
Commun. Math. Phys. 80, 563-574 (1981) 
Communications in 
Mathematical 

Phys -s 
© Springer-Verlag 1981 

Ans itze for Self-Dual Yang-Mills Fields 

R.S. Ward 

Department of Mathematics, Trinity College, Dublin 2, Ireland 

Abstract. A sequence all,  d a ,  ... of ans/itze for generating self-dual so- 
lutions of the Yang-Mills equations is presented. For each n, d ,  produces a 
solution depending on two arbitrary functions of three variables. As an 
application, we see that s¢ 2 generates a static Yang-Mills-Higgs 2-mo- 
nopole solution. 

1. Introduction 

In recent years, there has been considerable interest in self-dual SU(2) Yang- 
Mills fields in Euclidean space IR 4. In the first place, they arise as instantons, 
which dominate the Euclidean functional integral [1-3]. Secondly, they in- 
clude, as a special case, static Yang-Mills-Higgs fields in space-time, in the 
Prasad-Sommerfield limit; these have come to be known as multi-monopoles 
[4-81. One of the more successful ways of understanding the self-duality 
equation, and of generating solutions to it, has been the approach which arises 
out of Penrose's twistor theory [9]. This led to a sequence all, ~ 2  . . . .  of 
ans~itze which generate all instanton solutions [10,11]; and led also the 
Atiyah-Hitchin-Drinfeld-Manin (AHDM) construction [3] which generates the 
instantons even more effectively. More recently, these ans~itze have been used 
to construct multi-monopole solutions of the Yang-Mills-Higgs-Bogomolny 
(YMHB) equations [7, 8]. 

The purpose of this paper is twofold. First, a generalization of the ans~itze 
d ,  is described. These new d ,  generate, for each n > 1, a family of solutions of 
the self-duality equations depending on two free functions of three variables 
each. After a general description of the "twistor" construction in Sect. 2, the 
new d ,  are presented in Sect. 3. There is also some discussion of the problem 
of how to ensure that a gauge field generated by d~ is smooth and real-valued, 
i.e. taking values in the Lie algebra of SU(2) rather than that of SL(2, C). 

Section 4 brings us to the second topic of the paper. The multi-monopole 
solutions referred to above are all superimposed, axially-symmetric configu- 
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rations. However, it was recently announced that the ansatz a¢ 2 can also be 
used to construct a non-axially-symmetric solution representing two separated 
monopoles [12]. Some details of this construction are presented here. 

The discussion is essentially self-contained, but builds on the results of 
references [1I]  and [7]. 

2. The General Construction 

Let x ~ be the standard coordinates on IR ~, and define new coordinates x eQ 
(P, Q = 1, 2) by 

- - X  2 ] x 22j [ - i x l + x  2 x ° +  

Let Z~=(co e, =o) be four complex coordinates on "twistor space" 1~4 (i.e. Z ° 
=001, Z 1 =co2, Z 2 =  7rl, Z 3 =  7c2)" The basic equation expressing the relationship 
between Z ~ and x" is 

co P = x ee r~ e. (1) 

The "reality" structure on Z ~ is given by the antilinear map 

Z % - ,  Z * ~ = ( Z  1, - Z °, Z 3, - Z2), 

coPI__+co, P=(co2 _ c o l ) ,  

rCe~.~z, =(=2, _ tel). (2) 

Equation (1) is preserved under this map, in the sense that co*'=x~'Q~zQ if and 
only if co*e=xeQ ~ .  [-This holds providing, of course, that x ~ is real.] 

Let us assume from now on that rct and r~ 2 are not both zero (i.e. remove 
from (E ~ the subspace ~e=0).  Then if we factor the np-space by the pro- 
portionality relation rce ~ 2~z e (2 being a non-zero complex constant), we obtain 
the complex projective space t121P 1, which is simply the Riemann sphere. The 
antilinear map (2) is exactly the antipodal map on this sphere. In terms of the 
coordinate {=~l /r~z  (which is allowed to take the value oQ), the map (2) is ~-~ 

Cover CIP 1 with two patches U and U, such that U contains the point 
{=0,  0 contains the point ~= c~, Uc~ U is an annular region containing the 
circle I l l= l ,  and U and U are conjugate to each other (in the sense that the 
antipodal map (2) is a 1 - 1  map of U onto ~7). 

Now we are in a position to describe the construction. Let g(Z ~) be a 2-by- 
2 matrix of functions of Z ~, such that 

(i) g is homogeneous of degree zero in Z =, i.e, g(2Z=)=g(Z =) for all 2 + 0 ;  
(ii) det (g)= 1 ; 

(iii) g(Z)*=g(Z*),  where the * on the left-band side denotes complex con- 
jugate transpose; 

(iv) g(Z ~) is complex-analytic in a suitable region (by "suitable", it is meant 
that g(xearco, rcR) is analytic for (x, ~ ) ~  x (Urn ~7), where ~ is some region in 
IR4; this makes sense because g, for a fixed value of x, is homogeneous of 
degree zero in ~v by condition (i), and so is a function of {=~l/rt2); 
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(v) g can be "split": 

g(x. ~z, re) = it(x, ~) h(x, ~)- 1, (3) 

where h and h are 2-by-2 matrices which are analytic on ~ x 0 and N x U 
respectively, 

Let Dp denote the differential operator Dl ,=@l-~p2 ,  where g1,e=O/#xPe. 
Then De(x eR 7@=0, so operating on equation (3) with Dp yields 

h-l  D1,h=h-l D1,h. 

Now the left-hand side of this equation is analytic on N x U and the right- 
hand side on N x U, so both sides must be analytic on N x CIP ~, whence (by a 
generalized form of Liouville's theorem), both sides must be linear in ~. This 
enables us to define functions A1,e(x ) by 

A1,1 -- ~At, 2 = - ih- 1 De h. (4) 

This field Ape(x ) (or, equivalently, Au(x) defined by A, dx"--Aeedx1"e ) is the 
gauge potential. 

To see that Au satisfies the self-duality equations is straightforward. Operat- 
ing on (4) with e1"eD e (where e°°=e11=0, e ° ~ = - ~ 1 ° = 1 )  gives equations on 
At, e which (translated into the x"-coordinates) are 

J e G~ =Gu~, 
2 ~ (5) 

G u~- OI, A~-O~Au + i[A~,, A~]. 

Certainly A,(x) is smooth in .~ (in fact, real-analytic), because by assumption 
the matrix h is. Finally, we would like to be sure that Au takes values in the 
Lie algebra of SU(2), i.e. that trace (A~,)=0 and A*=Au. This requires a 
discussion of the gauge freedom involved in the above construction, which 
arises as follows. 

The splitting (3) is not unique: the freedom in h and ~ is h~--~hA, h~-*hA, 
where A is a 2-by-2 non-singular matrix of complex-valued functions of x; in 
other words, A(x)eGL(2, C). This leads to 

A~,v--+A- 1A~,A-iA- ~ O~,A, 

a GL(2, ~) gauge transformation of Au. As a consequence of conditions (ii) and 
(iii) on the matrix g, it is possible to choose a gauge such that trace (Au)=0 
and A*=A,.  This is proved in [7]; the idea is that h and ~ can be chosen to 
satisfy~(x, _ ( - i ) =  +h(x, [ ) . - i ,  from which the above conditions on A, fol- 
low. 

We see, therefore, that a matrix g satisfying :requirements (i)-(v) produces a 
smooth solution Au of the SU(2) self-duality equations on the region ~ in IR 4. 
In fact, this procedure produces all such solutions [13], but this will not be 
proved here. 

Finally, it should be noted that there is some freedom in the matrix g: 
many different g's will produce the same A,. This may be thought of 
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geometrically if we recognize that g is the "patching matrix" of a vector 
bundle over twistor space, and there is an equivalence relation on the set of all 
such vector bundles [13]. What it amounts to is the following: 

g~-~ =rhgm, 

where rh and m are non-singular 2-by-2 matrices of functions of Z ~, homo- 
geneous of degree zero, such that nS(x.rc, ~z) and m(x.~z, ~) are analytic for 
(x, ~ ) ~  x 0 and (x, ~)eN x U respectively. We say that g and ~, are equivalent. 
It is easy to see that g and g, produce the same A, (essentially, this is because m 
and rh depend on x only through the combination x e°- rCQ, which is annihilated 
by De). 

3. The Ansatz M~, 

The difficult part of the above solution procedure is that of finding the 
matrices h and ~. Even if we know (by some implicit argument) that a splitting 
exists, it may be impossible in practice to find explicit expressions for h and ~. 
There is, however, a large class of cases that can be treated explicitly, namely 
those arising from matrices of the form 

where f and F are functions of Z ~, homogeneous of degree zero and analytic 
for (x, ~)eN x (Uc~ [?). The reason that this matrix is denoted ~ rather than g is 
not hard to see: if we required it to be subject to the reality condition g(Z)* 
=g(Z*), then F would have to vanish. So instead we require that ~ be 
equivalent to a matrix g satisfying the reality condition. We shall return to this 
question of reality later; first let us consider how to obtain A, from ~, using an 
argument which generalizes that in [11]. 

From now on, let the number n which appears in ~ be a positive integer 
(the n < 0 cases are essentially trivial). The first step in splitting ~ is to split the 
function f :  

(7) 

where # and fi are analytic functions on N x U and N x [7 respectively. That 
such a splitting of f is always possible is a consequence of elementary complex 
analysis; in fact, we can express # and / i  as contour integrals 

o 

fi(x, = o ,  (8) 

where f2=(2~zi)-lf(xl'e~co, ~R)d~(~-~')-1, and the contour of integration is I~1 
=1, ~(2r~i~)-ld~= 1. The difference between # and fi arises from the position 
of ~' in relation to the contour: for #, take I~' l<l;  and for fi take J~'l>l. 
Equation (7) then follows from Cauchy's integral formula. 
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If we now multiply the matrix ~ on the left by the matrix diag (e-4, e ¢) and 
on the right by diag(e u, e-~), we obtain 

where p=Fe ~-;; and Corrigan et al [11] have already shown how to split a 
matrix of this form into matrices h and h (which they denote h and k 
respectively). The present case is more general than theirs, because in their case 
the function p deRended on x only through the combination xeOzco, whereas 
here its dependence is more general (since that of p and ~ is more general). But 
this difference does not affect the computation of h and h; it only enters at the 
final stage, when A, is computed. Choosing Yang's R-gauge [14], one obtains 
the following (for more details, see the appendix), 

Acting on Eq. (7) with Dp gives Dp p =Dpfi, which (again using a Liouville- 
type argument) enables us to define a field BFe(x ) by 

Bp 1 -- ~B~, 2 = Dp #. 

In fact, B u is the potential for a self-dual Maxwell field, and the transformation 
f ~ ( p ,  fO-~B~Maxwel l  field is exactly the Penrose transform [15]. Now 
define fields Afix) for r=O, +1, +2, ... by 

A~(x) =(2xi) : ~ (~-: p(x, ~) d~, (9) 

where the contour is the same as the one used previously. It is easily checked 
that the A~ satisfy 

(~P1 -k-2Bp1 ) Ar=(~?p2 + 2BFz) A~+ 1" (10) 

Let M be the n-by-n matrix defined by M~=A~+ . . . .  ~ for l<r , s<n  
(Corrigan etal [11] refer to this matrix as D(")), and let E, F and G be the 
"corner elements" of its inverse: E=(M-1) : I ,  F=(M-~)I , ,  G=(M-:) , , .  Then 
the gauge potential Au 

where Vpo = ~?Pe - 2 Bvo .. 

is given by 

-i  [ V, IF 0 ] 
A,:=~ [-2~p2G - V p l F  ' 

[-v 2v -2v,:E] 
Ap2=2--F 0 F),2F J '  

(11) 

This, then, is the ansatz ~, :  given the functions f and/" which determine ~, 
the gauge potential (11) obtained from them is a solution of the self-duality 
equations. It generalizes the ansatz d ,  of [10, 11], and coincides with it if f = 0 .  
Since f and F are effectively functions of three variables (being homogeneous 
of degree zero), dn provides solutions of the self-duality equations depending 
on two free functions of three variables each. 

An important question remains to be answered: what are the conditions on 
f and F which ensure that Au is smooth and su(2)-valued? This is a corn- 
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plicated problem, and all that will be done here is to give some sufficient 
conditions on f and F. First, let us deal with smoothness. It is proved in the 
appendix that if the fields A,, for lr[ __<n, are smooth in the region ~ in IR 4, and 
if det(M) is nowhere-vanishing in N, then A, is real-analytic in ~.  This 
condition on the A~ is not necessary for smoothness of A,, merely sufficient. 

Secondly, we come to the question of reality, which was mentioned at the 
beginning of this section. The matrix ~ has to be equivalent to a real matrix g, 
i.e. one satisfying g(Z)*=g(Z*). What will be done here is to give two sets of 
conditions on f and F, each of which is sufficient to ensure reality. 

Case (a). f imaginary, F real, n odd. By this it is meant that f and F satisfy 

f(Z) =- f (Z*)  and F(Z)=F(Z*). These conditions clearly imply that the ma- 
trix 

satisfies the reality condition g(Z)*=g(Z*), provided that the integer n is odd. 
(Recall that * maps ~ to _~-1.) If n = l  and f = 0 ,  we get the well-known 
Corrigan-Fairlie-'t Hooft-Wilczek ansatz. 

Case (b). f real, F = H 1 [e  f + ( _ 1)n e-f], where H = (~ 17~2)- n p(z)  and P(Z ~) 

is a homogeneous polynomial of degree 2n, satisfying P(Z)=(-1)'P(Z*). 
There is no restriction on n. Then the matrix 

g=[~'eI[o F - 1  F [°1 
is real, as is easily checked. Note that ~'H(x.n, n)=(nz)-2"p(x • n, n) is nec- 
essarily analytic for ~eU (since n2=0  occurs in U), as required by the de- 
finition of equivalence given in Sect. 2. The multi-monopole solutions are 
generated by f ' s  and F's belonging to this class, as we shall see in the next 
section. 

Finally, it should be emphasized that in order to get a real gauge field, it is 
not necessary for f and F to belong to either class (a) or class (b); it is merely 
sufficient. 

4. The 2-Monopole Solution 

If we assume that A~ is independent of the "imaginary time" coordinate x°~ 
then the self-duality equations (5) become the Yang-Mills-Higgs-Bogomolny 
equations 

= - -  Ejk  4 ' ,  

Gjk = O r - + i [Aj ,  

Djd?--Oj¢+i[Aj, qS], 

where the x°-component A 0 of the gauge potential has been identified as the 
Higgs field q~ [16, 6, 7]. These are the equations for minimum-energy, static, 
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purely magnetic Yang-Mills-Higgs fields, in the Prasad-Sommerfield limit 
where the Higgs self-interaction vanishes [5, 6]. The appropriate boundary 
condition is 

Ijq~l] ~1  as r ~ o o ,  

where II~bl]2=-det(4) and r2--x2+y2+z 2 (from now on we shall use the 
coordinates x = x  3, y=x  1, z=x2). Smooth su(2)-valued solutions of the YMHB 
equations, with this boundary condition, are called multi-monopoles. 

The norm [f4i[ of 4 necessarily has the form tTOTl=l-½n/r+O(r-Z) as 
r ~ o o ,  where n is a positive integer called the topological charge [17]. By 
definition, we say that the location of the monopole(s) is at the point(s) where 
4) vanishes. 

The first monopole solution to be discovered was spherically symmetric 
and had n =  1 [5]. This solution can be seen to arise from the ansatz d 1 [16], 
although that was not how it was first found. Then it was observed that d 2 
generates an axially-symmetric n = 2 solution [7]. And it seems likely that ~n, 
for n >  3, generates an axially-symmetric solution of charge n (at the time of 
going to press, there is still a slight gap in the proof of this) [8]. All these 
monopoles are located at precisely one point in space; this is a consequence of 
the axial symmetry [18]. 

Meanwhile, Taubes had given an existence theorem for non-axially-sym- 
metric multi-monopole solutions located at several points [6]. But his proof is 
only valid if the monopoles are sufficiently far apart. It seemed likely that 
solutions representing monopoles close together also existed, and this is indeed 
the case: it was recently announced that the ansatz ~42 generates such a 2- 
monopole solution [12]. The details of this construction will now be given. 

From the analysis of Sect. 2, it is easy to see that if g depends on co ~ and 0 2 
only through the combination 

7 = - - i (D1 /~1+i~2 /7C2 ,  

then g(x.rc, re) is independent of the coordinate x °. Substituting co=x.  7~ into 7 
gives 

~(x, y, z, 0 = ~ - 2 z - ( ~ -  1, (12) 

where {=x+iy .  Notice that 7 is real, in the sense that 7(x, y,z, 0 = 7 ( x , y ,  z, 
_~--1). So from now on we require that g be a function of 7 and ( only. 

Let us proceed to apply the results of the previous section, and to use the 
ansatz d2  with the reality condition of case (b). The function H has to be a 
"real" polynomial of degree two in 7, ( and (-1. The most general such 
polynomial contains nine real parameters. One of these is an overall scale 
factor and is irrelevant: it drops out when one finally computes A~. Six of the 
others may be removed by making a rigid motion of the xyz-space. This leaves 
us with two parameters, and an H of the form 

H = 7 2 + 6 ,  
(13) 

(5=½pq(~-~ 1)+q, 

p and q being real parameters. 
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Now we have to select the function f We want F to be smooth even when 
its denominator H vanishes (this will guarantee that the A,. are smooth), and 
we want f to be linear in y (this seems to be required by the boundary 
condition on ~b. The simplest f having these properties is f=srcc5 27. (From 
now on, rc denotes the usual real constant, and has nothing to do with the 
variables rcp.) Let us assume that q>0,  and choose the branch of ~ which has 
positive real part; then f is analytic in a neighborhood of I~[ = 1, as required. 

Now that we have f and F, we can proceed with the calculation. The first 
step is to split f i n to /~ -# .  Here a choice arises, since/1 and/~ are not unique: 
the contour integral formula (8) for # and/~ is just one solution. For there is 
the freedom #~--,#+2, /~-@+)~, where 2=2(xP~); this corresponds to a gauge 
transformation of the Maxwell potential Bu. And if f is linear in co P (as it is in 
our case), then B, can be gauged away altogether, at the cost of introducing 
explicit x°-dependence in the intermediate stages of the calculation. Since 
B u=0  makes things simpler, we shall choose this gauge. But it should be em- 
phasized that it is possible to do the calculation (and obtain the same final 
answer for the Yang-Mills field A,) without the x°-variable ever making an 
appearance. 

So, suitably adapting the contour integral formula, we find that #(x PQ, 0 
and/~(x Pe, ~) are given by 

2 ~  

l q - ~  ~ ( l + i p  sin O)--~AdO, (14) 
0 

where A = - i t + ( ~ - e i ° ) - l ( ( + z ~ - e i ° ~ + e W z ) ,  and the square root in the 
integrand is taken to have positive real part. For t~1<1, (14) gives #; and for 
[~t>1, (14) gives ~. It is easily checked that Dp#=0,  so Bu=0 as required. 

The next step is that of computing the functions A r according to the 
integral formula (9). This integral can be done by finding the zeros of H and 
computing the residues of p at each one, but since H is effectively a quartic 
polynomial in ~, this is messy. And of course the integral (14) is also rather 
messy. For the time being, let us just make the observation that because of the 
careful way in which we chose f, the function p(x Pe, ~) is analytic in a 
neighbourhood of t([ = 1, for all xPe; and so the functions Ar(x) are everywhere 
real-analytic. 

It is possible to find out what happens as r--,oo, for then H can be 
"approximately" factorized and the integral (9) can be computed. This calcu- 
lation gives 

2 det(M)-=A 1 A _ 1 - A 0 =  { - l~dr-4+O(r -s)} exp {41(it+r)}, 

llc~tl = I + O(r-1), 

2r~ 

where I=¼q -~ ~ ( l + i p  sinO)-~dO. 
0 

So in order to get the right boundary behaviour we must have I = 1, and this 
determines the constant q in terms of p. We see also that e - 4 i t  det (M)-- . -c~ 
as r ~ oo. To be certain that the gauge field A, defined by (11) is non-singular, 
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it is sufficient to prove that det(M) is nowhere zero (since we already know 
that the A,. are smooth). Certainly de t (M)+0  for p sufficiently small, as the 
following argument shows. 

When p=0 ,  the field becomes that of the axisymmetric 2-monopole so- 
lution [7], where the calculations are relatively simple. In particular, 

e -  4it det (M)lp = o = 1(  a2  q- b2)- 2 { (C  2 - -  bZ)- 1 cos 2 (2 b) - (a  2 q-  C 2 ) - it cosh 2 (2a)}, 

(15) 

where c=rc/4 and (a+ ib) 2 = ( z +  ic)2+ {~. Some simple estimates show that the 
expression (15) is negative for all x, y, z; and, in fact, it is bounded away from 
zero by a finite amount. Therefore, since det(M) is analytic in p and 
e - ~ * d e t ( M ) - + - o o  as r-+oo, there exists a positive number Po such that 
de t (M)+0  for all x, y, z and all lP] <P0. 

The conclusion is, therefore, that for [pt<po our construction yields a 
monopole solution. Its topological charge is n = 2 (by continuity, since the p = 0 
monopole has n =2  [7]. The claim is that (at least for sufficiently small p) the 
solution for p ~ 0  represents two monopoles located at two distinct points in 
space, and that the distance between them is related to p. Consequently, the 
solution is not symmetric about any axis in space, even the line joining the two 
points [18], except of course when p=0 .  To see that this claim is valid, it 
suffices to compute the Higgs field q5 for infinitesimal values of x, y, z and p. 
(In the p = 0 case, ~b vanishes at x = y = z = 0.) This infinitesimal calculation is 
easily carried out, and yields (q5 = q5" er a, where o ~ are the Pauli matrices): 

(b 1--(32}~ 2) l(p2.~e--x2q-y2), 

q52= -(16)o2) -1 xy ,  

~b 3 = (8/7z 2 - 1 ) (2z -px ) ,  

plus third-and higher-order terms, where 2 - 2 =  32(12/r~ 2 -1 ) .  We see that the 
+1_2)~. zeros of ~b are located at x =  __p2, y=0 ,  z =  _2-p , so as p moves away from 

0, the superimposed 2-monopole separates into two distinct monopoles. 

5. Conclusion 

We have seen that there is a sequence ag 1, d 2, ag 3 . . . .  of ans~itze, each one of 
which generates a complex-valued solution of the self-duality equations (5) 
depending on two arbitrary complex-analytic functions of three variables each. 
One expects that the general complex self-dual field would depend on three 
arbitrary functions of three variables each. Is it the case that the union of all 
the ans~itze produces all self-dual solutions, or perhaps a dense subset of the 
space of all solutions? It is conceivable that this may be the case (there is 
enough " room"  in the countable sequence of ans~itze), but this remains a 
conjecture. 

What one can say is that the ans~tze are certainly relevant to the two most 
important cases where the self-duality equations are used - instantons and 
monopoles. For it is a theorem that all self-dual instantons can be obtained 
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out of the union of the ans~itze [10]. And whiie no corresponding theorem for 
monopoles is known at present, it does appear that the ans~itze will produce, 
for any n>0,  solutions of charge n possessing (4n-1)  degrees of freedom [19], 
which could well be the most general monopole solutions [20]. 

It seems likely that the expressions for general n-monopole solutions, as 
functions of x, y and z are so complicated that there would be little point in 
trying to write them out. Of course, since we have explicit formulae, the fields 
could be computed numerically to any desired degree of accuracy. One attrac- 
tion of the technique presented here is that the matrices g are relatively simple, 
even when the corresponding space-time fields A s are extremely complicated. 
So one can deduce much about instantons and monopoles (such as their 
existence!) without having to write down space-time expressions for them. 

Appendix 

The purpose of this appendix is to add some details to the discussion of Sect. 3, 
and to prove that if the A r are smooth and de t (M)+0 (where M,.s=A,~+s_,,_ 1 is 
an n-by-n matrix), then A s is smooth in some gauge. The analysis here is 
analogous to that in [11]. 

We want functions c/, 6, ~, d, a, b, c, d of x and ~, with the first four analytic 
in N x/_? and the last four in N x U, such that 

g =  [ ~ ;  e¢ ~- ' I e -¢ ]=  [~ ~d] [-dc -ba] 

and ad-bc=Sd-t)~=l.  This is the "split" of ~ into h and h. The most 
general form for these eight functions is as follows. It involves #, fi and A~ 

(recall that f=fi- ,u  and p=Fe-~-e= ~ A k(k), and 2 n + 2  complex-valued 
- o o  

functions of x, namely c o . . . .  , %, d o . . . .  , d,. 

e~c=e~'c = ~ Ck~ k, 
k - O  

e"d=e~("d = ~ dk~ k, 
k = 0  

0 

~=e' y~ 0~ k, 
k =  ~-oo 

0 

~,= e~ 2 ~ ~, 
k--  -- co 

a = - e" ~ 0 k (k-,,, 
k = l  

k - n  b=  - e  s 4k ( , 
k = l  
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where 

Ok= ~ zig kC¢, 
/ = 0  

3 '=0 

In order that a and b should be analytic at ~ = 0, it is necessary to constrain c k 
and d k in such a way that 

Ok=Ok=O for 1 <k<n.  (16) 

And the unimodularity contition a d - b c =  1 amounts to 

c o qb n - d o 0 n = 1. (17) 

The Eqs•(16) and (17) give 2 n - 1  conditions on the 2 n + 2  functions Ck, dk; 
this leaves, as one would expect, three free functions of x representing the 
gauge freedom. But we need to be sure that the Eqs. (16) and (17) can in fact 
be solved, and the condition which ensures this is de t (M)+0 ,  as we shall 
now see. 

Consider the (n + 1)-by-(n + 1) matrix 

A_n A ... A 0 
N =  

• A .  ! 1 • 

LA:_ 1 A o . . . . . . . .  

Clearly de t (N)=det (M),  so if det(M)4:0, then the rows Vo, vl . . . . .  v n of N are 
linearly independent. We think of v k as vectors in 112 n+l, and also of 
c = ( c  0 . . . . .  c,) and d = ( d  0 . . . . .  dn) as such vectors• Eq. (16) says that c and d are 
orthogonal to v:,  . . . , v  n (with respect to the "complex-Euclidean" metric on 
~;~+~). In other words, c and d lie in the complex 2-plane P orthogonal to 

1~2~ " • " ~ •n' 

Det(N)4=0 also implies that the projections e~ o and e,)l of Vo and vl into P 
are linearly independent. It follows that Eq. (17), which can be written 

(¢D 0 • e ) ( ( D  1 ' d ) - ( o . 1 0  • d ) ( 0  1 • c ) =  1, 

has a solution (in fact, many  solutions) for e and d. This proves the desired 
result, for then ~ can be split as in Eq. (3)• 

Sect. 3 we chose Yang's R-gauge [14] in arriving at Eq.( l l ) .  This gauge 
corresponds to do=c , ,=0 ,  co=d .. A priori, this might be a singular gauge, tbr 
the function F may vanish without det(M) vanishing. In view of what we 
proved above, such a singularity can always be removed by a gauge transfor- 
mation. 

References 

1. Belavin, A.A., Polyakov, A.M., Schwarz, A.S., Tyupkin, Yu.S.: Phys. Lett. B59, 85-87 (1975) 
2. Jackiw, R., Nohl, C., Rebbi, C.: Phys. Rev. D15, 1642-1646 (1977) 



574 R.S. Ward 

3. Atiyah, M.F., Hitchin, N.J., Drinfeld, V.G., Manin, Yu.I.: Phys. Lett. A65, 185-187 (1978) 
4. 't Hooft, G.: Nucl. Phys. B79, 276-284 (1974) 
5. Prasad, M.K., Sommerfield, C.M.: Phys, Rev. Lett. 35, 760-762 (1975) 
6. Jaffe, A, Taubes, C.: Vortices and monopoles. Boston: Birkh~iuser, 1980 
7. Ward, R.S.: Commun. Math. Plays. 79, 317-325 (1981) 
8. Prasad, M.K.: Commun. Math. Phys. 80, 137-149 (1981) 
9. Ward, R.S.: Phys. Lett. A61, 81 82 (1977) 

10. Atiyah, M.F., Ward, R.S.: Commun. Math. Phys. 55, 117-124 (1977) 
11. Corrigan, E.F., Fairlie, D.B., Yates, R.G., Goddard, P.: Commun. Math. Phys. 58, 223-240 

(1978) 
12. Ward, R.S.: Phys. Lett. B, (to appear) 
13. Atiyah, M.F.: Geometry of Yan g-Mills Fields. Pisa: Scuola Normale Superiore 1979 
14. Yang, C.N.: Phys. Rev. Lett. 38, 1377-1379 (1977) 
15. Eastwood, M.G., Penrose, R., Wells, R.O., Jr.: Commun. Math. Phys. 78, 305-351 (1981) 
16. Manton, N.S.: NucI. Phys. B135, 319-332 (1978) 
17. Arafune, J., Freund, RG.O., Goebel, C.J.: J. Math. Phys. (NY) 16, 433-437 (1975) 
18. Houston, P.,O'Raifeartaigh, L.: On monopole systems with weak axial symmetry. PreprinL 

Dublin 
19. Corrigan0 E., Goddard, P.: Commun. Math. Phys. 80, 575-587 (1981) 
20. Weinberg, E.: Phys. Rev. D20, 936-944 (1979) 

Communicated by A. Jaffe 

Received April 8, 1981 

Note Added in Proof, N. Hitchin has recently shown that every n-monopole solution can be 
obtained from the ansatz sO,,, with f=7.  This makes it even more likely that the proposed (4n-1)- 
parameter family of solutions [19] is correct, and represents the general multi-monopole configu- 
ration. In [19], the function f (which there is denoted 0) is a more general polynomial in y; but it can 
be reduced to f = 7  by an equivalence transformation on g and a coordinate transformation 
in N 3. The same remark applies to the function f=½~ 6 ~7 used in Sect. 4 above. 


