) we finally obtain at x that 

trace(%) = 2 ( 4 -  n) ~2 It q~.~k It z = 2 ( 4 -  n)I1 ~0 fl 2 .  
j < k  

This completes the proof of Theorem (7.7). []  
Note that in the proof of Theorem (7.7), the introduction of the integrated 

quadratic form Qo was used only to get an interpretation in terms of the second 
variation of ~J/g. In particular, we insist that in dimension 4 we get the vanishing 
of the density qe" 

Since V is a Yang-Mills connection, we can always choose cp=R v in 
Theorem (7.7). Thus we have the following immediate consequence. 

(7.11) Theorem (J. Simons). There are no weakly stable Yano-Mills fields on S" for 
n>=5. 

Note that when n=4,  Theorem (7.7) asserts that trace(Q~)=0. Using this fact 
we now prove the following. 

(7.12) Theorem. Any weakly stable Yang-Mills fields on S 4 with s~'ucture group 
SU 2, SUa or U 2 is either self-dual or anti-self-dual. 

Proof. Consider a weakly stable Yang-Mills field with group G on S 4. Let A(B, B) 
be the quadratic form on f21(g~) given by the second variation of the functional at 
this connection. Since J (B ,  B)>  0, we see that J (B ,  B)= 0 if and only if B is in the 
null space of this quadratic form. In particular, if J (B ,  B)= 0 and 6VB--0, then 
5:V(B)=0. Consequently, Theorem (7.7) implies t h a t / f  q)ef22(gE) is harmonic and 
Vs ~ ,  then 

(7.13) 5:V(ivq~) = 0 .  
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It follows immediately from Lemma (2.31) that since R v is harmonic, so are 
R + =  (RP) + and R - = ( R r )  -.  Consequently, by (7.13) we know that 

(7.14) 5~F(ivR+)=0 

for all VE Y/~. (The corresponding statement is true for R -.) Using (7.9) and writing 
RF=R + + R - ,  we conclude from (7.14) that 

4 4 
rR+ R + 1 - 2  Z [R; ,x ,R; ,Y]  (7.15) (V*VR+)x,r+4R~,y +2 ~ L e~,x, ej, ya = 

j=l j= l  

for all tangent fields X, Y on S 4. The left hand side of (7.15) is clearly skew- 
symmetric in X and Y. By Lemma (4.6) the right hand side is symmetric inX and I7. 
Consequently, the g~-valued tensor 

4 
Y, ER;,x,R;, I 

j=l  

vanishes for all X and Y, i.e., ~ = 0. 

(7.16) Proposition. At each point x e S  4, 
+ 

[Rx, r, Rz, w] = 0 

for all X, ~, Z, We  TxS 4. Consequently, at each point x ~ S  4, 

lax +, a ; ]  = 0 ,  

where a~ K(gE)x is the Lie subalgebra 9enerated by the curvature transJbrmations 
Rx, r for X, Y~ TxS 4. 

Proof. This proposition can be deduced from the second part of Lemma (4.6) as 
follows. Since -c = 0, r/x I = 0. However, one can easily see that 

(½ (z A I)x,r, Z A W) = [R/c,r, Rz, w]. 

For the convenience of the reader who is uncomfortable with abstract linear 
algebra, we offer a second, more elementary proof. 

Let (e 1 . . . .  ,e4) be an orthonormal basis of TxS ~ and for convenience set 
+ + R~ = R~.,~; To begin we consider the quantities 

for j , k = l  . . . . .  4. Since z = 0  we know that ~ C j k = 0  for each k, i.e., we have that 
J 

[ C12+C13+C14=0 

~ C12.-1-C23Jf-C24=0 
(7.t7) 

1 C13 q- C23 "j- C3'4' ~ 0  
/ 
L C14 -}- C24 q- C34 = O. 

Using the fundamental identities 

(7.18) = R~3 +R~2, +- +_ = _ R14 = ++_Rz3 , 
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we see that 

(7.19) Ca 2 = - -  C 3 4 ,  C 1 3  = - C 2 4 ,  C14-  = - C 2 3 '  

Combining (7.17) and (7.19) shows that Cjk=0 for all j, k. Thus, using (7.18) we 
have proved that 

(7.20) ~ [ R ~ , R ~ ] = 0  for all j ,k  

[[-Ri~,R/z]=0 when i , j ,k , l  are distinct. 

It remains only to show that 

(7.21) R + [ ~ j ,R~]=0 when i , j ,k  are distinct. 

It clearly suffices to establish (7.21) for the case (i,j, k) =(3, 1,2) since we are free to 
permute our :indices. Note that 

z~2 = ER ~-~, R32] + ER~'~, R42] = 0  

~34 = [R[3, R Z ]  + ER2+3, RY4] 

R + = [  ~ 3 , - R ~ 3 ] + [ R [ 4 , R ~ 4 ]  
+ 

= - [R31, R32 ] + [n~l, R22 ~ = 0. 

Consequently, + - [R31,R32]=0 and the proposition is proved. [] 
The next step in our proof is the following observation. 

(7.22) Lemma. Let  a + and a-  be subalgebras of  a Lie algebra g such that 
[ a + , a - ] = 0 .  I f  g~-~u2,~u 3 or u2, then either a + or a-  is abelian. 

Proof. In each case it is straightforward to check that the centralizer of any non- 
abelian subalgebra is abelian. [] 

Note that if g is the Lie algebra of G 2 or if rank(g) > 3 then Lemma (7.22) is 
false since g contains an 5D 4 subalgebra (see Sect. 8). 

We now consider the gE-valued 4-tensors C + =  [R+,R+l  and C - =  [R- ,  R - ]  
+ + + 

on S 4. (That is, C~2.r,z, ve = [Ry, r, R£w ] for X,  Y, Z,  WE TxS4.) It follows from (7.16) 
and (7.22) that either C ÷ or C-  must vanish on some open subset (9 ____ S ~. For the 
sake of argument, suppose C ÷ vanishes on (9. Now C ÷ is an algebraic function 
of a solution of the elliptic equation AR ÷ =0,  and the Aronszajn theorem on 
unique continuation of solutions to elliptic systems [11 applies to prove that 
C + =0  on S 4. 

We now observe that, since [R+,R - ]  and [R+,R +] both vanish on S 4, 
formula (7.15) [and also the Bochner-Weitzenb6ck formula (3.9)1 for R + becomes 

V*VR + +4R + =0 .  

Since V*V>O on S 4, this implies R + =-0. (The argument in the case that C-  
vanishes on (9 is completely analogous, and shows that R-  - 0.) This completes the 
proof of Theorem 7.12. [] 
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8. Principal SO4-Bundles 

We now focus our attention on the interesting special case of SO4-bundles over a 
4-manifold. Here there is an additional topological constraint on the Yang-Mills 
functional. There is also a generalization of the condition of self-duality which 
occurs if and only if the minimum values permitted by the topology are attained. 
We then extend Theorem (7.12) to this case; that is, we prove that any weakly 
stable Yang-Mills field with group SO 4 on the 4-sphere satisfies this condition. 
Each SO4-bundle over S 4 carries a large family of these minimizing connections. 

Let M be a compact, oriented 4-dimensional riemannian manifold, and 
consider over M an oriented 4-dimensional riemannian vector bundle E (i.e., a 
bundle with structure group SO4). Then there are Hodge operators 

* : A 2 T M ~ A Z T M  and ~ :A2E~A2E 

with corresponding decompositions 

(8.1) A Z T M = A + T M O A - T M  and A g E = A + E O A - E ,  

where T M  denotes the tangent bundle of M and A -+ denotes the + 1 eigenspace of 
the star-operator. For any SO4-connection V on E, the curvature R v can be 
considered as a bundle map 

RV: A2TM-+A2E. 

[Recall the isomorphism A2E ~ ~o~ given by (2.34).] 
It can therefore be decomposed as 

(8.2) RV=R~ + R +_ + R 7 + RT_ 

with respect to the splittings (8.1). Since these splittings are orthogonal, we can 
write the Yang-Mills integrand as 

(8.3) Jl RVll 2 = H R~_ 1t 2 + lJ R + ]J 2 + tl R 71] 2 + tl R -  [12 

Since E is oriented and of dimension 4 over a 4-manifold, it has two 
independent characteristic invariants, its Pontrjagin number pl(E) (cf. Sect. 2), and 
its Euter number z(E). By Chern-Weil theory these numbers can be computed by 
integrating certain universal polynomials in the components of the curvature 
tensor R. From these standard formulas it is a straightforward calculation to show 
that:  

pl(E/:L  ItR÷+II2 ÷ R+ _ l ] - l [2 - [ IRTl l  2 liR-tl (8.4) 

and 
1 (8.5) z(E) = ~ {IIR++ II 2 -  II R+_ [I 2 -  IIR7 II 2 + I]R- ]12}. 

Both of these numbers are integers, and both may be either positive or negative. 
From (8.3), (8.4), and (8.5) we immediately conclude the following. 

(8.6) Theorem. Let E be an oriented &dimensional riemannian vector bundle over a 
compact oriented 4-dimensional riemannian manifold M. Let p=47z2pl(E) and 
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Z=87z2z(E) denote the 
spectively. Then 

(renormalized) Pontrjagin and Euler numbers of E re- 

q,'dt(17) > max (Ipl, Izl) 

for any S04-connection V on E. Furthermore this minimum value is attained if and 
only if: 

JR- = R 7  = 0  if P>IZ[, 

/R_+ = R 7  = 0  if Z>=[p[, 
(8.7) 

IN_ + = e +  +=0 if -p>[z l ,  and 
/ 

[R~=R___=0 if -x>_-Ipl. 

For the sake of exposition we briefly present some examples. 

(8.8) Example. Suppose the structure group of E can be reduced to SU 2. In this 
case -½Pl(E)=x(E)=c2(E), the second Chern class of E. Here Theorem (8.6) 
asserts that a~Jg(V)=4rc2lpl(E)[, the minimum allowed value, if and only if 

R = R  +_ if pl(E)>O 

and 

R = R -  i f  p l ( E ) = < 0 .  

(8.9) Example. Let M = S  4 and let E =  TM, the tangent bundle. Then pl(TM)=O 
and )~(TM)--2. For the canonical riemannian connection, the curvature 

is the identity map. Hence, 

and R~_ :A+-TM-~A+-TM is 

R :A2TM--+A2TM 

R + = R  7 = 0  

the identity map. (Thus R ÷ = !I +tf 2 tiN-I[ z=3-) In 
particular, by Theorem (8.6) the Levi-Civita connection on TS 4 achieves an absolute 
minimum of the Yang-Mills functional. 

Recall that on a 4-manifold, a curvature tensor R F is harmonic if and only if the 
components R + and R -  are harmonic. We have the following analogue. 

(8.10) Proposition. Let E and M be as in Theorem (8.6), and let R v be the curvature 
of an S04-connection V on E. Then R V is harmonic (i.e., Yang-Mills) if and only if 
each of the components R ÷ +, R+_, R~, and R -  _ is harmonic. 

Proof. If each component of R v is harmonic, then clearly R p is harmonic. On the 
other hand suppose R ~ is harmonic. Then R ÷ and R -  are harmonic by (2.31). 
Furthermore, R + - R  ÷ R + + 1 + - + + _ and R e =3(1 __ ~')R . The corresponding statement 
is true for R- .  Now the operator ¢r :A2E~A2E is parallel, i.e., V(~')--[17, ~ ]  =0,  
since ¢r is defined in terms of the metric on E. It follows directly from definitions 
that dVand 6v (and therefore A F) commute with ~ .  Thus AV(R++ =½(1 _ ¢r)AFR + = 0  
and AV(RT)=½(1 +_ ¢g)AVR - =0. This completes the proof. []  
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We are now ready to prove the main result of this section. 

(8.1t) Theorem. Any weakly stable Yang-Mitts field on S 4 with structure group SO,~ 
satisfies the condition (8.7) of two-fold self-duality. 

Proof. From the arguments of Sect. 7 [see Proposition (7.16)] we know that the 
endomorphisms R.+. and R.~. commute at each point of S 4. We now observe that 
under the natural identification A2E~-~%, given by (2.34), the decomposition 
A + E O A - E  corresponds to a decomposition 

where ~ are bundles of sub-Lie algebras pointwise isomorphic to ~u 2, and where 

(This corresponds to the decomposition ~o4=~n2G~u2. ) Consequently, at each 
point of S 4 the endomorphisms (R+) . . ,  . . . ,  ( R - ) . .  mutually commute. 

We now focus attention on the harmonic ~o~-valued tensor R+ = R ~  + R  7. 
Since ~0~ is a bundle of 5u2-algebras, the arguments of Sect. 7 can be applied 
directly to prove that either R~ or R 7 vanishes on S 4. The same arguments 
applied to R_ = R 2 + R _ prove that either R +_ or R ] vanishes on S 4. Therefore we 
are in one of the four cases of condition (8.7). Which case or cases occur is now 
completely determined by the topology and the formulas (8.4) and (8.5). This 
completes the proof. [] 

We now show that each SO4-bundle over S 4 carries a large family of 
connections satisfying condition (8.7). To begin we look at the topological 
classification of these bundles. Note that since S 4 is 2-connected, any SO4-bundle 
carries a unique spin structure, i.e., we may replace the principal SO4-bundle Pso4 
with a principal Spin4-bundle Psgln4 and an equivalence Pspinj~g2 ~Pso~- Since 
Spin 4 ~ SU 2 x SUz, there is a splitting of Psvi~4 into a Whitney sum 

Pspin4 --  Psu2 X Psu). 

of principal SU2-bundles. (Otherwise said, we lift the classifying map $4-~BSO4 
for Pso~ to a map S4-~B Spin 4 =B  SU 2 x B SU2. ) Each of the bundles P(s~ over S 4 
is classified by its first Pontryagin number p(k) E ~. There is exactly one such bundle, 
up to equivalence, for each integer. Consequently, the principal S04-bundIes over 
S 4, up to equivalence, are in one-to-one correspondence with pairs of integers (p', p") 
accordin9 to the prescription above. 

Suppose Pso, corresponds to the pair (p', p") and let E be the associated 4-plane 
bundle over S 4. Then it is not difficult to show that 

(8.12) p~(E) = 2(p'+ p") 
z(E) = p ' - p " .  

We now recall that the principal SU 2 bundle with Pontryagin number p4:0 
carries an (8lpl-3)-dimensional family ~ p  of non-gauge-equivalent connections 
which are self-dual or anti-self-dual depending on whether p is positive or negative 
[2, 3, 9]. (By convention, we let ~ o  denote the class of the flat connection of the 
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• - t X i t  trivial bundle.) Suppose then that Pspi,4 = Psv2 Psv2 corresponds to the pair of 
integers (p',p"). Choose connections V~)~J/(¢j~ and introduce the direct sum 
connection V'@ V" on Psth x P~u~. This descends to a connection on Pso4 and on 
its associated 4-plane bundle E. The components R+ and R_ of the curvature of 
this connection correspond exactly to the curvature tensors of P~u~ and P~t~ 
respectively. Consequently, this connection satisfies (8.7). We have proved the 
following. 

(8.13) Theorem. Let  E be an oriented riemannian 4-plane bundle over S ~, and set 
p = ½Pl(E) and Z = z(E) . Then there is a family jAf of  gauge-inequivalent connections 
satisfying (8,7) on E where 

[ 4@ + )d + l P -  Zl) - 6 
/ 

/f  p ~  _+)~ 

/f p =  + z # O  

if p=z=0 ,  

Given a riemannian 4-plane bundle E over S 4, we now consider the bundle S E 
of unit spheres in the fibres of E. The total space of S E is homeomorphic to S 7 if 
and only if z(E)= 1. However, S E is diffeomorphic to S 7 only if, in addition, we 
have a condition on pl(E) ((p1(E))Z=-4mod277, see Milnor [12]). In any case, a 
riemannian connection on E induces a field of"horizontal"  planes on the manifold 
Sr, i.e., a field of 4-planes ~ everywhere transverse to the fibres. We lift the metric of 
S 4 to z via the bundle projection re: S~-*$4; we introduce the obvious euclidean 
metric (induced from the inner product  in E) on the fibres; and we declare ~ to be 
orthogonal to the tangent spaces to the fibres. This gives a metric on Se defined 
canonically in terms of the connection on E. This metric always has positive Ricci 
curvature. However, one can show, by building on arguments of Weinstein [17], 
that these metrics are never of positive sectional curvature. 

9. The Stability of T(S"/F) 

We have shown in Sect. 7 that any Yang-Mills field on S '~, n > 5, is unstable• This 
applies in particular to the Levi-Civita connection on the tangent bundle TS" 
which is clearly Yang-Mills since DR = O. In contrast to this we now prove the 
following result. 

(9.1) Theorem. Let  F be a non-trivial, f ini te  group o f  isometries acting freely on S ~, 
n > 4, and consider the quotient manifold S"/F with its "quotient" metric of" constant 
sectional curvature. Then the Levi-Civita connection on T(S'/F), considered as a 
Yang-Mills field, is strictly stable. 

We know that the standard connection on TS 4 is weakly stable. This follows 
directly from the fact that on TS 4 this connection actually minimizes the Yang- 
Mills functional [see (8.9)]. One wonders whether the Levi-Civita connection is 
minimizing in all the cases T(S"/F) of Theorem (9.1). 

We shall also prove the following. 

(9.2) Theorem, The Levi-Civita connection on TS  3, or on T(Sa/F) for any F as 
above, is unstable as a Yang-Mills field. In fact  its index is 1 and its nullity is O. 
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Note that since T(S3/F) is topologically trivial, (note that S3/F is orientable 
since F acts without fixed points) the minimum of the Yang-Milts functional in this 
case is zero and is achieved by the flat connections. 

We point out that recently Uhlenbeck has proved the weak compactness 
theorem necessary to do Morse theory for ~JI:CgT/fgT-MR in the case of 
3-manifolds. 

Both Theorems (9.1) and (9.2) will be proved by explicitly computing the 
operator 

(9.3) 5 ° = D*D + (n -  1) I + 2R 

on ~a(~or) (see Sect. 6). Note that ~21(~or) is just the space of smooth sections of 
the bundle T*®~OT, where T=  T(S"/F) and where ~or~A2T. 

(9.4) Proposition. There is a natural orthogonal decomposition 

T* ®~o r = F 1 •Fz@F3, 

where F x ~ T* and F z ~ A  a r*, such that 5O(F(F))c= F(F) for each j. Furthermore, 

5O=D*D-(n-3)  on F(F1), 

5O=D*D+(n-5) on F(F2), 

5O=D*D+(n+ I) on F(Fa). 

Proof We shall work at a point xeS". For Be T*®5or~ andXe T, we let Bx: T ~  T 
denote the corresponding skew-symmetric linear map. For convenience we set 
F =  T*®~o r. Then the decomposition of F at x is given as follows: 

F 1 - {BeF :3Ve T such that Bx=X A V} 
F2-{BeF:Bx(Y)=  -Br (X ) for all X, YeT} 

F 3 - T h e  orthogonal complement of F t O F  2 in F. 

The map X A V is defined by setting (X A V) (Y) =- (X, Y) V -  ( V, Y)X. Observe that 
F1LFz, since for B~k)eFk we have 

(B', B") = ~ 2 (B'~,(e), ek)(B;,(e), e k) 
i j < k  

=½ ^ (e), 
i , j  

= Z {(e,, B;,(e)) + V,, 
~ J 

Similar calculations show that 

F 3 = B s F  j ~  B~jei=O and (BxY,, Z)  + (BrZ, X ) + (BzX, Y) =0 for all X, Y) 

(Note that we have dropped the parentheses for B.) 
We now have an orthogonal decomposition F = F t O F 2 0 F  a. The map 

(9.5) T~ F 1 

defined by V~--,B v, where (BV)x =X A V, is a bundle isomorphism. Furthermore, 
one easily sees that D(B v) = B wv), i.e., this isomorphism is connection preserving. 
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Similarly we have that the map 

(9.6) AaT*-~ F2 

defined by q0~B ~', where (B~Y, Z> = 9(X, Y,, Z), is a connection-preserving bundle 
isomorphism. This proves the following fact. 

(9.7) Lemma. Each of the subbundles Fj, j = 1, 2, 3, is preserved by the connection. In 
particular, 

D*D:F(F)~F(F) 

for each j. Moreover,for j = 1 and 2, the bundle isomorphisms (9.5) and (9.6) take this 
operator to the corresponding operator D*D defined in terms of the Levi-Civita 
connection on T'~ T* and AaT * respectively. 

We must now examine the operator R. Recall that on Sn/F the curvature tensor 
of T, considered as an element in A2T*®~or, is given by 

(9.8) Rx, r =X /x Y. 

Consequently, for X, Ye T and B~F we have 

(9.9) R(B)x(Y)= ~ [Res, x, Bej](Y ) 
j=l 

= -  ~ [ejAX, B J ( Y )  
j = l  

= - ~ {(ej AX) (SejY)- Sej((ej AX) (Y))} 
j=l 

= ~ { (X ,B~Y}e j - (e j ,  BejY)X 
j=l 

- (X, Y)B~ej + (e j, Y)B~X} 

= ~ {e i A B~jX +Beje j AX} (Y). 
j=l 

Case t. Suppose BeF1, that is, Bx=X/~ V for some Ve T. Then 

Be ej = ~ % A V) (e) = ~ {leji 2 V -  < V, ej>e A = ( n -  1)V, 

and so ~ B~ ej A X =  (n-1)V AX = - ( n - 1 ) B  x. On the other hand, 

~(e j  A B~X)(Y)=~ (<e j, Y>BejX- (B~X, Y}ej} 
J J 

=UrX-- ~ <(ejA V)(X), Y}e~ 
J 

=(Y A V) (X)-- ~ { (ej, X}(V, Y> - (V,X>(ej, Y> }ej 
J 

= <Y,X)V- <V,X}Y- <V, Y>X+ <V;X}Y 

=(XA v)(Y) 

=BxY. 

Consequently, !;t(B) = - ( n -  2)B. 
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Case 2. Suppose Be F2, that is, B x Y= - B y X  for all X, Y Then clearly ~ Beje j = O, 
and so 

!il(B)x( Y) = ~ { @j, Y) B e X -  (Bey, Y)e~} 

= BrX + ~, (Bxej, Y)e~ 

= - B x Y -  ~ <BxL ej>ej 

= -- 2B x Y. 

Case 3. Suppose Be F 3, that is, suppose ~ Be ej=O and 
J 

(BxY, Z ) + (ByZ,X)  + (BzX, Y) =0  

for all X, Y, Z. Then as in Case 2, 

Sl(B)x09 = B X- (BeX, YSej 
J 

Summarizing, we have that 

(9.11) 

= BrX + ~ {(BxY, e j )  + (Brej, X)Ie  j 
J 

=BxY. 

- ( ! - 2 )  on F 1 

! R = -  on F 2 

on F 3 . 

Combining (9.11) with (9.3) completes the proof of Proposition (9.4). []  

Proof of Theorem (9.1). From Proposition (9.4) and Lemma (9.7) we conclude that 
the Levi-Civita connection on T =  T(S"/F) is strictly stable if 

(9.12) D*D>(n-3) on T* 

and 

(9.13) D ' D > - ( n - 5 )  on A3T *, 

where D*D is defined using the natural extension of the Levi-Civita connection. 
Note that condition (9.13) is satisfied whenever n >  5. (When n = 5, we observe that 
D*D > 0 since its kernel consists of parallel 3-forms.) On T* we have that A = D*D 
+ Ric = D*D + (n-  1) where A = d6 + 6d is the Hodge Laplacian. Consequently, for 
n > 5 we have stability if 

(9.14) A > 2 ( n - 2 )  on r * .  

Let 2k(S"/F ) denote the k th eigenvalue of A on T*. Then 21(S"/F ) > •2(S n) if F is non- 
trivial, since the first eigenspace of A on T(S")~-T*(S") is exactly the space ~g" 
defined in Sect. 7 and no element of ~U is F-invariant. One computes easily from 
[4] that ).z(S ") = 2 (n - t ) .  This proves Theorem (9.1) for n >  5. 

When n = 4  we have a connection preserving bundle isometry *:T*-~AaT *, 
and conditions (9.12) and (9.13) coincide. The argument in the paragraph above 
shows that D*D > 3, and the proof is complete. []  
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Proof of Theorem (9.2). Since n = 3  and D * D > I  on T we know from 
Proposition (9.4) that 5 e > 0  on F 1 and F 3. The bundle Fz~-A3T * is trivial and 
D*D is equivalent to the standard Laplace Beltrami operator on functions. Its first 
non-zero eigenvalue is > 3. However, it has a 1-dimensional null space generated 
by the volume form "1. This corresponds to the element Be T*®~o r defined by 
setting 

Bx(Y) =*(x A Y), 

where * : A 2 T + T  is the Hodge star operator. Clearly DB=O, so, in particular, 
aB=0 .  From (9.4) we know that 

5Z(B) = - 2 B .  

Since the next eigenvalue of D*D on F z is _>_3, we know that 5 z > 0  on the 
orthogonal complement of B. This completes the proof. []  

10. Results on General Homogeneous Spaces 

Many of the ideas developed in Sects. 6 and 7 for S" can be carried over to any 
homogeneous riemannian manifold. This contradicts the long-standing belief of 
the authors that the noncompactness of the conformal group of the sphere was 
crucial in the proof of the Stability theorems. We begin by proving the following 
generalization of our fundamental result, Theorem (7.12). 

(t0.1) Theorem. Let M = K / H  be a compact orientable homogeneous riemannian 
manifold of dimension 4. Then any weakly stable Yang-Mills field over M with group 
SU z, is either self-dual, or anti-self-dual, or reduces to an abeIian field. 

Proof Let K be the group of isometrics of M and let ~ be its associated Lie algebra 
of Killing vector fields. There exists on ~c a K-invariant inner product such that for 
each point x e M ,  the natural map 

gx  
, T~M, 

defined by ex(V)= V~, is an isometry on keyr (ex) z. We fix this inner product on ~c. 
Consider now a weakly stable Yang-Mills field (E, P, G, V) over M, and let 

qoe (22(g~) be a g~-valued 2-form. Then we defined a quadratic form Qe > 0  on K as 
in Theorem (7.7). By formula (6.5) we know that 

(10.2) Qe(V) = S (~(ivCp), ivCp) 
M 

for Ve~:, where 

(10.3) ~v=eydV + ~V 

The key fact is the following lemma whose proof we shall postpone. 

(10.4) Lemma. I f  q) is harmonic and if V is a Killin 9 vector field, then 

~@[(iv(P)X = -- 2 {[Re~,v, qOej, x] RV F +E e~,x,~%,v]} 
J 
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This lemma is valid in general dimensions. In dimension 4, we can choose our 
harmonic form to be q~=R +. Then, writing R V = R  ÷ + R - ,  we see that 

(10.5) fi'V(ivR +)x = - 2 ~ [R 2 v, R~ x] .  . J, j, 
J 

We now take the trace of Qo. We move the trace under the integral sign and use the 
fact that for each point x e M ,  we can choose an orthonormal basis (V 1 . . . .  , VN) of ~C 
such that 

Vl ( x )=e  I, ..., V4(x)=e 4 , Vs(x) . . . .  = VN(X)=O , 

where (e 1 . . . .  , e4) is an orthonormal basis of T~M. This gives 

trace (Qo) = - 2 S • ([R~,,e~, R~, j ,  Re+.~). 
M i , j , k  

We know from Sect. 4 that the right side of (10.5) is symmetric in X and V. 
Consequently, trace (Q~)=0, and since Qe =>0 on tc (because the field is weakly 
stable), this means Qe = 0 on ~c. Finally, since the field is weakly stable, this means 

o + 
6a~(ivR )=  0 for all Ve x, i.e., 

4 

(10.6) ~ [R L, r, R L, x] = 0 
j = l  

for all tangent vector fields X, Y on M. This was precisely the hypothesis of 
Proposition (7.16). We conclude that [a +, a - ]  -= 0, where at each point x s M, a~ is 
the sub-Lie algebra of (g~)~ generated by the transformations R e for X,  Ye  T~M. X, Y 

Consequently, by arguing as in Sect. 7 we conclude that either [a+,a  +] - 0  or 
[a - ,  a - ] - 0  on M. In fact, from the elementary properties of the Lie algebras we 
know the following. 

Suppose G = S U  2, and suppose that both a + and a -  are not zero. Then as we 
saw in Sect. 7, neither can vanish on an open subset of M. Consequently, both a + 
and a -  are abelian at each point. Since [a +, a - ]  =0,  we conclude that a =  a + + a-  
is also abelian everywhere on M. In particular, dim a =< 1 everywhere on M. If R v is 
not identically zero, then an open dense subset of M we can write 

R v - x,r- (Px,  r ® a  , 

where q~ is a scalar 2-form and a is a section of gE of unit length at each point. 
Proposition (3.15) now implies that a is parallel and q~ is harmonic. On a compact 
4-dimensional homogeneous space, every harmonic 2-form is parallel. (Check 
case-by-case.) Hence a is a globally defined, parallel section of ge" At each point 
p ~ M ,  ap is an endomorphism of the fibre E p ~  2 with eigenvalues 2 and - 2 .  
(These eigenvalues are non-zero and constant on M.) The corresponding eigen- 
bundle decomposition E = E z Q E _  z is parallel, i.e., is preserved by the con- 
nection. This gives the desired reduction to a Uvstructure group, i.e., to an abelian 
field. [ ]  

Proof  of  Lemma (10.4). Fix a point x e M ,  choose X,  e~ . . . . .  e4eT~M so that 
(e~, ...,e4) is an orthonormal basis. Extend X to a local vector field and extend 
e~, ...,e 4 to a local orthonormal frame field so that 

(DX) (x) = (De1) (x) . . . . .  (De,,) (x) = O. 
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Since q0 is harmonic we have 

( a % ) x =  - Z(ve,  q % . , , = o  
(d~e)x, ~, z = (Vx v,)~ , z  + (v~ ~o)~, x + (v~q')x,  ~- = o 

for all X, Y, Z. Set ~b = ivq~. Then at the point x, 

(10.7) (6~ffqb)x = -~(Ve,d(o)e, ,x  
1 

~---~{Ve, (d~gej ,  x) -d~ODej ,x-d~geDeX} 
J 

"~ - -  ~ ~ j { (Ve ,£9 )x - - (Vx~O)e i }  
,1 

= -- ~ Ve,{ Ve,(ex) - ~ODi,, X -- Vx(~oej ) "Jr- ~gDxe:i} 
J 

= - £ g , {  <, (q'~.  x) - q,v,, ,o;,  - Vx(Ov,e) + 0,~,*,,,~,} 
J 

= - ~. g,{(g,q')v, x + ~oDo, v, x -  ( q q ' ) v , , , -  ~oD,,v, ~,} 
Y 

= - £ % { ( g q , ) ~ , , x  + v , , , o . v , x -  q,,,, ,v.~,} 
J 

= - E { ( g , ( g ~ o ) ) ~ , ,  x + (v~ ,e ) .o ,~  x + e .~ , ,  o,v, x 
Y 

J 

+ q~D L oy, x -  ~0,~, xv, ~fl" 

Since 6Vq~=0 and Rx, r =  V2 r - V2x, we have 

2 R v Y~(v4 ,~%,x  = Y,( ~,,v~)o,,,~ 
J J 

R v =~. {[ ~,,.v,~,x]- ~,ve~,X--%,~o~,~X}" 
J 

Furthermore since V is a Killing field it satisfies the following equations: 

2 D~, x V -  R~j, v X 

D * D V =  - ~ Rej, ve j = Ric (V). 
J 

Substituting these last three equations back into (10.7) gives: 

(10.8)  (aVdYo)x = - Y~ [R~,, ~, % , , , 2  - ~. [(%o~vV%,x + (v~,~o),,o,,, x} .  
J 1 

A Killing vector field Vhas the fundamental property that <DxV, Y)  = - <DrV, X ) 

for all X, Y. Writing D e y =  ~ a~ke k we have that ajk = -- akj. Substituting this into 
k 
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the second summation in (10.8) gives: 

{ajk(V~q°)ej, x + aik( Vej ~O)ek, X } = O. 
j,k 

Consequently, we have that 

(6pdV(°)x -- Z RV = [ e~,v, ~ ,  x] 
J 

By definition we know that 

~/v(O)x = ~ R v R v . [ ~j,x, ~oj] = - ~ [ ~,x, % , ~ ]  
J J 

Adding these last two equations proves the lemma. [] 

(10.9) Remark. Theorem (10.1) can be easily generalized to fields with group U 2, 
SU 3 or SO~. A detailed statement will appear in a forthcoming note by the authors 
(to appear in Annals of Math. Studies volume edited by S. T. Yau). 
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Note added in proof. The result obtained by N. Hitchin on half conformally flat Einstein manifolds 
with positive scalar curvature has been obtained independently by T. Friedrich and H. Kurke from 
Berlin (GDR). 


