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Abstract. The classical Yang-Milts equations in four-dimensional Minkowski 
space are invariant under the conformal group. The resulting conservation 
laws are explicitly exhibited in terms of the Cauchy data at a fixed time. In 
particular, it is shown that, for any finite-energy solution of the Yang-Mills 
equations, the local energy tends to zero as t---, oo. 

1. Introduction 

Since the conformaI group is 15-dimensional, Noether 's  theorem implies that there 
must exist 15 independent conservation laws for the Yang-Mills equations [13]. 
Ten of them are the familiar laws of conservation of energy, momentum and angular 
momentum. One is the dilation law due to scale invariance and the remaining four 
are the inversional laws. 

F rom the first inversional taw comes the major decay result. More precisely, 
for any smooth solution for which the rF "v are square integrable, the energy within 
any cone, which expands at a strictly slower speed than that of a light cone, decays 
to zero at the rate t -2 as t~oo .  Moreover, for any finite-energy solution, the 
energy within such a cone tends to zero as t--, oo. This can be interpreted as stating 
that all the energy of a solution radiates out along the light cone; that is, at 
characteristic speed. In particular, there are no "classical lumps". Earlier results 
asserted that the energy within a fixed sphere tends to zero for some sequence of 
times t,--, oo [1, 4, 11] and that the radius of gyration moves at characteristic speed 
[2]. The exact analogue of our result was first derived for the linear wave equation 
in [5, 14] and for the nonlinear wave equation V]u = u 3 in [9]. 

The conservation laws are exhibited in terms of the Cauchy data at fixed times, 
as is appropriate in the study of the existence and asymptotic behavior of 
solutions. An exposition of these ideas in the case of the nonlinear Klein-Gordon 
equation may be found in [10]. A similar program of deriving conservation laws is 
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carried out in the case of the Maxwell-Dirac equations and the Klein-Gordon- 
Dirac equations in [3]. The ideas in [10] show clearly that useful asymptotic 
information can also be derived for many systems which are not conformally 
invariant. In particular, the systems studied in [12] enjoy the t-2 decay rate, but 
we have not carried out the calculations. 

In Sect. 2 we list our notational conventions. We have intentionally made an 
effort to write all the equations explicitly using only standard calculus notation. 
Section 3 contains the 15 conservation laws. In Sect. 4 we present the decay result. 
We also derive some "cone estimates". These estimates are bounds for certain 
quadratic expressions in the field strengths integrated over light cones. Such 
estimates are crucial ingredients in the scattering theory of the nonlinear Klein- 
Gordon equation [6]. In Sect. 5 we consider two special gauges in which the 
potentials A" are shown to have appropriately bounded square integrals. We also 
explicitly write the 15 conservation laws in terms of potentials in these gauges; 
these explicit expressions could prove to be useful in a future analysis. 

In this paper we do not discuss the question of the existence of solutions. That 
has been done recently by Segal [8]. Using the quasi-linear character of the 
equations, he shows that solutions to the Cauchy Problem exist and are smooth 
locally in time, if the initial data are smooth. If one could prove that all the second 
derivatives, for instance, of the potentials, had a priori bounded square integrals, 
the global existence of solutions would follow. In [8] it is shown that a weak limit 
of solutions of certain truncated equations exists globally. For an exposition of 
such existence questions in the context of the nonlinear Klein-Gordon equation, 
see [t0]. In the present paper we simply assume that a smooth solution of the 
Yang-Mills equations is given in all space-time. 

2. The Yang-Mills Equations 

For convenience we choose the gauge group to be SU(2) and consider the 
unknowns AU(x,t) (#=0, 1,2,3) as real three-vectors, following [7]. The com- 
ponents of each A" are written as A~', k =  1, 2, 3. The physical variables are 
x"=(x° ,x l ,  x2,x3), with x°=-t. We write xu=gu~x ~ (sum on v) where the metric 
guy has signature - + + + .  Thus xu=(xo, x l , x 2 , X a ) = ( - x ° , x l ,  xZ, x3). We 
further define 

~? . ~1 if i=j  
0n - ~x, c~i; = ' ~0 i@j  ; 

and denote by eij k the standard permutation symbol (eij k = 0 if two indices are 
equal ; eij k = + 1 (resp. - 1) if i, j, k is an even (resp. odd) permutation of 1, 2, 3). 

The Yang-Mills field strengths are defined by 
3 

F~*=¢?"A;-~VA~+g ~ eijkA~A ~ (1) 
j , k = l  

where g is a positive constant and i = t, 2, 3. In vector notation, (1) can be written 
as  

F ~'~ = ~ t 'A ' -  Q~A ~' + gA ~' x A ~ (2) 

(#,v=0, t,2,3) 
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where A x B denotes the usual cross product of two three-vectors. We also employ 
the notation A- B for the ordinary dot product of two such vectors. Now define a 
differential operator by 

3 

D~') =,~jO ~ + o ~ ~kjA~ (3) 
k = l  

(v=0, t , 2 , 3 ; i , j = 1 , 2 , 3 ) .  

Then the Yang-Mills equations take the form 

3 3 3 

--  ~,  Dg"F#°+ E E D,)F~ ~ = 0  (4) - - l j - - j  - -  
j = l  ]=1 v=1 

(#=0, i ,2 ,3 ; i=1 ,2 ,3) .  

For convenience, we employ throughout the rest of the paper the following 

conventions: all sums ~ are taken over the indices k=1,2,3.  The phys i ca l  
k 

variables  wil l  be deno ted  by  t, x 1, x 2, x 3. 

We define the analogues of the electric and magnetic field strengths by 

E k = F k° (k = 1, 2, 3) (5.1) 

and 

H 1 = F 3 2 , H a = F 1 3 , H  3 = F  21 " (5.2) 

Let E be the 3 x 3 matrix whose columns are E 1, E 2 and E 3. Let H be the 3 x 3 
matrix whose columns are H 1, H 2 and H 3. In this notation the Yang-Mills 
equations take the following explicit form. 

63H 1 ~E 2 ~E 3 

0t 0X 3 OX 2 

0 H  2 0 E  3 0E 1 

~t OX 1 OX 3 

OH 3 OE 1 OE 2 

~t a x  2 Ox 1 

OE 1 ~ H  3 OH z 

& Ox 2 Ox 3 

OE 2 OH l OH 3 

Ot ~x  3 Ox 1 

OE 3 OH 2 OH 1 

Ot OX 1 OX 2 

OA k ~A  ° 
- E  g 

& Ox k 

+ g E  3 x A 2 .+gA 3 x E z + g A  ° x H 1 

+ g E  t x A 3 + g A  1 x E 3 + g A  ° x H 2 

+ g E  2 × A 1 + g A  z x E 1 + g A °  x H 3 ; 

_ _  + g H 2  x A3 + g A 2  x H3 + g A °  x E 1 

+ g H  3 × A 1 + g A  3 x H 1 + g A  ° x E 2 

+ g H  1 x A 2 + g A  a x H 2 + g A  ° × E 3 ; 

(6.1) 

(6.2) 

(6.3) 

(7.1) 

(7.2) 

(7.3) 

gAg x A ° (k = 1, 2, 3) ; (8.k) 
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with the "constraints" 

~Ek k k 
~ ( ~ - - + g A  x E ] = 0 ,  
k \CXk / 

H k 

R. T. G ta s sey  a n d  W. A. S t rauss  

(9) 

3. The Conservation Laws 

The energy is obtained as follows. Multiply (take the dot product of) (6.j) by H j and 
(7.j) by E j (] = 1, 2, 3) and add the resulting six equations. The twelve cubic terms, 
each of which is a scalar triple product, alt cancel. The twelve quadratic terms 
combine to give the energy identity 

~e(E, H) = ~ Op~ 
Ox k 

where 

(e) 

e(E, H) =½(IEi 2 + IH[ 2 )=~(11 Ek i 2 + [ Hk 1,2~ 
k 

and 

(lo) 

pl = H 2 " E  3 _ E 2 " H  3 

p2 = H a "E 1 _ E 3 "H ~ 

p3=H1.E2 E 1 H 2 (11) 

Of course if (e) is integrated over all space and the solution vanishes at infinity 
(which we always assume), we get the conservation of energy: 

e( E, H)dx = const. 

Unless otherwise specified, the symbol Sdx denotes integration over all of 3-space. 
The momenta are obtained as follows. The expression 3pt/& is the sum of four 

terms. Use Eqs. (6.2), (6.3), (7.2) and (7.3) to substitute for the time derivatives. 
Upon adding and combining terms, we obtain 

@1 

& ~x~ ½[IE212 + IE312 + IH212 + IH312] 

-- ~X 2 l i t  1" H 2 -I-E 1. E2] - ~x3 [Hi" H3 --t- E 1. E 3] 

/aE ~ ~E~t.~, /en~ aHa~ HI  

+ gE 2 .(E I × A2) + gE 3 .(g 1 × A 3) 

+ gH 2.(H 1 x A2)+ gH3.(H 1 x A3). 
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If Eqs. (9) are now used, the last three lines greatly simplify and we obtain the 
momen tum conservat ion law. The result is 

~?pJ ~e --  ~ " k • k = L ~ -  ( E J" E + H J- H ) (j = t, 2, 3).  (p J) 
~t t?xj k OXk 

Thus conservation of momentum is expressed by ~pJ(E, H)dx = const. 
The  other  eleven conservation laws are direct consequences of  Eqs. (e) and (p~). 

The angular momenta are the integrals of XEP 1 --Xlp 2, x3p2--x2P 3, Xlp 3 --x3p 1, 
and x~e + tp J (j = 1,2, 3). The dilation identity (scale invariance) gives 

~[te(E,H)+~kXkpk(E,H)]dx=const. (12) 

The first inversional identity is obtained as follows. Multiply (e) by r 2 + t  2 
( r =  Ixl) to obtain 

ff--f [(rZ + tZ)eJ-- 2te= ~ ~-~k [(rZ + t2)pk] -- 2 ~ 

Multiply equation (p~) by 2txj to obtain 

0 . . 0 • ~ [2tx ,(E j" E k -k H r" Hk)] [2tx~pJ] - 2xjpJ = Ox~ [2tx~e] - ~ 8x~ 

+ 2t(lEJ[ 2 + [HJ[ 2 ) -  2te 

( j=  1, 2, 3). Summing the resulting four equations, we obtain 

~[(r 2 + t2)e + 2t ~ xjpa] = ~ c3nk • ~ X k  (13) 

where 

n k = (r e + t2)p k + 2tXke-- 2t ~ xj(E j. E k + H i. Hk). 
J 

Finally, the last three inversional conservation taws are 

= const. (j = 1, 2, 3). 

4. Est imat ions  

The fundamental  bound  is that  of  the energy: 

2 ~(1Ekl2 + [ tlk]2)dx = const. 
k 

Tha t  is, all of  the t8 components  of E and H have square integrals which are 
bounded  in time. 

Next, let K be any light cone. Then we claim that  I2 of the 18 components are 
square-integrabte on K. These 12 components  vary from point  to point  on K. 
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Suppose,  for instance, that  K is the posit ive light cone {]xt = t}. In tegrate  (e) over  
the 4-dimensional  region {Ixl < t <  Z}. Then 

(1 2 1  2 k~ k ' d S 1  I V  2 ~lel +~-Iul + cokp~_Te-~ ~ (le12+lu12) dx 
lxl < T  Ix[<t=T 

Xk where o k = -  and dS denotes the usual measure  on the surface of K. Lett ing 
r 

T ~  o% we obtain  

~ ( !  2 1 2 ~cokPk)dS<~2 const. 21E[ +-2-[H[ + ~([gle+lHl2)dx= 

The integrand on the left is nonnegat ive  and  can be writ ten as a sum of squares. 
F o r  this purpose  we introduce the following notat ion.  Recall that  E denotes the 
matr ix  whose columns are E 1, E 2 and E 3, and H the matr ix  whose columns are H 1, 
H 2 and H a. N o w  E r is the t ranspose  of E and  tE[ 2 = t r ( E r E ) =  ~IE~I 2. 

i,j 
X 

Let co be the vector  ~ .  Given  co with Ico[ = 1, we introduce unit vectors e, fl 

such that  c~, fl, co form an o r thonorma l  basis for 11t 3 with e x fl = co. We then have 

IN[ 2 = [ECO[ 2 -}-leon[ 2 n t- IEft[ 2 

and  

till z = IHcol e + ttI~l 2 + [Hfl] 2 

since c~, fi, co are or thonormal .  Next,  we calculate 

colP 1 = (ezfla - e3f12)( H2" E3 - E2" H3) 

= ~ 2 f 1 3 ( H  2- E 3 __ H 3 . E 2) + ~ 3 f 1 2 ( H  3- E 2 _ H 2 . E 3 ) .  

Hence we can write 

Z cow = F, ~j/~(/4~. E k -  u ~. ~J) = u~.  E ~ -  u ~ . / ~ .  
k j,k 

It  follows that  the integrand on the left above  can be written as 
1 2 1 2 7tEI +51111 + ~cokp k 

k 

= ½1Ecol 2 + ½1Hcol 2 + ½1E~- Hill 2 +½tEfl-l-Hc~[ 2 . 

Thus  the twelve componen t s  of  the vectors Eco, He), Ec~-Hfi, and Eft + Ha are 
square- integrable on K. 

Next  we integrate (13) over  all space to obtain 

~[(rZ+t2)e(E,H)+2tr~cokpk(E,H)]dx=const. 

Xk 
where cok = -- ' r  The  calculation just completed shows that  ; COkp k =< e. Hence  this 

g - .  

conservat ion law implies 

(t - r)2e(E, H)dx < const. (15) 
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In particular, if we restrict the integral to a cone of smaller aperture than a light 
cone, we get 

( e t -  R) 2 ~ e(E, H)dx < const. 
Ixl <R+(1  --e)t 

for t > Re-1. Therefore we have proved the following 

Theorem. Let R > 0 and 0 < e < 1. Then 

[IEI2-t-IHl2]dx=O(t -2) as t ~ o o .  
Ixl <R+(1  --e)t 

This is valid for solutions whose Cauchy data (at any time) satisfies ~r2e(E,H)dx 
< 0 9 .  

We can extend the class of solutions for which a decay result is valid as fol- 
lows : Let E, H, A be any finite energy solution of (6)-(9). Thus it is only assumed 
that 

~(]E] 2 + [tf]2)dx < oo 

at some fixed time. Let (.(x) be the standard cut-off function: ff.eC ~°, 0 < ( . <  1, 
(.(x) - 1 for Ix] < n, (.(x) - 0 for Ix[ > n + 1. Consider the solutions E ("), H (") whose 
Cauchy data is obtained from the original Cauchy data by multiplying it by ~.(x). 
We assume that 

sup~[IE(")-E]Z+IH(")-HI2]dx--+O as n--*oo. (16) 
t 

Since the Cauchy data of E ("), H ("~ have compact support, the hypotheses of the 
theorem are satisfied, and hence E ~"), H (") enjoy the t-2-rate of local energy decay. 
We employ the notation 

I]u][ 2 - 5 lu(x, t)12dx. 
]x l<R+(1-~) t  

Now let 6 > 0  be arbitrary. By (16) we can choose n = N  such that 

(tiE - E(N)12dx)l/2 + (~IH-  H(~3lZdx)l/2 < ~. 

Then, using the theorem, we choose T so large that 

]1 E(m }It + I1H(N)lit < 

for all t > T. Since ~5 was arbitrary, we have the following result: 

Corollary 1. Assume that any finite-energy solution can be approximated by cut-off 
solutions as in (16). Let R > O, 0 < e < 1. Then for every finite-energy solution of the 
Yang-MiIls equations we have 

lira ~ ([El 2 + IH]Z)dx = O. 
t-*c~ [xl<R+(1--e)t  
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Corollary 2. I f  the Yang-Mills equations possess a finite-energy solution of  the form 

E = E ( x -  ct), H = H(x - bt) 

where b and c are constant vectors of norm less than one, then E = H = 0 .  

Let  K again be any light cone, say ]xl=t .  We integrate (13) over a 
4-dimensional region as before to obtain 

Using the definition of n k, we can write the last integrand as 

=(t+r)2(e+~kpk)--2tr{ ~O~kEk2+I~COkHk2 } 

(t + r) 2 
- -  [[Eco[ 2 + [Hagl 2 + IEc~ - Hill e + lEft + Hc~l 2] - 2 tr [[Eco[ 2 + IHco[ z] 

( t - - r )  2 
2 IlEal2 ÷ IHc°123 ÷ ~ [ I E ~ -  H[3I 2 ÷ lEft + Ho:12]. 

Therefore 6 of the 18 components of E and H are square-integrable on K with the 
weight function t 2. 

5. Special Gauges 

It is useful to obtain bounds on the potentials A ~ as well as on the field strengths E 
and H. We begin with the Lorentz gauge 

¢?A ° ~ OA k 
+ : o .  (,) 

In this 9auge the potentials have appropriately bounded square integrals. Indeed, 
we take the scalar product  of E k [Eq. (8)] with A k and sum on k: 

/OAk OA° k ] 
EEk 'Ak=E[&-+~XkXk  k ×A°  / "Ak 

k ¢?Xk ~Xk" 
Using (*) and integrating over all space, we obtain 

~sd [tAO12 + ZiAkjZldx=2iZEk.AkdXk l k 

< 2 ( 2  ~[Ek] 2dx ] 1/2 ( Z  ~lAkt 2dx) 1/2 
\k  / \k / 
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whence 

( (J " A°2+~lAkl2)dx] 1/2 

t 
~--~ [ ~ Q AO(X' 0)12 + 2 IAk(x' 0)t2] dx]l/2 -I- ~ (~ tEl2 dx)l/2ds 

] J o 

for all t. Therelbre 

.fiIA°12+ ~lAk122dx=O(l+t2 ) 

for all t. 
In this gauge the Yang-Mills equations take the form 

~ / O A  ° k O A  k )} 0~AO FA ° AO+~,2__× ×A~ &2 AA°+g[ & x ~ \ c?x~ A + ~ -  

+g2 ~ (ihkl2AO_(zk.ZO)Aq =0 ; 
k 

(t7) 

(18.0) 

~t~ d*+g2  × + ~ g  + A ~ × N + 2 ~ 7  ~×A~ 

We have made use of the identity 

A x (B x C)=(C.A)B-(B.A)C.  

The 15 conformal conservation laws now take the following forms, after some 
tedious computations. 

The energy density is 

0Ao2 (10A~12 -~e(~)--~ +l~A°l~- ~ ~l ~l +J~A~i~) 

~ fOA° AO + • Ak.A" (~A[~ 
+ 2 g ~ k  [OXk ....... Ak × n X (~xnJ 

g~ A.I2 
k k,n 

The momentum densities are 

OA° OA° ~/OAk OAk OAk 0 ) 
pJ(A)= 

/ 

0=1,2,3). 
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Notice that  e(A) and pS(A) differ f rom e and pS of  Sect. 3 by certain x-derivatives 
(which integrate to zero). The angular momenta are 

~[ s OA° gAS tpS(A)]dx const. [A • ~ t -  - A°. ~ t  + xF(A) + 

( /=1 ,2 ,3 )  

and 

& 29A°.A l× A m dx 

and 

=cons t .  ( I+m,l=1,2 ,3) .  

The dilational identity is 

[A o OA° OAk OA ° OA ° 
S & ~ A k. ~ -  - te(A) + r Or & [ 

k 

.~ OA k ] 
+9 2. r - w - - A  ° x A k d x = c o n s t .  

k GY 

The inversionaI identities are 

~[- ( r2+t2 )e (A)+2t (A° .OA°  ~A.---- k OAk\] 
& k & / 

/OA ° OAk t 2trl  & OA° ~ o a k  + Or L ~t ~) \ 

~ OA k 
+ ;~at 2. r - - ~ .  A ° x A k -  3Vl°[ 2 + ~ IAkt 2 

k (Jr  k 

OA ~ OA k 
- -  - ~ r 

Y & & 

Ot Ot/ AJ.~-/ 
- tx je(A)-  A °. A j + ½(r 2 - tZ)pJ(A) 

A . - ~  - A . - ~ -  + 20A . AS x 

= const. (j = 1, 2, 3). 

The Lorentz  gauge has the drawback that  some of the quadratic terms in the 
energy density e(A) are positive and some are negative. Consider instead the 
Coulomb gauge 

~ A k 
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By the same method as we obtained (17), we have 
t 

(f~k [Ak(x,,)i2dx)l/2~=(f~k [Ak(x,O)12dx ' 1/2+!(flNl2dx)l/2ds 
hence 

~ IAk(x, t)[Zdx = 0(1 + t 2) for all t 
k 

In the Coulomb gauge the Yang-Mills equations take the form 

/ OA ° c~A k 
--AA°+9~|2~--X-~- \ Xk ~ f  xAk 

2 k 2  0 k 0 k - -  +g ~(IAi A - ( A  .A )A ) - 0 ;  
k 

~2Ak 02A 0 
- - - A A k + - -  
¢~t 2 (~tcOx k 

[ ~A k AO ~A ° + g  [ 2 - ~ -  x +Akx  _ _  _ A o OA° OA k . . -~Xk + ~ ~ 2 - -  x AS + AS x ~-AS~l 
x . [ ~ x j  (?xkJ] 

+ g2 [ _ pAO] ~A k + (A k. AO)A 0 + ~ {jAil 2A~ _ (A j. Ak)Aj} 
L J 

(k = 1, 2, 3). 

If (19.0) is multiplied by A °, the useful identity 

IVA°[2-V' (A° 'VA°)+g~(  2A°'~A°~ xAk+A°'~f~Ak k 

(19.0) 

= 0  (19.k) 

+ g2 ~ lAg × AO[2 = 0  (20) 
k 

is obtained. The energy density takes the form 

I 
"-" fQA° Ak A o 3Ak ~OA l } 

+g~---k LOXk × + A ° " - ~  ×Ak+)-~/OXk "Ak×AI 

g2 g2 
+ T ~ IA~ × A°? + T y~ IA~ × A'I2 k,1 

with the understanding as before that it may differ from the preceding energy 
densities by a spatial divergence (which integrates to zero). The Coulomb gauge 
has the advantage that the energy density can be written so that the quadratic 
terms are positive. 

The momentum densities are 

T\--/~Ak~f OAkOxj g-~X~x~Ak" Ak ) (j = 1, 2, 3). ¢(A)=  >,/  + × AO 
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The  angular momenta are 

c?A ~ 
~[x je (A) -A° .~ -+tp~(A)]dx=cons t .  ( ] = 1 , 2 , 3 )  

a n d  

j ~ j QAm m S Lxmp (A)-  x y  ( A ) +  ~4 • ~ 7 ~  - A • 

(re#L j =  l ,  2, 3). 

The  dilational c o n s e r v a t i o n  law is 

te(A)+ Z ~,A .~:= . r k [ ct ar & t-gr cr "A d x = c o n s t .  

The  inversional c o n s e r v a t i o n  laws are 

j" [(r 2 + t2)e(A)- ~ IA~[ z - 2 Z Xk A°" 
OA k 

k k Ot 

,'~. X TM [ ,~k t~Ak • t?Ak oak t~Ak k O ]] 
+~LZ. ,A  . ~ - + r  ~- • + g r ~ r - . A  x A  t t d x = c o n s t .  

k [ vt vt (?r 

a n d  

f[tx_ie(A)_ o ~Aj tA . ~  +½(t  2 -  rZ)pJ(A) 

+ 2Xjxmpm(A)+A°'AJ+ 2xjAm" ~t 
m m 

+ x,, " ~  ~ + 2 9 A  x A  s dx=const.  

( ] =  1 ,2 ,3) .  
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Note Added in Proof 
The results of this paper are valid for Yang-Mills fields coupled to scalar fields. 


