
BIT I0 (1970), 76-94

A T R A N S I T I V E C L O S U R E A L G O R I T H M

P A U L P U R D O M J R .

A b s t r a c t .

A n a l g o r i t h m is g i v e n for c o m p u t i n g t h e t r a n s i t i v e closure of a d i r e c t e d g r a p h
in a t i m e no g r ea t e r t h a n alNln +a~n ~ for la rge n where a 1 a n d a s a re c o n s t a n t s
d e p e n d i n g o n t h e c o m p u t e r u s e d to e x e c u t e t h e a l g o r i t h m , n is t h e n u m b e r of
nodes in t h e g r a p h a n d N 1 is t h e n u m b e r of arcs (not c o u n t i n g t hose arcs w h i c h are
p a r t of a cycle a n d n o t c o u n t i n g those arcs w h i c h can be r e m o v e d w i t h o u t c h a n g i n g
t h e t r a n s i t i v e closure) . F o r g r a p h s whe re each a rc is se lec ted a t r a n d o m w i t h p rob -
a b i l i t y p, t h e ave rage t i m e to c o m p u t e t h e t r a n s i t i v e closure is no g r e a t e r t h a n
min{alpnS+a2n 2, ½aln~p-*+a,n ~} for la rge n. T h e a l g o r i t h m will c o m p u t e t h e
t r a n s i t i v e c losure of a n u n d i r e c t e d g r a p h in a t i m e n o g r e a t e r t h a n a~n ~ for large n.
The m e t h o d uses a b o u t n * + n b i t s a n d 5n words of s to rage (where each word can
h o l d n + 2 va lues) .

I. Introduction.

The transitive closure T of a directed graph G is a directed graph such
tha t there is an arc in T going from node i to node j if and only if there
is a path in G going from node i to node j . The transitive closure of a
node i is the set of nodes on paths starting from node i. For example
the transitive closure of node k in Figure 1 is the set of nodes {g, 1,j, k, h}.
I t is often useful to specify a graph G with nodes 1, 2 n by an n x n
incidence matrix M with elements m~j defined by

/ true if G has an arc from node i to node j ,
m~¢ = [false otherwise.

I t has long been known tha t the incidence matrix M of a graph can be
used to compute the incidence matrix T of the transitive closure of the
graph with the equation

l ~ n

where M and T are boolean matrices. I t takes about n 4 operations to
compute T this way. WarshalI [1] has a method to compute the transitive
closure which takes between n z and n s operations. His algorithm to con-

Received J a n u a r y 30, 1969; revised September 12, 1969.

A TRANSITIVE CLOSURE ALGORITHM 77

vert the incidence matrix M of a graph into the incidence matrix of the
transitive closure of G is equivalent to the following:

Wl . For 1 </c < n do the remaining steps.
W2. For each i such that 1 < i-< n and _~l[i,k] is true do step W3.
W3. For 1 < j < n set M[i,j] +-M[i,j] OR M[k,j].

A method for computing transitive closure using lists is given b y
Thorelli [2]. His method, however, will in many cases take about n 4
operations if the transitive closure has about n 2 arcs (with minor changes
his algorithm can be done in n 3 steps.)

There are many algorithms which require the computing of transitive
closure. The reader is referred to Weber and Wirth [3] and Lynch [4]
for some practical problems in the field of syntactic analysis where it is
necessary to find the transitive closure of a graph with one or two hundred
nodes.

The algorithm in this paper is designed for computing the transitive
closure of a graph with a moderately large number of nodes (the graph
should, however, fit in the computer storage; this requires about n ~ bits
of memory for a graph with n nodes). In section 2 it is shown that the
maximum running time for the algorithm is proportional to n s, but there
are cases (such as sparse graphs where the number of arcs is no more than
a constant times the number of nodes, random graphs where each pos-
sible arc is selected with fixed probability, and undirected graphs) when
the running time increases only as n ~. In section 4 the method is com-
pared with Warshall's algorithm and cases are given where the method
in this paper will be faster for large graphs.

The concepts of path equivalence and partial ordering are particularly
important to understanding the algorithm. Two distinct nodes x and y are
path equivalent if there is both a path from x to y and a path from y to x.
Also each node is path equivalent to itself. For any pair of nodes x and
y, there is a path from any node path equivalent to x to any node path
equivalent to y if and only if there is a path from x to y. In the following
the term equivalent always refers to path equivalence. A directed graph
is a partial ordering if and only if the graph has no cycles. Thus if no
pair of distinct nodes in the graph are equivalent, the graph is a partial
ordering. If the graph is a partial ordering it is possible to find a consistent
linear ordering of the nodes [5]. This means that the nodes 1, 2 n can
be renumbered as il, i~ , i~ in such a way that if there is an arc from x
to y then i x precedes i v.

The algorithm consists of four parts. The first part finds all the classes
of nodes which are equivalent and replaces each class by a single node.

7 8 P A U L PURDOM

The nodes for the classes are connected to each other according to whether
or not they contain nodes which are connected in the original graph.
Figure 1 shows a graph, and figure 2 shows the results of replacing each

Figure 1. A d i rec ted g r a p h w i t h 12 nodes a n d 18 arcs. Arcs wh ich connec t pa i r s of nodes

i n t h e s a m e p a t h equ iva lence class a re s h o w n as da rk ar rows. Arcs wh ich connec t pa i r s of
nodes in d i f fe rent equ iva lence c lasses a n d arcs wh ich connec t nodes to t h e m s e l v e s a re

s h o w n as l igh t arrows.

F i g u r e 2. T h e g r a p h f rom F igu re 1 a f t e r t h e p a t h equ iva lence classes h a v e been rep laced
b y s ingle nodes . P a r t 1 of t h e a l g o r i t h m c o m b i n es those nodes w h i c h are m e m b e r s of t h e

s a m e p a t h equiva lence class in to a s ingle node . T h u s nodes b, c, d, and e are now repre-

s e n t e d as a s ingle node as are nodes j , k, a n d I. P a r t 2 of t h e a l g o r i t h m f inds a l inear order-
i n g of t h e n o d e s s u c h t h a t if t h e r e i s a n a rc f r om one node to a n o t h e r , t h e second node

h a s a h ighe r n u m b e r t h a n t h e f i rs t . T h e l inear order ing f o u n d b y t he a l g o r i t h m is shown

b y t h e n u m b e r s in each node .

A TRANSITIVE CLOSURE ALGORITHM 79

class by a node. Once each class is replaced by a single node the resulting
graph is a partial ordering (if the cycles of length one are ignored). The
second part of the algorithm finds a linear ordering of the nodes consistent
with the partial ordering. Figure 2 shows the results of the ordering. The
third par t computes the transitive closure of the graph of equivalence
classes. I t computes the transitive closure for one node at a time starting
with the last node in the ordering and working back to the first. To form
the transitive closure of a node, x, it takes each node with an arc from x
and each node in the transitive closure of the nodes with an are from x.
I t is possible to compute the transitive closure this way because the
ordering of the nodes ensures that the transitive closure of a node is
computed before it is needed to compute the transitive closure for an-
other node. Figure 3 shows the graph after the algorithm has computed

: F ~ r e 3. The graph being processed by par t 3 of the algorithm. The dark nodes have
been processed. The dark arcs form the transitive closure of the processed nodes. The algo-
r i thm is ready to compute the transitive closure for node 2 now tha t it has computed the
transitive closure for all nodes after 2 in the linear ordering. The transitive closure for
node 2 consists of all nodes to which there is an arc from node 2 (4, 5 and 6), and all nodes
in their transitive closure (6 and 7).

the transitive closure for nodes 7, 6, 5, 4, and 3. Figure 4 shows that
graph after the entire transitive closure has been computed for the path
equivalence classes. The fourth par t of the algorithm is quite simple.
For a pair of nodes x and y an arc is added from x to y if and only if x
is in a class which has an arc (in the transitive closure g raph for the
equivalence class) to the class which contains y.

The details in the algorithm are given in an Algol procedure in the
appendix.

80 PAUL PURDOM

Figure 4. The t ransi t ive closure of the graph of pa th equivalence classes. P a r t 3 of the
a lgori thm produces the t ransi t ive closure of the graph in which each equivalence class
is represented by a single node. This t ransi t ive closure is used by pa r t 4 of the algori thm
to generate the t ransi t ive closure of the original graph by connecting the nodes in each
equivalence class to each node in those equivalence classes to which thei r equivalence class
is connected. The t ransi t ive closure of the original graph is no t shown because of the large
number of arcs in the t ransi t ive closure graph (71 arcs).

2. Analysis of performance.
A summary of the results of analyzing the time and space required to

run the algorithm will be given. I t is assumed that the algorithm is
run on a computer with a random access storage large enough to hold
the algorithm and its data. The analysis is in terms of n (the number of
nodes), N (the number of arcs), and m (the number of equivalence classes).
The values of N and m are limited by 0 < N < n ~ and 1 < m < n. For a
graph selected at random from the 2 n~- possible graphs the expected
value of N is nU/2. The author does not know the expected value of m
(See however Palasti [8]). Since calculating how often each step is done
is straightforward but tedious for most steps in the algorithm, the results
of this analysis is summarized in table 1 and the step numbers are given
in the appendix. Additional details are available elsewhere [7].

The analysis for the execution of step 20 will be given in detail since it
often dominates the running time for the entire algorithm. Step 20 is
entered from step 19 no more times than step 19 is done. Also if N 1 is
the number of arcs in the original graph not counting the arcs in cycles
and not counting the arcs which can be removed without changing the
transitive closure, then step 20 is entered from step 19 no more than N 1
times. Step 20 is done at most m + 1 times each time it is entered from

A TRANSITIVE CLOSURE ALGORITHM 81

step 19. Also it is done at most once for each value of j, i, and/c such
tha t 0 < j < i < k < m. Thus it is done at most

min{Nl (m÷l) , ~ ~ i = ~ [m a - m] } t i m e s .
0<k~m 0~i~k--1

For the graph with nodes 1,2 ,n where each node from 1 to n/3 has
an are to each node from n/3 + 1 to n (and where there are no other arcs)
step 20 will be done ~nS(n+ 1) times. The author does not know if there
are graphs which take more time. If the graph is selected by taking each
of the possible n s arcs in the graph independently with probability p,

3 l[%2 -2 % -2 then step 20 is done no more than min ~ ~ P - p]} times on the
average. I t can be done an average of no more than pn 3 times because
the graph has an average of pn ~ arcs and it is done no more than n times
each time it is entered. To see the second part of the limit notice that to
find whether there is a path from the/cth node in the linear ordering to
t h e j t h node (where/c <j) the algorithm at step 20 tests each node i where
/c < i < j and where there is an arc from/c to i. I t starts with the smallest
and continues until it finds a path from i to j or until all such i have
been tested. The probability tha t b values of i (where b < j - k - 2) are
investigated is

P(a = b) = P (there is no path from i~ to j for 1 < a < b
and there is a path from i b to j)

< P (there is no arc from i a to j for 1 < a < b).

The probability of no are from ia l to j is independent of the probability
of no are from ia~ to j if ial 4ia~. The probability of no are from i~ to
j is no more than 1 - p if ia > j even though the original nodes have been
combined into equivalence classes and reordered. Therefore P(a=b)<
(1 -p)b-1. The expected number of searches to t ry to connect k to j is
limited by

E(s) <]~ (1 -p)~- l i = p-~ .
l~i___eo

The range of the sum was permitted to go to infinity because all the terms
in the sum are positive. Step 20 is done for at most ½n(n- 1) pairs of k
and j . Thus the loop is done at most ½[n2p - ~ - np -~] times.

If the graph is undirected so tha t if there is an arc from i to j then
there is also an are from j to i so the graph of equivalence classes has
no arcs and step 20 is not done at all. Of course, if one wishes an algorithm

BIT i0 ~ 6

82 PAUL PURDOM

for finding just the connectivity of undirected graphs, then one can use
parts one and four of this algorithm by themselves.

The maximum time for the entire algorithm can be expressed as

O~i,j~2

where a is the time required to do the loop in step 20 and a ij is the sum
of the times required to do all the steps with the factor him j in the for-
mula for the limit of the number of times the step is done (weighting
each time in the sum by the coefficient of n~m j in the formula). The
limit for the average time is the same with min {(m + 1)NI, ~n 8} replaced
by rain {/m a, ~n2p-2}.

The algorithm requires n 2 bits for storing the M array. Storing linear
arrays requires 5n words (for words which can hold numbers from 0 to
n + 1) assuming the Nex t l and Count arrays shares space with Stack or
Onstack) and n bits. The rest of the program requires a constant amount
of storage.

4. Comparison with Warshall's Algorithm.

Warshall's algorithm is much simpler. I t always takes less space al-
though this is usually not important for graphs with a large number of
nodes since the ratio of the space requirements for the two methods
approaches one as the number of nodes increases. The time required for
Warshall's algorithm can be expressed as a o + a l n + a 2 n 2 + % n N i with
N < N i < N t where the a's are constants, n is the number of nodes, N is
the number of arcs in the original graph, and N t is the number of arcs
in the transitive closure. Since the steps in Warshall's algorithm which
are done n 2 times or less are much simpler than those steps for the algo-
rithm in this paper, Warshall's algorithm should always be faster for
graphs with a small number of nodes and for graphs where N t is not
larger than n by a large factor.

For any set of graphs where the number of arcs increases faster than
the number of nodes the time for Warshall's algorithm will increase
faster than n 2. Thus for graphs where each possible edge is selected ran-
domly with fixed probability p (or with a probability p(n) which depends
on the mlmber of nodes where limn.+~onp(n) = c¢) the algorithm in this
paper will be faster than Warshall 's algorithm if the graph has enough
nodes. Table 2 presents the time required for running each algorithm

A TRANSITIVE CLOSURE ALGORITHM 83

on the Burroughs 5500 computer with randomly selected graphs (these
tests were done with no other programs running on the computer so that
the time the multiprogramming system spends switching between jobs
would not have a significant effect on the running times). Tests were
done both with graphs where each arc was selected at random with fixed
probabili ty and with graphs where there were no are from node i to node j
if i > j bu t for i < j each possible arc was selected at random with fixed
probability. This second set of graphs were included to show how the
algorithm in this paper performs on graphs which do not have a large
number of path equivalence classes. Runs were made with various prob-
abilities and numbers of nodes to show cases where each algorithm was
faster. The reader is warned that the time either algorithm takes for a
random graph may not be related to the time the algorithm will take for
the problems he is interested in.

The author suspects that the algorithm in the paper will be faster than
Warshall's algorithm for nearly all sets of graphs where the transitive
closure has close to n 2 arcs providing the graph is one which the algorithm
in the paper can do in a time proportional to n ~ (and providing n is large
enough). The algorithm in this paper, however, definitely is not faster in
all such cases since Warshall's algorithm, ~or example, will be faster for a
graph which has arcs from each node to the last node and arcs from the
last node to each node and no other arcs. Additional details are avail-
able elsewhere [7].

4. Variations on the Algor i thm,

Many details of the algorithm have been selected to make it easier to
understand while others have been selected arbitrarily. Possible varia-
tions of the algorithm which some readers may wish to consider will be
suggested.

I t is possible to combine together the first three parts. Combining
together parts 2 and 3 is quite easy. Knuth [5] gives the basic idea
needed for combining parts 1 and 2 together.

If the elements in the matrix M are rearranged in part 2 (and restored
after part 3), then indexing can be used in place of the Next and Previous
lists. The Nextl list can also be eliminated. One then will have an algo-
ri thm where the loop in step 20 will be quite similar to the inner loop
in Warshall's algorithm but will be done only ~ as often. The resulting
algorithm will not be as fast for randomly selected graphs.

On many computers it is possible to OR together two computer words

84 PAUL PURDOM

a t once. F o r such compute r s s tep 20 can be modif ied to t r e a t m a n y
values of i a t once. (This is of ten done in p rog rams for Warsha l l ' s algo-
r i thm). To do this one would wish to reorder the m a t r i x M in p a r t 2.

There are of ten m a n y l inear order ings consis tent wi th a pa r t i a l order-
ing. Pe rhaps there is an order ing a lgor i thm more sui table t h a n the one
used for p a r t 2 of this a lgor i thm.

I f a copy of the Count a r r a y p roduced a t s tep 10 is saved, t hen nea r
the b o t t o m of s tep 19 one could add the substep, if Count[i]=O, t hen
r epea t th is s tep.

I f one uses n ~ words for s tor ing the m a t r i x M t h e n i t is possible to
m a k e fu r the r use of list processing techniques. See K n u t h [5] for an
example of how this can be used in p a r t 2 of the a lgor i thm.

A c k n o w l e d g m e n t s .

The au tho r wishes to t h a n k S tephen Stigler for his helpful discussion
of some of the s ta t i s t ica l results . H e wishes to t h a n k the Un ive r s i ty of
W'isconsin Research Commi t t ee and the Un ive r s i ty of Wisconsin Com-
pu t ing Center for provid ing t ime for this work.

Tab le 1

Step (substep) Number of times (max) Step (substep) Number of times (max)

1 1 15 1
1 (loop) n 15 (outer loop) m + 1
2 m + l 15 (inner loop) ~[m2 + 3m]
3 n 15 (2 na if-part) + 14 m
4 ~113n2 +n - m ~ +m] 16 1
5 ½13n 2 +n --m 2 -- 3m] 17 1
6+9 n 18 m + l
6 (loop) +9 n 18 (loop) ½[m~ +m]
7 +9 n 19 ½[m ~ +m]
7 (outer loop) ½[n 2 +n - m 2 - m] 20 min {~[m s -m] , Nlm +N1}
7 (inner loop) ½[n~+n-mg-m] 20 [average] min(pna,~[n~p-~-np-~]}
8 + 9 n 20 [undirected] 0
10 1 21 ½[m ~ - m]
10 (outer loop) m ~- 1 22 1
10 (inner loop) m ~ +m 23 m + 1
11 1 24 m ~ + m
12+14 m + l 25 nm+m
13 m + 1 26 n 2

27 nm +m

A TRA:NSITIVE CLOSURE ALGORITHI~f 85

An upper limit (not always sharp) is given for the number of times the
algorithm does each step, each group of steps (indicated by step numbers
connected by a plus sign), or part of a step (indicated by giving the part
in parenthesis). For the loop in step 20 an upper limit for the number of
times, an upper limit for the average number of times, and the number of
times for an undirected graph, is given. The formulas are in terms of

n - - the number of nodes, m-- the number of equivalence classes,
N l - - t he number of arcs, which are not part of cycles and which can
not be removed without changing the transitive closure, and p - - the pro-
bability of an are.

Table 2

Method

Warshall

Paper

Probabili ty

.5

.5

.2

10

11
9.2(0.9)
8
7
5.8(0.6)
5
8
4.4(1.6)
3

20

76
73.0(2.6)
68
12
11.9(0.~)
11
62
53.2(4.9)
46

Warshall

9 12
Paper .2 6.4(1.1) 11.5(0.5)

5 I1
3 40

~Varshall .1 1.9(0.6) 25.4(9.2)
1 12

Paper .1
9
7.3(0.8)
6
3
1.5(0.9)

16
13.0(1.8)
11
15

Number of Nodes

50 30 40

257 607
251.2(3.6) 606 a
246 605

23 37
21.9(0.7) 35.5(0.9)
21 34

233 516
204.3(17.7) 395.5 b
179 480
22 36
21.5(0.7) 34.4(1.4)
20 32

147 426
114.5(21.6) 347.2(55.2)
80 25O
23 37
21.7(0.8) 33.5(2.1)
21 30
61 165
32.6(11.5) 113.6(36.8)
22 67
36 46
31.9(4.7) 40.3(4.2)
23 35

125 291
119.3(3.4) 279.5(6.5)
113 270
42 70
41.1(0.6) 69.6(0.5)
40 69

60

Warshall .05 8.5(2.7)
0 6

10 18 64 75
Paper .05 7.1(1.1) 17.2(0.8) 52.6(4.7) 73 b

6 I6 47 71
6 37

Warshall .5 if i ~3" 4.5(0.7) 34.8(2.0)
4 32

10 21
Paper .5 if i_~3" 8.1(0.7) 20.5(0.5)

7 20

86 PAUL PURDOM

Table 2 (continued)

Number of Nodes
~fethod Probability

10 20 30 40 50 60

3 23 84 224
Warshall .2 if i =<j 2.1(0.6) 18.0(3.7) 77.2(7.4) 183.8(24.0)

1 12 64 148
8 19 39 65

Paper .2 if i -<j 7.5(0.5) 18.6(0.5) 37.8(0.6) 64.1(1.0)
7 18 37 62
2 12 50 129

Warshall .1 if i =<3" 1.2(0.4) 8.7(2.4) 34.8(9.3) 82.6(21.2)
1 5 21 59
8 18 36 61

Paper .1 if i <_-j 7.2(0.4) 17.3(0.7) 34.5(1.1) 58.7(1.5)
7 16 33 56
2 6 19 45

WarshaI1 .05 if i____3" 1.0(0.5) 4.5(1.0) 15.2(3.1) 33.0(7.6
0 3 9 24
9 17 33 55

~Paper .05 if i ____j 7.0(0.8) 16.2(0.6) 32.0(i.1) 53.7(1.1)
6 15 30 52

a) Results for 3 graphs.
b) Results for 4 graphs.

The table shows the a m o u n t of processor t ime (in ~ t h s of a second)
required b y each me thod ro run on the Burrbughs 5500 computer . The
graphs were selected a t r a n d o m wi th each arc (from node i to node j)
subject to the probabi l i ty and condit ion (if any) shown in the probabi l i ty
column. The two methods, however, did thei r calculat ions on the same
graphs. In each case ten graphs were t r ied unless a foo tno te indicates
otherwise. The top and b o t t o m lines for each me thod give the m a x i m u m
and min imum times the me thod took for the cases (usually t en cases).

The middle line gives the average t ime and the]/n/(n- 1) t imes the ob-
served s t andard deviat ion where n is the number of graph s which were
tested. Since the clock measured t ime in ~ ths of a second, the t iming
process con t r ibu ted a t least 0.4 to the s t anda rd deviat ion. The version
of Warshat l ' s a lgor i thm used s tored one ma t r ix e lement per w o r d . I f
the ma t r ix had been packed Warshal l ' s a lgor i thm would have been fas ter
b y a fac tor of [n/47]-In, where Ix] is the smallest integer grea ter t h a n or
equal to x.

A T R A N S I T I V E C L O S U R E A L G O R I T H M 87

Appendix.
procedure T R A N S C L O S U R E (m, n); value n; integer n; boolean

a r ray m;
comment This algorithm tales an n × n incidence matrix M for a directed

graph and converts it into the incidence matrix for the transitive closure
of the graph;

begin
integer ar ray next[O :n + 1] ; previous[O :n + 1] ; equivalent[1 :n] ;
comment Part I. El iminate Cycles

This part of the algorithm finds cycles in the graph, and each time it
finds a cycle, it replaces the cycle by a single node. The elimination of
cycles continues until the graph has no cycles. When this part is
finished each equivalence class has been replaced by a single node. The
arrays Nex~ and Previous form a doubly linked list of nodes that re-
main in the graph as nodes i f the equivalence classes are removed. The
array Equivalen~ has a circular list for each node remaining in the
graph. Each circular list has the original nodes from one equivalence
class. The array Stack contains a list of the nodes on the path being
investigated for cycles. The array Onstack has the position in the stack
for each node in the stack and zero for each other node. The array New
is used to indicate which nodes have not yet been removed from the stack;

begin
integer a r r ay slack[l :n] , onstack[l :n] ;
boolean a r ray new[1 :hi ;
integer i, k, top, j , b, c, temp, a;
comment Step 1. Initialize;
for i := 1 step 1 until n do
begin
equivalent[i] := next[i-1] := previous[i+ 1] : = 1;

onstack[i] := 0; new[i] := true
end;
nex t [h i : : previous[l]:= 0;
previons[O] := n; top := k := 0;
comment Step 2. The paths leading from each node in the graph will

now be investigated for cycles, except that nodes which have already
been investigated will be slipped;

starttree :
k : = n e x t [k] ;

if k = 0 then go to order;
if -~new[k] then go to starttree;
i : = k ;

88 PAUL PURDOM

c o m m e n t Step 3. Paths leading f rom node i will now be investigated
to f ind cycles. Node i is put on the stack;

stack i:
top : = t o p + 1;

stack[top] : = i;
oustack[i] := top;
j : = 0 ;
c o m m e n t Step 4. Each arc leading f rom node i will now be investigated

unless it leads to part of the graph where all paths have already been
investigated;

nextarc:
j : = next[j];
if j = 0 then go to unstack;
i f i = j v ---~m[i, j] v ---~new[j] then go to nextarc;
c o m m e n t Step 5. I f node j is already on the stack a cycle has been

found. Otherwise paths f rom node j must be investigated;
if oustack[j] 4 0 then go to removecycle ;
i : = j ;
go to stack i;
c o m m e n t Step 6. Node j and all nodes above it on the stack form a

cycle. Al l nodes except j are removed f rom the list of nodes and set
equivalent to j (along with any nodes equivalent to them). The nodes
removed f rom the list of nodes here are not used in the rest of the algo-
rithm except in step 7 and in the steps of part 4;

removecycle: for c : = onstack[j] + 1 step I until top do
begin

b : = stack[c];
next[previous[b]] : = next[b];
previous[next[b]] : = previous[b] ;
temp : = equivalent[j];
equivalent[j] : = equivalent[b] ;
equivalent[b] := temp

end;
c o m m e n t Step 7. Arcs are now added to node j so that it will have

the same connections to the rest of the graph that the nodes in the
loop had. Node j will then be used to represent the entire equivalence
class;

a : = 0;
m[j, j] : = t rue ;

combine 1 :
a := next[a]; if a = j then go to combine 1;

A TRANSITIVE CLOSURE ALGORITHM 89

ff a = 0 then go to return;
for c : = onstack[j] + 1 step 1 until top do
begin

b : = stack[el;
ff m[a, b] then
begin

m[a, j] : = t rue;
go to combine 2

end
end;

combine 2:
for e : = onstack[j] + 1 step 1 until top do
begin

b := stack[c];
ff m[b, a] then
begin

re[j, a] : = true;
go to combine 1

end
end;
go to combine 1;
comment Step 8. Now all nodes above j have been removed from the

stack. The investigation of paths from j is continued, taking care
not to skip any paths added in step 7;

return:
top : = onstack[j] ;
i : = j ;
j : = 0 ;
go to nextarc;
comment Step 9. All new paths from node i have now been investi-

gated and all nodes equivalent to i have been found. Node i is now
removed from the stack and the investigation of paths from nodes
below i on the stack is continued;

unstack :
top := t o p - l ;
new[i] := false;
ff top = 0 then go to starttree ;
j : = i ;
i := stack[top];
go to nextarc;

end of Part 1. Notice that at steps 2 and 4 it was necessary to investigate

90 PAUL PURDOM

only paths involving nodes which have not been on the stack and then
removed. Whenever a node is removed from the stack all paths from that
node have already been investigated for cycles. Therefore it is not
necessary to investigate paths involving nodes which have been re-
moved from the stack;

c o m m e n t Part 2. Order Nodes.
Part 2 takes the graph of equivalence classes (produced by part 1),
which is a partial ordering, and f inds a consistent linear ordering.
The lists Next and Previous are reordered so that i f there is an arc
from node i to node j then i occurs before j on the Next list (aml after j
on the Previous list). The method used is similar to the ones given by
Kahn [6] and by Knuth [5];

order:
begin

integer array count[1 : n];
integer j , i,]c, a, b;
c o m m e n t Step 10. The number of arcs leaving each node is counted

and stored in the array Count;
j : = 0 ;

count l :
j : = next[j];
if j = 0 then go to start;
count[j] := 0;
i : = 0 ;

count2 :
i : ---- next[i] ;
if i = 0 then go to count l;
if m[j,i] ^ i @ j then count[j] : = count[j] + 1 ;
go to count2;
comment Step I1. Now i is set to the head of the list of nodes

and k is set to the end of the new list of nodes (the new list will be
ordered);

start:
i : = 0 ;
k := n+l;

c o m m e n t Step 12. Advance j;
advance]:

j : = i ;
c o m m e n t St~p 13. Check for successors;

checksuccessors:
i := previous[i];

A TRANSITIVE CLOSURE ALGORITHM 91

ff i = 0 t h e n go to startqueue;
if count[i] ~: 0 t h e n go to advance];
c o m m e n t Step 14. Each node with no sucessors is added to the new

list and removed from the old;
previous[k] : = i ;

previous[j] := previous[i];
next[previous[i]] : = j;
next[i] := k;
k : = i ;
i : ~ - j ;
go to checksuccessors;
c o m m e n t Step 15. The index i goes from front to back on the new

list of nodes. Each node which has an arc to node i and has other
arcs only to nodes which are after i on the new list of nodes is now
added to the back of the queue;

startqueue :
i : = n + l ;

previous[k] : = O;

process l :
i : = previous[i];
ff i = 0 t h e n go to outorder;
a : = 0;

process2:
b := a;
a : = previous[a] ;
i f a = 0 t h e n g o to processl ;
ff m[a, i] then
b e g i n

count[a] := count[a]-- 1 ;
if count[a] = 0 t h e n

b e g i n

previous[k] := a;
next[a] := k;
previous[b] := previous[a];
next[previous[a]] : = b;
previous[a] := 0;

k : = a ; a : = b
e n d

e n d ;

go to process2;
c o m m e n t Step 16. Move list head;

92 PAUL PURDOM

outorder:
next[O] := b;
previous[O] : = previous[n + 1] ;
next[previous[n + 1]] : = 0;

end of Part 2;
c o m m e n t Part 3. Trans i t ive Closure

Part 3 computes the transitive closure for the graph of equivalence
classes starting with the last node on the new list of nodes (prod~ced in
Part 2). At all times the transitive closure will be available for the
nodes after the one being worked on since each node has arcs connect-
ing it only to nodes which occur after it on the list. Therefore the transi-
tive closure of a node k can be computed by talcing the union of k
and the transitive closure of all nodes i for which there is an are
from k to i;

transitiveclosure :
begin
integer lc, i, j , oldj ;
in teger a r r a y nextl[0 :n];
c o m m e n t Step 17. Initialize;
k : = 0 ;
c o m m e n t Step 18. Move k one place closer to the front of the list of

nodes and make a copy of the list of nodes after k;
nextnode:

k : = previous[k] ;
ff k = 0 then go to output;
i : = j : = lc;

nextnode 1 :
if j = 0 then go to testare;
next l [j] : = next[j];
j : = next[j];
go to nextnode 1;
c o m m e n t Step 19. Find the next node i on the list such that there is

an are from node k to node i;
restart:

i := nextl[i];
ff i = 0 then go to nextnode;
if --~m[lc, i] then go to testarc;
j : = i ;
c o m m e n t Step 20. Find the next node j on the list such that j is in

the transitive closure of i;
testclosure :

A TRANSITIVE CLOSURE ALGORITHM 93

oZdj :=j;
j : = nextl[j];
if j = 0 then go to testarc;
if ---Tm[i, j] then go to testclosure;
c o m m e n t Step 21. Add an arc from k to j to the transitive closure

matrix and remove j from the list N e x t l so that we do not make
additional tests for k connected to j in the transitive closure;

re[k, j] : = t rue ;
nextl[oldj] : = ncxtl[j];
j : = oldj;
go to tcstclosure

end of Part 3;
c o m m e n t Part 4. O u t p u t

The transitive closure of the graph of equivalence classes (computed
in Part 3) is now expanded to give the transitive closure of the original
graph. For each pair of equivalence classes i and j where there is an
arc from i to j in the transitive closure an arc is added to the transitive
closure for each pair of nodes a and b where a is equivalent to i and b
is equivalent to j ;

output :
begin

in teger i, j , a, b;
c o m m e n t Step 22. Begin;
i : = 0 ;
c o m m e n t Step 23. New i;

newi :
i : = next[i] ;
if i = 0 then go to endalgorithm;
j : = 0 ;
c o m m e n t Step 24. New j;

ncwj:
j := next[j];
if j = 0 then go to ncwi;
if ---~m[i, j] then go to ncwj;
a : = i ;
c o m m e n t Step 25. More a;

morea:
a : = equivalent[a];
b : = j ;
c o m m e n t Step 26. New b;

94 PAUL PURDOM

newb:
b : = equivalent[b];
m[a, b] : = t rue ;

if b = j then go to newa;
go to newb;
c o m m e n t Step 27. New a;

ff a -- i then go to newj;
~o to morea

end of Part 4;
endalgorithm :

e n d of T R A N S C L O S U R E ;

R E F E R E N C E S

1. Warshall, Stephen, A Theorem on Boolean Matrices, JACM 9 (1962), 11-12.
2. Thorelli, Lars-Erik, An Algorithm for Computing All Paths in a Graph, BIT 6 (1966),

347-349.
3. ~rirth, Niklaus and Weber, Helmut, Euter : A Generalization o] ALGOL, and its Formal

Definition, CACM 9, 13-25 and 89-99.
4. Lynch, W. C., Ambiguities in BNI~ Languages thesis, Univ. of Wisconsin, 1963 and

A High-Speed Parsing Algorithm for ICOR Grammars, 1968, Report No. 1097,
Computing Center, Case Western Reserve University.

5. Knuth, Donald, The Art of Computer Programming, Vol. 1, Addison-Wesley, Reading,
Mass., 1968, pp. 258-268.

6. Kahn, A. B., Topological Sorting of Large Networks, CACti 5 (1962), 558-562.
7. Purdom, Paul W., A Transitive Closure Algorithm, July 1968, Computer Sciences

Technical Report #33, University of Wisconsin.
8. PaIasti, L, On the strong Connectedness of Directed Random Graphs, Studia Sclentiarum

Mathematicarum Hungarica 1 (1966), 205-214.

COMPUTER SCIENCES DEPARTMENT

UNIVERSITY OF WISCONSIN

MADISON, WISCONSII~"
U.S.A.

