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A T R A N S I T I V E  C L O S U R E  A L G O R I T H M  

P A U L  P U R D O M  J R .  

A b s t r a c t .  

A n  a l g o r i t h m  is g i v e n  for  c o m p u t i n g  t h e  t r a n s i t i v e  closure of a d i r e c t e d  g r a p h  
in  a t i m e  no  g r ea t e r  t h a n  alNln  +a~n ~ for  la rge  n where  a 1 a n d  a s a re  c o n s t a n t s  
d e p e n d i n g  o n  t h e  c o m p u t e r  u s e d  to  e x e c u t e  t h e  a l g o r i t h m ,  n is t h e  n u m b e r  of 
nodes  in t h e  g r a p h  a n d  N 1 is t h e  n u m b e r  of arcs  (not  c o u n t i n g  t hose  arcs  w h i c h  are  
p a r t  of a cycle a n d  n o t  c o u n t i n g  those  arcs  w h i c h  can  be  r e m o v e d  w i t h o u t  c h a n g i n g  
t h e  t r a n s i t i v e  closure) .  F o r  g r a p h s  whe re  each  a rc  is se lec ted  a t  r a n d o m  w i t h  p rob -  
a b i l i t y  p,  t h e  ave rage  t i m e  to  c o m p u t e  t h e  t r a n s i t i v e  closure is no  g r e a t e r  t h a n  
min{alpnS+a2n 2, ½aln~p-*+a,n ~} for  la rge  n.  T h e  a l g o r i t h m  will  c o m p u t e  t h e  
t r a n s i t i v e  c losure  of a n  u n d i r e c t e d  g r a p h  in  a t i m e  n o  g r e a t e r  t h a n  a~n ~ for  large  n.  
The  m e t h o d  uses  a b o u t  n * + n  b i t s  a n d  5n words  of s to rage  (where  each  word  can  
h o l d  n + 2  va lues) .  

I. Introduction. 

The transitive closure T of a directed graph G is a directed graph such 
tha t  there is an arc in T going from node i to node j if and only if there 
is a path in G going from node i to node j .  The transitive closure of a 
node i is the set of nodes on paths starting from node i. For example 
the transitive closure of node k in Figure 1 is the set of nodes {g, 1,j, k, h}. 
I t  is often useful to specify a graph G with nodes 1, 2 . . . . .  n by an n x n 
incidence matrix M with elements m~j defined by 

/ true if G has an arc from node i to node j ,  
m~¢ = [ false otherwise. 

I t  has long been known tha t  the incidence matrix M of a graph can be 
used to compute the incidence matrix T of the transitive closure of the 
graph with the equation 

l ~ n  

where M and T are boolean matrices. I t  takes about n 4 operations to 
compute T this way. WarshalI [1] has a method to compute the transitive 
closure which takes between n z and n s operations. His algorithm to con- 
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vert  the incidence matrix M of a graph into the incidence matrix of the 
transitive closure of G is equivalent to the following: 

Wl .  For  1 </c < n do the remaining steps. 
W2. For  each i such that  1 < i-< n and _~l[i,k] is true do step W3. 
W3. For  1 < j  < n set M[i,j] +-M[i,j] OR M[k,j]. 

A method for computing transitive closure using lists is given b y  
Thorelli [2]. His method, however, will in many cases take about  n 4 
operations if the transitive closure has about  n 2 arcs (with minor changes 
his algorithm can be done in n 3 steps.) 

There are many algorithms which require the computing of transitive 
closure. The reader is referred to Weber and Wirth [3] and Lynch [4] 
for some practical problems in the field of syntactic analysis where it is 
necessary to find the transitive closure of a graph with one or two hundred 
nodes. 

The algorithm in this paper is designed for computing the transitive 
closure of a graph with a moderately large number of nodes (the graph 
should, however, fit in the computer storage; this requires about  n ~ bits 
of memory for a graph with n nodes). In  section 2 it is shown that  the 
maximum running time for the algorithm is proportional to n s, but  there 
are cases (such as sparse graphs where the number of arcs is no more than 
a constant times the number of nodes, random graphs where each pos- 
sible arc is selected with fixed probability, and undirected graphs) when 
the running time increases only as n ~. In section 4 the method is com- 
pared with Warshall's algorithm and cases are given where the method 
in this paper will be faster for large graphs. 

The concepts of path equivalence and partial ordering are particularly 
important  to understanding the algorithm. Two distinct nodes x and y are 
path equivalent if there is both a path from x to y and a path from y to x. 
Also each node is path equivalent to itself. For any pair of nodes x and 
y, there is a path from any node path equivalent to x to any node path 
equivalent to y if and only if there is a path from x to y. In  the following 
the term equivalent always refers to path  equivalence. A directed graph 
is a partial ordering if and only if the graph has no cycles. Thus if no 
pair of distinct nodes in the graph are equivalent, the graph is a partial 
ordering. If  the graph is a partial ordering it is possible to find a consistent 
linear ordering of the nodes [5]. This means that  the nodes 1, 2 . . . . .  n can 
be renumbered as il, i~ . . . .  , i~ in such a way that  if there is an arc from x 
to y then i x precedes i v. 

The algorithm consists of four parts. The first part  finds all the classes 
of nodes which are equivalent and replaces each class by  a single node. 
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The nodes for the classes are connected to each other according to whether 
or not they contain nodes which are connected in the original graph. 
Figure 1 shows a graph, and figure 2 shows the results of replacing each 

Figure  1. A d i rec ted  g r a p h  w i t h  12 nodes  a n d  18 arcs.  Arcs  wh ich  connec t  pa i r s  of nodes  

i n  t h e  s a m e  p a t h  equ iva lence  class  a re  s h o w n  as  da rk  ar rows.  Arcs  wh ich  connec t  pa i r s  of  
nodes  in  d i f fe rent  equ iva lence  c lasses  a n d  arcs  wh ich  connec t  nodes  to  t h e m s e l v e s  a re  

s h o w n  as  l igh t  arrows.  

F i g u r e  2. T h e  g r a p h  f rom F igu re  1 a f t e r  t h e  p a t h  equ iva lence  classes h a v e  been  rep laced  
b y  s ingle  nodes .  P a r t  1 of  t h e  a l g o r i t h m  c o m b i n es  those  nodes  w h i c h  are  m e m b e r s  of  t h e  

s a m e  p a t h  equiva lence  class  in to  a s ingle  node .  T h u s  nodes  b, c, d, and  e are  now repre-  

s e n t e d  as  a s ingle  node  as  are  nodes  j ,  k, a n d  I. P a r t  2 of t h e  a l g o r i t h m  f inds  a l inear  order- 
i n g  of t h e  n o d e s  s u c h  t h a t  if t h e r e  i s  a n  a rc  f r om one  node  to  a n o t h e r ,  t h e  second  node  

h a s  a h ighe r  n u m b e r  t h a n  t h e  f i rs t .  T h e  l inear  order ing  f o u n d  b y  t he  a l g o r i t h m  is shown  

b y  t h e  n u m b e r s  in  each  node .  
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class by  a node. Once each class is replaced by  a single node the resulting 
graph is a partial ordering (if the cycles of length one are ignored). The 
second part  of the algorithm finds a linear ordering of the nodes consistent 
with the partial ordering. Figure 2 shows the results of the ordering. The 
third par t  computes the transitive closure of the graph of equivalence 
classes. I t  computes the transitive closure for one node at a time starting 
with the last node in the ordering and working back to the first. To form 
the transitive closure of a node, x, it takes each node with an arc from x 
and each node in the transitive closure of the nodes with an are from x. 
I t  is possible to compute the transitive closure this way because the 
ordering of the nodes ensures that  the transitive closure of a node is 
computed before it is needed to compute the transitive closure for an- 
other node. Figure 3 shows the graph after the algorithm has computed 

: F ~ r e  3. The graph being processed by par t  3 of the algorithm. The dark nodes have 
been processed. The dark arcs form the transitive closure of the processed nodes. The algo- 
r i thm is ready to compute the transitive closure for node 2 now tha t  it  has computed the 
transitive closure for all nodes after 2 in the linear ordering. The transitive closure for 
node 2 consists of all nodes to which there is an arc from node 2 (4, 5 and 6), and all nodes 
in their transitive closure (6 and 7). 

the transitive closure for nodes 7, 6, 5, 4, and 3. Figure 4 shows that  
graph after the entire transitive closure has been computed for the path 
equivalence classes. The fourth par t  of the algorithm is quite simple. 
For  a pair of nodes x and y an arc is added from x to y if and only if x 
is in a class which has an arc (in the transitive closure g raph  for the 
equivalence class) to the class which contains y. 

The details in the algorithm are given in an Algol procedure in the 
appendix. 
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Figure 4. The t ransi t ive closure of the  graph of pa th  equivalence classes. P a r t  3 of the  
a lgori thm produces the  t ransi t ive closure of the graph in which each equivalence class 
is represented by  a single node. This t ransi t ive closure is used by  pa r t  4 of the algori thm 
to generate the t ransi t ive closure of the  original graph by  connecting the nodes in each 
equivalence class to each node in those equivalence classes to which thei r  equivalence class 
is connected. The t ransi t ive closure of the  original graph is no t  shown because of the large 
number  of arcs in the  t ransi t ive closure graph (71 arcs). 

2. Analysis of performance. 
A summary of the results of analyzing the time and space required to 

run the algorithm will be given. I t  is assumed that  the algorithm is 
run on a computer with a random access storage large enough to hold 
the algorithm and its data. The analysis is in terms of n (the number of 
nodes), N (the number of arcs), and m (the number of equivalence classes). 
The values of N and m are limited by 0 < N < n ~ and 1 < m < n. For a 
graph selected at  random from the 2 n~- possible graphs the expected 
value of N is nU/2. The author does not know the expected value of m 
(See however Palasti [8]). Since calculating how often each step is done 
is straightforward but tedious for most steps in the algorithm, the results 
of this analysis is summarized in table 1 and the step numbers are given 
in the appendix. Additional details are available elsewhere [7]. 

The analysis for the execution of step 20 will be given in detail since it 
often dominates the running time for the entire algorithm. Step 20 is 
entered from step 19 no more times than step 19 is done. Also if N 1 is 
the number of arcs in the original graph not counting the arcs in cycles 
and not counting the arcs which can be removed without changing the 
transitive closure, then step 20 is entered from step 19 no more than N 1 
times. Step 20 is done at  most m + 1 times each time it is entered from 
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step 19. Also it is done at  most once for each value of j, i, and/c  such 
tha t  0 < j  < i < k < m. Thus it is done at  most 

min{Nl (m÷l ) ,  ~ ~ i = ~ [ m a - m ] } t i m e s .  
0<k~m 0~i~k--1 

For the graph with nodes 1,2 . . . .  ,n where each node from 1 to n/3 has 
an are to each node from n/3 + 1 to n (and where there are no other arcs) 
step 20 will be done ~nS(n+ 1) times. The author does not know if there 
are graphs which take more time. If the graph is selected by taking each 
of the possible n s arcs in the graph independently with probability p, 

3 l[%2 -2 % -2 then step 20 is done no more than  min ~ ~ P - p ]} times on the 
average. I t  can be done an average of no more than pn 3 times because 
the graph has an average of pn ~ arcs and it is done no more than n times 
each time it is entered. To see the second part  of the limit notice that  to 
find whether there is a path from the/cth node in the linear ordering to 
t h e j t h  node (where/c <j)  the algorithm at step 20 tests each node i where 
/c < i < j  and where there is an arc from/c to i. I t  starts with the smallest 
and continues until it finds a path from i to j or until all such i have 
been tested. The probability tha t  b values of i (where b < j - k - 2 )  are 
investigated is 

P(a = b) = P (there is no path from i~ to j for 1 < a < b 
and there is a path from i b to j) 

< P (there is no arc from i a to j for 1 < a < b). 

The probability of no are from ia l  to j is independent of the probability 
of no are from ia~ to j if ial 4ia~. The probability of no are from i~ to 
j is no more than 1 - p if ia > j  even though the original nodes have been 
combined into equivalence classes and reordered. Therefore P(a=b)< 
(1 -p)b-1. The expected number of searches to t ry  to connect k to j is 
limited by 

E(s) < ]~ (1 -p)~- l i  = p-~ .  
l~i___eo 

The range of the sum was permitted to go to infinity because all the terms 
in the sum are positive. Step 20 is done for at  most ½n(n- 1) pairs of k 
and j .  Thus the loop is done at  most ½[n2p - ~ -  np -~] times. 

If  the graph is undirected so tha t  if there is an arc from i to j then 
there is also an are from j to i so the graph of equivalence classes has 
no arcs and step 20 is not done at  all. Of course, if one wishes an algorithm 

BIT i0 ~ 6 
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for finding just the connectivity of undirected graphs, then one can use 
parts one and four of this algorithm by  themselves. 

The maximum time for the entire algorithm can be expressed as 

O~i,j~2 

where a is the time required to do the loop in step 20 and a ij is the sum 
of the times required to do all the steps with the factor him j in the for- 
mula for the limit of the number of times the step is done (weighting 
each time in the sum by  the coefficient of n~m j in the formula). The 
limit for the average time is the same with min {(m + 1)NI, ~n 8} replaced 
by  rain {/m a, ~n2p-2}. 

The algorithm requires n 2 bits for storing the M array. Storing linear 
arrays requires 5n words (for words which can hold numbers from 0 to 
n +  1) assuming the Nex t l  and Count arrays shares space with Stack or 
Onstack) and n bits. The rest of the program requires a constant amount 
of storage. 

4. Comparison with Warshall's Algorithm. 

Warshall's algorithm is much simpler. I t  always takes less space al- 
though this is usually not important for graphs with a large number of 
nodes since the ratio of the space requirements for the two methods 
approaches one as the number of nodes increases. The time required for 
Warshall's algorithm can be expressed as a o + a l n + a 2 n 2 + % n N i  with 
N < N i < N t where the a's are constants, n is the number of nodes, N is 
the number of arcs in the original graph, and N t is the number of arcs 
in the transitive closure. Since the steps in Warshall's algorithm which 
are done n 2 times or less are much simpler than those steps for the algo- 
rithm in this paper, Warshall's algorithm should always be faster for 
graphs with a small number of nodes and for graphs where N t is not 
larger than n by  a large factor. 

For any set of graphs where the number of arcs increases faster than 
the number of nodes the time for Warshall's algorithm will increase 
faster than n 2. Thus for graphs where each possible edge is selected ran- 
domly with fixed probability p (or with a probability p(n) which depends 
on the mlmber of nodes where limn.+~onp(n ) = c¢) the algorithm in this 
paper will be faster than Warshall 's algorithm if the graph has enough 
nodes. Table 2 presents the time required for running each algorithm 
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on the Burroughs 5500 computer with randomly selected graphs (these 
tests were done with no other programs running on the computer so that  
the time the multiprogramming system spends switching between jobs 
would not  have a significant effect on the running times). Tests were 
done both with graphs where each arc was selected at random with fixed 
probabili ty and with graphs where there were no are from node i to node j  
if i > j  bu t  for i < j  each possible arc was selected at random with fixed 
probability. This second set of graphs  were included to show how the 
algorithm in this paper performs on graphs which do not have a large 
number of path equivalence classes. Runs  were made with various prob- 
abilities and numbers of nodes to show cases where each algorithm was 
faster. The reader is warned that  the time either algorithm takes for a 
random graph may  not be related to the time the algorithm will take for 
the problems he is interested in. 

The author suspects that  the algorithm in the paper will be faster than 
Warshall's algorithm for nearly all sets of graphs where the transitive 
closure has close to n 2 arcs providing the graph is one which the algorithm 
in the paper can do in a time proportional to n ~ (and providing n is large 
enough). The algorithm in this paper, however, definitely is not faster in 
all such cases since Warshall's algorithm, ~or example, will be faster for a 
graph which has arcs from each node to the last node and arcs from the 
last node to each node and no other arcs. Additional details are avail- 
able elsewhere [7]. 

4. Variations on the Algor i thm,  

Many details of the algorithm have been selected to make it easier to 
understand while others have been selected arbitrarily. Possible varia- 
tions of the algorithm which some readers may wish to consider will be 
suggested. 

I t  is possible to combine together the first three parts. Combining 
together parts 2 and 3 is quite easy. Knuth  [5] gives the basic idea 
needed for combining parts 1 and 2 together. 

If the elements in the matrix M are rearranged in part  2 (and restored 
after part  3), then indexing can be used in place of the Next and Previous 
lists. The Nextl  list can also be eliminated. One then will have an algo- 
ri thm where the loop in step 20 will be quite similar to the inner loop 
in Warshall's algorithm but  will be done only ~ as often. The resulting 
algorithm will not be as fast for randomly selected graphs. 

On many computers it is possible to OR together two computer words 
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a t  once. F o r  such compute r s  s tep  20 can  be modif ied  to  t r e a t  m a n y  
values of i a t  once. (This is of ten  done in p rog rams  for  Warsha l l ' s  algo- 
r i thm).  To do this one would wish to  reorder  the  m a t r i x  M in p a r t  2. 

There  are of ten  m a n y  l inear  order ings consis tent  wi th  a pa r t i a l  order-  
ing. Pe rhaps  there  is an  order ing a lgor i thm more  sui table  t h a n  the  one 
used for  p a r t  2 of this  a lgor i thm.  

I f  a copy  of the  Count  a r r a y  p roduced  a t  s tep 10 is saved,  t hen  nea r  
the  b o t t o m  of s tep 19 one could add  the  substep,  if Count[i]=O, t hen  
r epea t  th is  s tep.  

I f  one uses n ~ words  for  s tor ing the  m a t r i x  M t h e n  i t  is possible to  
m a k e  fu r the r  use of list processing techniques.  See K n u t h  [5] for  an  
example  of how this can be used in p a r t  2 of the  a lgor i thm.  

A c k n o w l e d g m e n t s .  

The au tho r  wishes to t h a n k  S tephen  Stigler for his helpful  discussion 
of some of the  s ta t i s t ica l  results .  H e  wishes to  t h a n k  the  Un ive r s i ty  of 
W'isconsin Research  Commi t t ee  and  the  Un ive r s i ty  of Wisconsin Com- 
pu t ing  Center  for  provid ing  t ime  for  this  work.  

Tab le  1 

Step (substep) Number of times (max) Step (substep) Number of times (max) 

1 1 15 1 
1 (loop) n 15 (outer loop) m + 1 
2 m + l  15 (inner loop) ~[m2 + 3m] 
3 n 15 (2 na if-part) + 14 m 
4 ~113n2 +n  - m  ~ +m] 16 1 
5 ½13n 2 +n  --m 2 -- 3m] 17 1 
6+9  n 18 m + l  
6 (loop) +9 n 18 (loop) ½[m~ +m] 
7 +9 n 19 ½[m ~ +m] 
7 (outer loop) ½[n 2 +n  - m  2 - m ]  20 min {~[m s -m] ,  Nlm +N1} 
7 (inner loop) ½[n~+n-mg-m] 20 [average] min(pna,~[n~p-~-np-~]} 
8 + 9 n 20 [undirected] 0 
10 1 21 ½[m ~ - m ]  
10 (outer loop) m ~- 1 22 1 
10 (inner loop) m ~ +m 23 m + 1 
11 1 24 m ~ + m  
12+14 m + l  25 nm+m 
13 m + 1 26 n 2 

27 nm +m 
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An upper limit (not always sharp) is given for the number of times the 
algorithm does each step, each group of steps (indicated by step numbers 
connected by  a plus sign), or part  of a step (indicated by giving the part  
in parenthesis). For the loop in step 20 an upper limit for the number of 
times, an upper limit for the average number of times, and the number of 
times for an undirected graph, is given. The formulas are in terms of 

n - - the  number of nodes, m-- the  number of equivalence classes, 
N l - - t he  number of arcs, which are not part  of cycles and which can 
not be removed without changing the transitive closure, and p - - the  pro- 
bability of an are. 

Table 2 

Method 

Warshall 

Paper 

Probabili ty 

.5 

.5 

.2 

10 

11 
9.2(0.9) 
8 
7 
5.8(0.6) 
5 
8 
4.4(1.6) 
3 

20 

76 
73.0(2.6) 
68 
12 
11.9(0.~) 
11 
62 
53.2(4.9) 
46 

Warshall 

9 12 
Paper  .2 6.4(1.1) 11.5(0.5) 

5 I1 
3 40 

~Varshall .1 1.9(0.6) 25.4(9.2) 
1 12 

Paper .1 
9 
7.3(0.8) 
6 
3 
1.5(0.9) 

16 
13.0(1.8) 
11 
15 

Number  of Nodes 

50 30 40 

257 607 
251.2(3.6) 606 a 
246 605 

23 37 
21.9(0.7) 35.5(0.9) 
21 34 

233 516 
204.3(17.7) 395.5 b 
179 480 
22 36 
21.5(0.7) 34.4(1.4) 
20 32 

147 426 
114.5(21.6) 347.2(55.2) 
80 25O 
23 37 
21.7(0.8) 33.5(2.1) 
21 30 
61 165 
32.6(11.5) 113.6(36.8) 
22 67 
36 46 
31.9(4.7) 40.3(4.2) 
23 35 

125 291 
119.3(3.4) 279.5(6.5) 
113 270 
42 70 
41.1(0.6) 69.6(0.5) 
40 69 

60 

Warshall .05 8.5(2.7) 
0 6 

10 18 64 75 
Paper .05 7.1(1.1) 17.2(0.8) 52.6(4.7) 73 b 

6 I6 47 71 
6 37 

Warshall  .5 if i ~3" 4.5(0.7) 34.8(2.0) 
4 32 

10 21 
Paper .5 if i_~3" 8.1(0.7) 20.5(0.5) 

7 20 
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Table  2 (continued) 

Number of Nodes 
~fethod Probability 

10 20 30 40 50 60 

3 23 84 224 
Warshall .2 if i =<j 2.1(0.6) 18.0(3.7) 77.2(7.4) 183.8(24.0) 

1 12 64 148 
8 19 39 65 

Paper .2 if i -<j 7.5(0.5) 18.6(0.5) 37.8(0.6) 64.1(1.0) 
7 18 37 62 
2 12 50 129 

Warshall .1 if i =<3" 1.2(0.4) 8.7(2.4) 34.8(9.3) 82.6(21.2) 
1 5 21 59 
8 18 36 61 

Paper .1 if i <_-j 7.2(0.4) 17.3(0.7) 34.5(1.1) 58.7(1.5) 
7 16 33 56 
2 6 19 45 

WarshaI1 .05 if i____3" 1.0(0.5) 4.5(1.0) 15.2(3.1) 33.0(7.6 
0 3 9 24 
9 17 33 55 

~Paper .05 if i ____j 7.0(0.8) 16.2(0.6) 32.0(i.1) 53.7(1.1) 
6 15 30 52 

a) Results for 3 graphs. 
b) Results  for 4 graphs. 

The  table  shows the  a m o u n t  of processor t ime (in ~ t h s  of a second) 
required  b y  each me thod  ro run  on  the  Burrbughs  5500 computer .  The 
graphs were selected a t  r a n d o m  wi th  each arc (from node  i to  node  j )  
subject  to  the  probabi l i ty  and  condit ion (if any)  shown in the  probabi l i ty  
column. The  two methods,  however,  did thei r  calculat ions on the  same 
graphs.  In  each case ten  graphs were t r ied  unless a foo tno te  indicates 
otherwise. The top  and  b o t t o m  lines for  each me thod  give the  m a x i m u m  
and min imum times the me thod  took  for the  cases (usually t en  cases). 

The middle line gives the  average t ime and  the  ]/n/(n- 1) t imes the  ob- 
served s t andard  deviat ion where n is the  number  of graph s which were 
tested.  Since the  clock measured  t ime in ~ ths  of a second, the t iming 
process con t r ibu ted  a t  least  0.4 to  the  s t anda rd  deviat ion.  The version 
of Warshat l ' s  a lgor i thm used s tored one ma t r ix  e lement  per  w o r d .  I f  
the  ma t r ix  had  been packed  Warshal l ' s  a lgor i thm would have  been fas ter  
b y  a fac tor  of [n/47]-In, where Ix] is the  smallest  integer  grea ter  t h a n  or 
equal  to  x. 
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Appendix. 
procedure T R A N S C L O S U R E  (m, n); value n;  integer  n;  boolean 

a r ray  m; 
comment  This algorithm tales an n × n incidence matrix M for a directed 

graph and converts it into the incidence matrix for the transitive closure 
of the graph; 

begin 
integer ar ray  next[O :n + 1] ; previous[O :n + 1] ; equivalent[1 :n] ; 
comment  Part I. El iminate  Cycles 

This part of the algorithm finds cycles in the graph, and each time it 
finds a cycle, it replaces the cycle by a single node. The elimination of 
cycles continues until the graph has no cycles. When this part is 
finished each equivalence class has been replaced by a single node. The 
arrays Nex~ and Previous form a doubly linked list of nodes that re- 
main in the graph as nodes i f  the equivalence classes are removed. The 
array Equivalen~ has a circular list for each node remaining in the 
graph. Each circular list has the original nodes from one equivalence 
class. The array Stack contains a list of the nodes on the path being 
investigated for cycles. The array Onstack has the position in the stack 
for each node in the stack and zero for each other node. The array New 
is used to indicate which nodes have not yet been removed from the stack; 

begin 
integer a r r ay  slack[l :n] ,  onstack[l :n] ;  
boolean a r ray  new[1 :hi ;  
integer i, k, top, j ,  b, c, temp, a; 
comment  Step 1. Initialize; 
for i :=  1 step 1 until  n do 
begin 
equivalent[i] := next[i-1]  :=  previous[i+ 1] : =  1; 

onstack[i] := 0; new[i] := true 
end; 
nex t [h i : :  previous[l]:= 0; 
previons[O] := n; top := k := 0; 
comment  Step 2. The paths leading from each node in the graph will 

now be investigated for cycles, except that nodes which have already 
been investigated will be slipped; 

starttree : 
k : = n e x t [ k ] ;  

if k = 0 then go to order; 
if -~new[k] then go to starttree; 
i : = k ;  
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c o m m e n t  Step 3. Paths leading f rom node i will now be investigated 
to f ind  cycles. Node i is put  on the stack; 

stack i: 
top : =  t o p +  1; 

stack[top] : = i; 
oustack[i] := top; 
j : = 0 ;  
c o m m e n t  Step 4. Each arc leading f rom node i will now be investigated 

unless it leads to part of the graph where all paths have already been 
investigated; 

nextarc: 
j : = next[j]; 
if j = 0 then go to unstack; 
i f  i = j v ---~m[i, j] v ---~new[j] then go to nextarc; 
c o m m e n t  Step 5. I f  node j is already on the stack a cycle has been 

found.  Otherwise paths f rom node j must  be investigated; 
if oustack[j] 4 0 then go to removecycle ; 
i : = j ;  
go to stack i; 
c o m m e n t  Step 6. Node j and all nodes above it on the stack form a 

cycle. Al l  nodes except j are removed f rom the list of nodes and set 
equivalent to j (along with any nodes equivalent to them). The nodes 
removed f rom the list of nodes here are not used in the rest of the algo- 
rithm except in step 7 and in the steps of part 4; 

removecycle: for c : =  onstack[j] + 1 step I until top do 
begin 

b : = stack[c]; 
next[previous[b]] : = next[b]; 
previous[next[b]] : = previous[b] ; 
temp : = equivalent[j]; 
equivalent[j] : = equivalent[b] ; 
equivalent[b] := temp 

end;  
c o m m e n t  Step 7. Arcs are now added to node j so that it will have 

the same connections to the rest of the graph that the nodes in  the 
loop had. Node j will then be used to represent the entire equivalence 
class; 

a : =  0; 
m[j,  j ]  : = t rue ;  

combine 1 : 
a := next[a]; if a = j then go to combine 1; 
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ff a = 0 then go to return; 
for c : = onstack[j] + 1 step 1 until top do 
begin 

b : = stack[el; 
ff m[a, b] then 
begin 

m[a, j] : = t rue;  
go to combine 2 

end 
end; 

combine 2: 
for e : = onstack[j] + 1 step 1 until top do 
begin 

b := stack[c]; 
ff m[b, a] then 
begin 

re[j, a ] : =  true;  
go to combine 1 

end 
end; 
go to combine 1; 
comment  Step 8. Now all nodes above j have been removed from the 

stack. The investigation of paths from j is continued, taking care 
not to skip any paths added in step 7; 

return: 
top : = onstack[j] ; 
i : = j ;  
j : = 0 ;  
go to nextarc; 
comment  Step 9. All new paths from node i have now been investi- 

gated and all nodes equivalent to i have been found. Node i is now 
removed from the stack and the investigation of paths from nodes 
below i on the stack is continued; 

unstack : 
top :=  t o p - l ;  
new[i] :=  false; 
ff top = 0 then go to starttree ; 
j : = i ;  
i :=  stack[top]; 
go to nextarc; 

end of Part 1. Notice that at steps 2 and 4 it was necessary to investigate 
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only paths involving nodes which have not been on the stack and then 
removed. Whenever a node is removed from the stack all paths from that 
node have already been investigated for cycles. Therefore it is not 
necessary to investigate paths involving nodes which have been re- 
moved from the stack; 

c o m m e n t  Part 2. Order Nodes. 
Part 2 takes the graph of equivalence classes (produced by part 1), 
which is a partial ordering, and f inds a consistent linear ordering. 
The lists Next and Previous are reordered so that i f  there is an arc 
from node i to node j then i occurs before j on the Next list (aml after j 
on the Previous list). The method used is similar to the ones given by 
Kahn [6] and by Knuth [5]; 

order: 
begin 

integer array count[1 : n]; 
integer j ,  i, ]c, a, b; 
c o m m e n t  Step 10. The number of arcs leaving each node is counted 

and stored in the array Count; 
j : = 0 ;  

count l : 
j : = next[j]; 
if j = 0 then go to start; 
count[j] := 0; 
i : = 0 ;  

count2 : 
i : ---- next[i] ; 
if i = 0 then go to count l; 
if m[j,i] ^ i @ j then count[j] : = count[j] + 1 ; 
go to count2; 
comment Step I1. Now i is set to the head of the list of nodes 

and k is set to the end of the new list of nodes (the new list will be 
ordered); 

start: 
i : = 0 ;  
k := n+l; 

c o m m e n t  Step 12. Advance j; 
advance]: 

j : = i ;  
c o m m e n t  St~p 13. Check for successors; 

checksuccessors: 
i :=  previous[i]; 
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ff i = 0 t h e n  go  to  startqueue; 
if count[i] ~: 0 t h e n  go  to  advance]; 
c o m m e n t  Step 14. Each node with no sucessors is added to the new 

list and removed from the old; 
previous[k] : =  i ;  

previous[j] := previous[i]; 
next[previous[i]] : = j;  
next[i] := k; 
k : = i ;  
i : ~ - j ;  
go  to  checksuccessors; 
c o m m e n t  Step 15. The index i goes from front to back on the new 

list of nodes. Each node which has an arc to node i and has other 
arcs only to nodes which are after i on the new list of nodes is now 
added to the back of the queue; 

startqueue : 
i : =  n + l ;  

previous[k] : =  O; 

process l : 
i : = previous[i]; 
ff i = 0 t h e n  go  to  outorder; 
a : =  0;  

process2: 
b := a; 
a : = previous[a] ; 
i f  a = 0 t h e n  g o  to  processl ; 
ff m[a, i] then  
b e g i n  

count[a] := count[a]-- 1 ; 
if  count[a] = 0 t h e n  

b e g i n  

previous[k] := a; 
next[a] := k; 
previous[b] := previous[a]; 
next[previous[a]] : = b; 
previous[a] := 0; 

k : = a ;  a : = b  
e n d  

e n d ;  

go  to  process2; 
c o m m e n t  Step 16. Move list head; 
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outorder: 
next[O] := b; 
previous[O] : = previous[n + 1] ; 
next[previous[n + 1]] : = 0; 

end of Part 2; 
c o m m e n t  Part 3. Trans i t ive  Closure 

Part 3 computes the transitive closure for the graph of equivalence 
classes starting with the last node on the new list of nodes (prod~ced in 
Part 2). At  all times the transitive closure will be available for the 
nodes after the one being worked on since each node has arcs connect- 
ing it only to nodes which occur after it on the list. Therefore the transi- 
tive closure of a node k can be computed by talcing the union of k 
and the transitive closure of all nodes i for which there is an are 
from k to i; 

transitiveclosure : 
begin 
integer lc, i, j ,  oldj ; 
in teger  a r r a y  nextl[0 :n];  
c o m m e n t  Step 17. Initialize; 
k : = 0 ;  
c o m m e n t  Step 18. Move k one place closer to the front of the list of 

nodes and make a copy of the list of nodes after k; 
nextnode: 

k : = previous[k] ; 
ff k = 0 then  go to output; 
i : = j : =  lc; 

nextnode 1 : 
if j = 0 then  go to testare; 
next l [j] : =  next[j]; 
j : = next[j]; 
go to nextnode 1; 
c o m m e n t  Step 19. Find the next node i on the list such that there is 

an are from node k to node i;  
restart: 

i :=  nextl[i]; 
ff i = 0 then go to nextnode; 
if --~m[lc, i] then  go to testarc; 
j : = i ;  
c o m m e n t  Step 20. Find the next node j on the list such that j is in 

the transitive closure of i;  
testclosure : 
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oZdj :=j;  
j : =  nextl[j]; 
if j = 0 then  go to testarc; 
if ---Tm[i, j] then  go to testclosure; 
c o m m e n t  Step 21. Add an arc from k to j to the transitive closure 

matrix and remove j from the list N e x t  l so that we do not make 
additional tests for k connected to j in the transitive closure; 

re[k, j ]  : = t rue ;  
nextl[oldj] : = ncxtl[j]; 
j : = oldj; 
go to tcstclosure 

end of Part 3; 
c o m m e n t  Part 4. O u t p u t  

The transitive closure of the graph of equivalence classes (computed 
in Part 3) is now expanded to give the transitive closure of the original 
graph. For each pair of equivalence classes i and j where there is an 
arc from i to j in the transitive closure an arc is added to the transitive 
closure for each pair of nodes a and b where a is equivalent to i and b 
is equivalent to j ;  

output : 
begin  

in teger  i, j ,  a, b; 
c o m m e n t  Step 22. Begin; 
i : = 0 ;  
c o m m e n t  Step 23. New i; 

newi : 
i : = next[i] ; 
if i = 0 then  go to endalgorithm; 
j : = 0 ;  
c o m m e n t  Step 24. New j;  

ncwj: 
j := next[j]; 
if j = 0 then  go to ncwi; 
if ---~m[i, j] then  go to ncwj; 
a : =  i ;  
c o m m e n t  Step 25. More a; 

morea: 
a : = equivalent[a]; 
b : = j ;  
c o m m e n t  Step 26. New b; 
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newb: 
b : = equivalent[b]; 
m[a, b] : =  t rue ;  

if b = j then go to newa; 
go to newb; 
c o m m e n t  Step 27. New a; 

ff a -- i then go to newj; 
~o to morea 

end  of Part 4; 
endalgorithm : 

e n d  of T R A N S C L O S U R E ;  
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