
Algorithmica (1996) 16:517-542 Algorithmica
�9 1996 Springer.Verlag New York Inc.

Efficient PRAM Simulation
on a Distributed Memory Machine

R. M. Karp, 1 M. Luby, 2 and E M e y e r au f der He ide 3

Abstract. We present algorithms for the randomized simulation of a shared memory machine (PRAM) on a
Distributed Memory Machine (DMM). In a PRAM, memory conflicts occur only through concurrent access to
the same cell, whereas the memory of a DMM is divided into modules, one for each processor, and concurrent
accesses to the same module create a conflict. The delay of a simulation is the time needed to simulate a
parallel memory access of the PRAM. Any general simulation of an m processor PRAIVI on an n processor
DMM will necessarily have delay at least m/n. A randomized simulation is called time-processor optimal
if the delay is 0 (re~n) with high probability. Using a novel simulation scheme based on hashing we obtain
a time-processor optimal simulation with delay O(log log(n) log* (n)). The best previous simulations use a
simpler scheme based on hashing and have much larger delay: | (log(n)/log log(n)) for the simulation of an n
processor PRAM on an n processor DNIM, and | in the case where the simulation is time-processor
optimal.

Our simulations use several (two or three) hash functions to distribute the shared memory among the
memory modules of the PRAM. The stochastic processes modeling the behavior of our algorithms and their
analyses based on powerful classes of universal hash functions may be of independent interest,

Key Words. PRAM, Simulation, Distributed memory machine, Universal hashing, Stochastic modeling,
Balls and bins.

1. I n t r o d u c t i o n . Para l le l m a c h i n e s tha t c o m m u n i c a t e v ia a sha red m e m o r y (para l le l

r a n d o m access m a c h i n e s , P R A M s) are the m o s t c o m m o n l y used m a c h i n e m o d e l for

de sc r ib ing para l le l a lgor i thms . T he P R A M is re la t ively c o m f o r t a b l e to p rog ram, because

the p r o g r a m m e r does no t have to a l loca te s torage wi th in a d i s t r ibu ted m e m o r y or spec i fy

i n t e rp roces so r c o m m u n i c a t i o n . O n the o the r hand , shared m e m o r y m a c h i n e s are ve ry

unrea l i s t i c f r o m the t echno log ica l po in t o f view, because , o n large m a c h i n e s , a para l le l

sha red m e m o r y access c an on ly be rea l i zed at the cos t o f a s ign i f ican t t ime delay. A

m o r e real is t ic m o d e l is the d i s t r ibu ted m e m o r y m a c h i n e (D M M) , in w h i c h the m e m o r y

is d i v i d e d in to a l imi ted n u m b e r o f m e m o r y modules , one m o d u l e pe r processor . E a c h

1 Computer Science Department, University of Washington, USA. Research partially supported by
NSF/DARPA Grant CCR-9005448. Work was done while at the University of California at Berkeley and
the International Computer Science Institute, Berkeley, CA.
2 International Computer Science Institute, Berkeley, CA, 94704, USA, and University of California, Berkeley,
CA 94720, USA. Research partially supported by National Science Foundation Operating Grant CCR-9016468,
National Science Foundation Operating Grant CCR-9304722, United States-Israel Binational Science Foun-
dation Grant No. 89-00312, United States-Israel Binational Science Foundation Grant No. 92-00226, and
ESPRIT BR Grant EC-US 030.
3 Heinz Nixdorf Institute and Computer Science Department, University of Paderborn, D-33095 Paderborn,
Germany. Part of work was done during a visit at the International Computer Science Institute at Berkeley;
supported in part by DFG-Forschergruppe "Effizieute Nutzung massiv paralteter Systeme, Teilprojekt 4"' and
by the Esprit Basic Research Action Nr. 7141 (ALCOM II).

Received August 12, 1993; revised November 10, 1994. Communicated by M. Luby.

518 R. M, Karp, M. Luby, and E Meyer anf der Heide

module can respond to only one access request at a time. Thus DMMs exhibit the
phenomenon of memory contention, in which an access request is delayed because of a
concurrent request to the same module.

In an effort to understand the effects of memory contention on the performance of
parallel computers, several authors have investigated the simulation of shared-memory
machines on DMMs. In this paper we present substantial improvements over the most
efficient simulations previously known.

The paper is organized as follows. In the next two subsections we summarize previous
work and the new results presented in this paper. Section 2 contains more detailed
descriptions of the computation models. Section 4 describes the universal classes of
hash functions we require and discusses stochastic processes that capturethe essential
features of our simulations. The remaining sections describe several variants of our shared
memory simulations. The reader wishing to gain a quick insight into our algorithms
without detailed probabilistic analysis may wish to skip Sections 5 and 6 in a first pass
through the paper.

1.1, Previous Work. Let p denote the size of the shared memory of a PRAM, and let
n be the number of processors and memory modules of a DMM.

Each of the previous randomized algorithms for simulating a PRAM on a DMM uses
a single hash function h: [p] -+ In] randomly chosen from a universal class of hash
functions, to distribute the shared memory cells (we say "keys" for short) among the
memory modules of the DMM. 4 Informally, a class of hash function is universal, if a
random member of it has statistical properties not too far away from a random function,
but can be stored on little space and can be evaluated fast. The notion of universality was
first introduced in [4].

Some of the simulations assume a complete interconnection network between the
processors and the memory modules; others assume a sparse interconnection network
such as a butterfly or a hypercube.

The delay of a simulation is the time needed to simulate a parallel memory access of
the PRAM, For those simulations that are based on a single hash function the delay is
governed by the following quantities:

�9 The hash evaluation time, i.e., the time to evaluate h.
�9 The memory contention, i.e., the maximum number of shared memory accesses exe-

cuted in one PRAM step which are mapped to the same module under h,
�9 In the case of a sparse interconnection network, the routing time, i.e;, the time needed

to route read and write requests from processors to memory modules, and to transmit
the results of read requests back to the requesting processors.

In [15] and [20] it is shown that, on a butterfly network, expected routing time
O(log(n)) can be achieved, which clearly is asymptotically optimal. The expected con:
tention can be made as small as O (log(n)/log log(n)), if log(n)-universal hash-functions
as introduced in [4] are used. These hash functions have evaluation time O (log(n)). Thus
these simulations have delay O (log(n)).

4 In this paper [n] denotes {1, 2 n}.

Efficient PRAM Simulation on a Distributed Memory Machine 519

If a complete interconnection network is assumed then the delay can be reduced.
In [19], log(n)/loglog(n)-universal hash functions from [4] are used, yielding de-
lay O(log(n)/loglog(n)). For any scheme that uses a single hash function to dis-
tribute the keys among n memory modules, the expected contention is necessarily
~2 (log(n)/log log(n)). It is easily shown that this holds if the hash function behaves
like a random function, and that no class of hash function can yield lower expected con-
tention. Thus any improvement .must stem from the use of more than one hash function.

By introducing parallel slacknessii .e. , simulating a PRAM on a DMM with fewer
p rocessors Iwe can obtain time-processor optimal simulations, in which the expected
delay is proportional to the ratio between m, the number of processors in the PRAM,
and n, the number of processors in the DMM. Time-processor optimality can only be
achieved on completely connected DMMs, and only if the hash functions used have
constant evaiuation time. In such simulations each processor of the DMM simulates
m/n processors of the PRAM. Thus each simulation step has to satisfy m/n memory
access requests from each processor. In devising time-processor optimal simulations the
object is to minimize the delay or, equivalently, to minimize m as a function of n. It is
easily seen that, in any time-processor optimal simulation that uses a single hash function
to distribute the keys, the expected memory contention, and hence the expected delay,
must be ~2 (log(n)).

The first time-processor optimal simulation was published in [16]. It simulates an
n I+~ processor PRAM on an n processor DMM with optimal expected delay O(n~),
for arbitrary e > 0. In [23] a time-processor optimal simulation of EREW PRAMs on
DMMs is presented with expected delay O(log(n)), using hash functions introduced
in [21]. In [8] the same result is shown for CRCW PRAMs, using a new class of hash
functions.

t.2. New Results. In this paper we have chosen to assume a complete interconnection
network in order to avoid confounding the effects of memory contention with the ef-
fects of routing delays, and to make possible the construction of time-processor optimal
simulations. Our main result is a time-processor optimal randomized simulation of an
EREW PRAM with delay O(log log(n)log*(n)) and a simulation of a CRCW PRAM
with the same delay, where the time-processor product is only away from optimal by a
factor log* (n) . The delay bound is very reliable; it is guaranteed with high probability,
i.e., with probability exceeding 1 - O(n -~) for arbitrary ~ > 0. (Hereafter, this is what
we mean whenever we use the term "with high probability.")

The simulation uses a novel scheme which is more involved than the simple hashing
scheme used in the previous results. We show how to speed up the simulation of a read
step of an n processor PRAM on an n processor DMM by using two or more hash
functions, and thus making the contents of each PRAM cell accessible in two or more
places. We speed up the simulation of a write, step by allowing delayed executions of
write instructions: whenever memory contention prevents a write request from being
executed during the present memory cycle, the request is stored in a parallel hash table.
We show that with high probability the size of this table of deferred write requests never
exceeds O (n). Thus, we can distribute the table among the modules so that accesses to
it can be performed in constant time.

The analysis of our simulation depends on the properties of a particular v/if-universal

520 R.M. Karp, M. Luby, and E Meyer auf der Heide

class of hash functions which combines the constructions given in [8] and [21]. The
structure of these hash functions enables us to analyze the delay in our simulation using
a powerful martingale tail estimate that was derived independently in [2] and [18].

2. Computat ion Models. A PRAM consists of processors P1 Pm and a shared
memory with cells U = [p]. The processors work synchronously and have random
access to the shared memory cells, each of which can store an integer. We consider
EREW PRAMs where concurrent access to the same shared memory cell is forbidden,
as well as CRCW PRAMs where such an access is allowed. In the latter case we assume
the ARBITRARY write conflict resolution: If several processors want to write to the
same cell simultaneously', an arbitrary one of them succeeds. The computation of the
PRAM has to be correct no matter which one succeeds.

A DMM has processors Q1, . . . , Q~ which communicate via a distributed mem-
ory consisting of n memory modules M1 Mn. Each module has a communication
window. A module can read from or write into its window. From the viewpoint of the pro-
cessors, a window acts like a shared memory cell of a CRCW PRAM with ARBITRARY
write conflict resolution.

Our simulations of PRAMs on DMMs use known algorithms (for, e.g., perfect hash-
ing, see Section 4), originally described for PRAMs. All these algorithms use linear
space only. The next lemma states that such algorithms can be executed also on a DMM
with constant delay.

LEMMA 2.1. An n-processor CRCW PRAM with m shared memory cells can be simu-

lated on an n-processor DMM with worst case delay O(m/n) .

PROOF. Partition the shared memory of the PRAM, i.e. each module gets at most [m/n]
shared memory cells. Now any parallel access to the shared memory can be simulated

in time O(m/n) by the DMM. []

Out simulations need the capability of the DMM to execute concurrent reads from
and concurrents writes into the communication windows. On the other hand the specific
rute how to resolve write conflicts is not of major importance, because several authors
have shown efficient simulations among parallel machines with different write conflict
resolutions [5], [6], [10], [11], [13], [14], [22]. These simulations are described for
PRAMs, but can be transfered to DMMs using Lemma 2.1.

For example the TOLERANT rule suffices: If several processors want to write to the
same communication window, then its contents remains unchanged. This can be done
without increase in the time-processor product, and with a O(log*(n)) increase for the
delay, with high probability.

3. Outline of the Simulations. Our PRAM simulations are based on the use of hash
functions to distribute data among the memory modules of a DMM, The properties of
the hash functions are complex, as are the analyses of the basic stochastic processes

Efficient PRAM Simulation on a Distributed Memory Machine 521

underlying the simulations. However, the design of the simulations was guided by a
clear intuition based on the idealized assumption that the hash functions are completely
independent random functions; i.e., that all hash functions have domain U and range [n],
that the value of hash function h at point x is determined by rolling a fair n-sided die,
and that the values of distinct hash functions or the values of the same hash function at
distinct points are completely independent.

All previously published shared memory simulations based on universal hashing use
one hash function h to distribute the shared memory among the modules of the DMM. As
already noted in the introduction, such simulations inherently exhibit the phenomenon
of memory contention: If h is randomly drawn from an arbitrary universal class of hash
functions, then the expected contention is f2 (log(n)/log log(n)),

In order to get faster simulations, we allow the use of more than one hash function.
Thus each shared memory cell has several copies, maintained in several modules.

Assume that we use two hash functions h 1, h2. Further assume that the correct values
(with respect to the simulated PRAM) of each shared memory cell x are stored in the
copies of x in Mh1(x) and Mh~x). Then, if processor Pj wants to read cell xi, it suffices
to access only one arbitrary of the two copies ofxi , for i 6 [n].

We first note that in this situation, no inherent contention bound limits the performance
of the memory access.

Consider the bipartite graph G with node sets {xl xn} and {M1 Mn}, where
edges go from xi to Mh~x,) and Mh2~x~), i ~ [n]. As we assume that hi and h2 are random
and independent, it is easily checked that, with high probability, there is a constant number
of matchings in G such that each xi is incident to an edge in one of the matchings.

If now only the copy of xi indicated by the edge of a matching is accessed, each
module only receives a constant number of requests, i.e., the contention is constant.

On the other hand, the computation of the matchings is complicated. We present a
simple algorithm, READ_2 from Section 7.2, which implicitly finds these matchings.
READ_I from Section 7.1 describes a simulation of a read step for the case that not two,
but log log(n) hash functions are used. The behaviors of the algorithms are modeled by
the stochastic processes Process_l and Process_3 in Section 6. Their analyses show that
both simulations of a read step need time O (log log(n)), with high probability.

As we assume that all copies of all shared memory cells are always up to date, we
have to make sure that simulations of a write step--P~ writes zi to xi, i E [n]--update
all copies of xi with zi, i c [n].

For this purpose we present a new idea--delayed writing--to speed up the simulation
of a write step. Consider one hash function h. Pi wants to write to cell xi, i ~ [n], i.e.,
wants to update the copy ofx i in Mh~x~). As memory contention prevents us from directly
sending all updates to the respective modules, we first insert them into an intermediate
data structure SM, which holds all not yet satisfied update requests. Then all update
requests from SM are tried to be passed to the respective modules, but each module only
accepts a constant number of requests.

This simulation of a write step is presented in Section 7. Process_2 in Section 6 models
the shrinking and growing of the set of unsatisfied requests stored in SM. We show that
this set will always be of linear size, with high probability.

For implementing SM we use a fast perfect hash table, based on results from [17] and
[2], described in Section 4. This guarantees that time O(log*(n)) is sufficient to insert

522 R.M. Karp, M. Luby, and E Meyer auf der Heide

the new write requests into SM, with high probability, and that a parallel read in SM can
be done in constant time.

Thus, with respect to one hash function, a write step can be simulated in time
O (log* (n)), with high probability.

We finally present methods to make our simulations time-processor optimal.

4. Perfect Hashing and Approximate Compaction. Let U be the set of addresses of
the shared memory cells of the PRAM. We refer to a cell x as a key. The current contents
o f x is denoted c(x). Our simulations maintain a small set of keys x, together with their
current contents c(x), in an intermediate data structure which has to be built efficiently
on the DMM, and in which an efficient lookup can be performed. A lookup for a key x
returns c(x), if (x, c(x)) is stored in the data structure, and returns "failure" if key x is
not in the data structure.

Let d be a positive constant. Define a parallel hash table SM with degree of parallelism
n and set of addresses U as an array which contains a Set of keys S c U, where]SI < yn
for some y > 0, together with a value c(x) associated with a each key x. SM is evenly
distributed among the modules. It supports the following operations:

BUILD(Sb $2 Sn)

Input: A family of n not necessarily disjoint sets of key-value pairs S1, $2 S~,
where, for all i, ISi[<_ log*(n), S/is stored in Mi.

Output: If ~,i ISil <_ yn, then the operation produces a parallel hash table SM storing
Ui Si and returns the value "success"; otherwise, it returns the value "failure:' (Note:
I f x is in several sets S/, it finally is only presented once in the hash table.)

LOOKUP(SM, X)

Input: A parallel hash table SM containing the set S, and an array of keys X =
(Xl, x2 x~), xi is stored in Mi.

Output: An array Y = (Yl, Y2 , Yn) where: if xi e S then Yi is the ordered pair
(c(xi), "success"); otherwise, Yi is equal to "failure" Yi is posted in the communication
window of M/.

HASH(SM, X)

Input: A parallel hash table SM containing the set S and an array X of key-valu e pairs
(xi, c(xi)), stored in Mi.

Output: If iS U XI _< yn, then this operationsets SM equal to a parallel hash table
storing S U X; otherwise, the operation returns "failure"

The papers [2] and [17] give randomized algorithms for realizing a parallel hash
table for yn key-value pairs on an n processor PRAM. The inputs and outputs of the
operations, as well as the parallel hash table itself, reside in the shared memory of the
PRAM. The space required for the parallel hash table is O(n). The LOOKUP operation
runs in time O(1) and, the BUILD and HASH operations run in time O(log*(n)) and
perform O (n) operations, with high probability. Note that the operation HASH is a little

Efficient PRAM Simulation on a Distributed Memory Machine 523

more complex than what is done in [2] or [t7], because X is hashed in a nonempty hash
table. For our version of HASH, we first collect the keys S stored in the hash table, and
then hash S U X to it. This is possible because IS t_J XI = O(n). For our Simulation_2,
a simpler implementation from [12] with delay O (log log(n)) would also suffice.

As shown in Lemma 2.1, these algorithms can be simulated on a DMM with constant
slowdown.

5. Universal Families of Hash Functions. Our simulations require us to distribute
the shared memory of the PRAM among the memory modules of the DMM. We now
discuss the hash functions that will be used for this purpose.

Let U = [p], where p > n. For a function h :U --> [n] and a set S _ U let
B h = h- l (/) f) S be the ith bucket of S under h. The function h splits S into buckets
B}

DEFINITION 5.1 (d-perfect). We call h d-perfect on S, if each B/h, i = 1 n, has
size at most d.

Let 7-(p,~ be a family of hash functions mapping U into [n]. In [4] the notion of
universality for families of hash functions was introduced as a measure of the quality of
the family for classical hashing purposes.

DEFINITION 5.2 (Universal Hashing). The family 7"/p,n is (/~, k)-universal, if for each
Xl < --. < xj c U, yl yj c [n], j < k, it holds that, if the hash function h is drawn
with uniform probability from ~p,~, then

/z
Prob[h(xl) = Yl h(xj) = yj] < --=.

nJ

Let p be prime, p > n. As building blocks for our hash functions we apply two
types of universal classes. The first one is the class ~ p a c_C_ {h: [p] --+ [n]} of functions

h(x) mod n where h is a polynomial of degree d - 1 over Zp. 7-/pa~ was introduced

by Carter and Wegman in [4]. It is a (2, d)-universal class. The second class 7~,kn c
{h: In k] ~ In]} introduced by Siegel in [21] consists of more complicated functions.
It is the first class with high degree of universality whose functions can be generated
fast using little space and have constant evaluation time, if the universe is of size n ~ for
constant k. The following lemma lists important known properties of these classes.

LEMMA 5.1 (Properties of 7-(pa,n and 7~nk,n). Let d and k be constants independent of n,

(a) A random h c "Hap,n can be generated by a randomized sequential processor in

constant time. A random ~nk,n can be generated by a randomized DMM with a/~
processors in constant time.

(b) h E ~dp, n or 7~nk,. can be evaluated in (sequential) constant time.
(c) 7-(pC. is (2, d)-universal.

(d) 7~.~n is (1, .vfff)-universal for sufficiently large k.

524 R.M. Karp, M. Luby, and E Meyer auf der Heide

Let ~ > 1 be arbitrary, and let d and k be large enough relative to & Let S c_ U,
n <_ ISI <_ n HI1~

(e) I f h is randomly drawn from 7"[ap,,,~, then Prob [h is 2 I Sll ~-ff-perfect on S] > 1 - n-e

(f) I fh is randomly drawn from 1 then Prob[h is 1-peufect on S] > 1 - n -~, ~t'[p , n k ~

(g) Let S' _ U, IS'I _< 2n 3/4. I f h is randomly drawn from 7-[ae, n or ~nk n then Prob[h is

d-perfect on S'] > 1 - n-e.

PROOF, The results (a)and (b) are obvious from the definition of the classes, (c) and
(d) can be found in [4] for 7-/pan and in [21] for 7~nkn and (e) is shown in [16]. The results
(f) and (g).are shown in [7] for (#, d)-universal classes; thus it applies to both of our
classes because of (c) and (d). []

In [8] and [9] a new class of hash functions is introduced. We only present a special
case sufficient for our considerations.

DEFINITION 5.3 (~ ,n)" A particular function h E ~ , n is specified by:

�9 A primary hash function f E 7-/d
p,,fff"

d �9 A secondary hash function g e ~e,n-

�9 A collection of offsets a = (al a/~), where ai C [h i .

The function h is defined in terms of (f , g, a) as

h(x) = (g(x) + af(x)) rood n.

In other words, to compute h(x) we determine a base address g(x) and add to it an
offset determined by f (x) . Note that h ~ 7~ap,n can be evaluated in time O(d), i.e.,

in constant time if d is a constant. Choosing a random h ~ TCdp,n means choosing the
parameters of the corresponding f , g, a independently at random. Note that a random h
can be chosen by a randomized DMM with ~ processors in constant time, such that
each processor knows f and g, and ai is stored in Mi, i = 1 q"n. In this way, each
processor can evaluate h on x in constant time, by reading af(x) from Mf(x~.

For ~vdn, [9] shows that for any given S c U, ISI _ n 1~/1~ a randomly chosen and
fixed (f, g) pair will have, with high probability, distributional properties with respect
to how S is mapped by random a that are very similar to the properties that hold if
completely random functions are used to map S.

DEFINITION 5.4 (d-goodness), Let f : U -+ [v/if] and g: U ~ [n] be hash functions.
Let d be an integer and let S c_C_ U. (f , g) is d-good for S if f is 2 [S[/v'-ff-perfect on S
(i.e., each bucket of S under f has size at most twice the average bucket size.), and g is
d-perfect on each bucket of S under f .

The following lemma is implicitly used in [9]. It follows directly from Lemma 5. l(e)
and (f).

Efficient PRAM Simulation on a Distributed Memory Machine 525

LEMMA 5.2. Let S C U, n _< ISI _< n 11/10. In the context of~ap,. , for each s > 0 there

is d > 1 such that a random pair (f , g) is d-good for S with probability 1 - n -~.

For our t ime-processor optimal simulations we need a class of hash functions with
constant evaluation time which has the same two-level structure as 7-gpa,n and, in addition,
is (/~, c tog(n))-universal for some constant lz > 0 and a suitable constant c > 0. For
this purpose we modify ~ d n by choosing a variant of Siegel's functions from ~nk,n as
secondary hash functions.

DEFINITION 5.5 - d k "d,k (~pln). A particular function h c ~p,,z is defined by:

�9 A primary hash function f E ~ a p, vrff �9
1 �9 A secondary hash function r o s, r ~ 7~k ~, s ~ 7~p,~k.

A set of offsets a = (al a/-if}, where ai E [n] .

The function h is defined in terms of (f , r o s, a) as

h(x) = (r(s(x)) +ffr(x~) m o d n .

- d k In the context of 7~p,~, random f means that f is chosen uniformly at random from

~ ,,/ff,d random r o s means that r is chosen uniformly at random from 7~n k,n and s is

chosen uniformly at random from ~1 ~, random a means that, for i 6 [~/ff], ai is chosen
�9 p,n

umformly at random from [n], and random h is defined by random f , random r o s and
-d,k random a. Note that h ~ ~p,n can be evaluated in constant time if d and k are constants.

Further, a random h can be constructed by a randomized DMM with ~ '~ processors in
constant time. These properties follow directly from Lemma 5. l(a) and (b).

-d,k LEMMA 5.3. L e t S c_ U ,n < ISI ~ n l t / l~163 > Othere
are d > O, k > 0 such that a random pair (f , r o s), is d-good for S with probability
1 - n - e .

PROOF. Let s > 0 be given. If d is sufficiently large, then a random f is 2 IS[/~ff-
perfect on S with probability 1 - n - c by Lemma 5.1(e). Note that r o s is d-perfect
on S if s is 1-perfect on S and r is d-perfect on s(S). Each of these events is true with
probability at least 1 - n -e' by Lemma 5. l(f) and (g). Thus, random (f , r o s) is d-good
with probability (1 - n - e ') 3 > 1 -- n -e i f e ' is sufficiently large relative to ~. []

The advantage of 7~pa:~ compared with ~dp, n is its high degree of universality. Whereas

7~pa. can only be proven to be a (2, d)-universal class a much stronger property holds
for 7~d_'~. k',

LEMMA 5.4 . Let -d ~ap:n(S) be the restriction o f T~d:~ induced by frying s ~ ~1 Let
p;nk.

s __c U, tSI _< n L1/l~ l f s is 1-perfecton S, then 7~d',~ (s) is (1, ,/-ff)-universa!.

526 R.M. Karp, M. Luby, and E Meyer auf der Heide

PROOF. The proof is obvious from Lemma 5.1 (d) and the definition -d k of ~p',n" []

In the next section we analyze properties of our universal hash classes, with respect
to a given set S of keys. For this purpose we consider fixed pairs (f , g) that are d-good
for S. Thus the random choice of h is reduced to randomly choose the offsets a. As a
consists of 4:ff independent random variables, we can apply the following very general
tail estimate. It is based on Azuma's inequality. It can be found, e.g., in [1]. The version
described below can be found in [2] and [18].

THEOREM 5.1. Let X 1 , X m be independent random variables with finite ranges,
and let F (X1 Xm) be any function in X1 Xm with Exp[F] > 0. Assume that
F (XI Xm) only changes by at most an additive offset a in response to a change o f
one input variable Xi. Then

Prob[F >_ Exp[F] + t] < e - t z / 2azm .

6. The Basic Processes, The behavior of our PRAM simulations can be modeled by a
few simple stochastic processes which we now introduce and analyze. For both Process_ 1

-d,k and Process_2, all results hold with respect to both T~p~,n and ~p,n. Since the proofs are
so similar for both classes (the only difference is that Lemma 5.2 is used in the proof
for 7"r whereas Lemma 5.3 is used in the proof for -d k T~p,:), we give the proofs only for

d
~-~p,n"

The first process is basic for simulating the read step of a PRAM in our first simulation.
Fix ~ > 0 arbitrarily and let S _ U be given, where ISt = n. For the results with respect
to 7~ap,~, let d be chosen large enough with respect to e so that a random (f , g) is d-good

for S with probability at least 1 - n -ze, and for the results with respect to 7~pa'fn, let d and
k be chosen large enough so that a random (f , r o s) is d-good for S with probability at
least 1 - n -2e. Let T = log tog(n) - 1 and let ht hr be functions from U to [n].

Consider the following shrinking process for S.

Process_l

For t = 1 to T do
For each i E [n],

remove min{4d, Ih~-t(i) N S[} elements x ~ h~-l(i) from S.

THEOREM 6.1. Let hi h~. be randomly and independently chosen from ~dp, n (or
- d k fi "om ~p',n)" With probability at least 1 - n -e, ISI < n 9/1~ at the end of Process_l.

The proof of this theorem involves several subclaims, which we first develop before
giving the proof. Fix S c U, ISI = n, and S' c_ S. Suppose that (f , g) is d-good for S
with respect to Rap:. For all i ~ [~/-ff], define f-bucket

Bi = {S' A f-1(i)},

Efficient PRAM Simulation on a Distributed Memory Machine 527

and for all i 6 [~/-ff] and j 6 [n] define (f , g)-bucket

Ai,j = {Bi (q g - l (j) } .

Let h be defined by (f , g, a). Then the following properties hold:

�9 For all i, [BII < 2[SI/.q"ff < 2vrff.
�9 For all i, j , IAi,jl < d.
�9 Independent of a, for all i, j , all keys in Ai, j are mapped to the same location by h.
�9 Independent of a, for all i, for all j # j ' , h(Ai,j) # h(Ai,j,), i.e., there is no possible

collision between pairs of keys in the same f -bucket but different (f , g)-buckets.
�9 Let a be random. For all il i c c [Vif], for all j~ jc c In],

1
Proba[h(Ai~,j~) = h(Aic,j~)] < nc_l.

LEMMA 6.1. Fix S C_ U with ISI'= n and let S' c S be fixed, n 9/10 < [S'] < n. Let
(f , g) be d-good for S, let a be random, and let h be defined by (f , g, a). Let S" consist
of those keys left over from S' after removing min{4d, }h -1 (i) n S'[} elements x c h -1 (i)
from S' , for each i c [n]. Then

[tgt t2] e_n~/Io/72
Proba I S'I >_ 2n J <

PROOF. Fix any key x 6 S', and suppose x 6 Ai,j. Because no (f , g)-bucket has size
greater than d, the only way x can fail to be removed is if at least three other (f , g)-
buckets map to the same location as where Ai,j is mapped. The probability of this event
is at most 1In 3 times the number of triples of (f , g)-buckets. However, the number of
such triples is bounded above by 1S'13/6, and thus

From this it follows that

Prob[x 6 S"] < IS'I3 < IS'!
- 6n 3 - 6n

IS't 2
Exp[IS'l] 5 - -

6n

In order to bound the probability that I S'l is far away from its expectation, we apply
the tail estimate Theorem 5.1. Let F be the function which maps the independent random
variables al a4~ to IS'q. By the definition of d-goodness of (f , g), at most 2 ~
elements x c S change their hash value h(x) in response to a change of one ai. The
worst effect on IS'I would be that all these elements are noncolliding with respect to
S' before the change in ai but colliding afterward, and thus IS"t can change by at most
2Vrff, i.e., the offset ot is at most 2x/'h-. The above theorem now yields

Prob IS"I> 2n~J < Prob F > E x p [F] + 3n J

< exp { (IS'12/(3n))2 "]

528 R. M. Karp, M. Luby. and E Meyer auf der Heide

=exp(Is'14
72n7/2 ~]

(nl / l~
_ exp

This completes the proof of Lemma 6.1.

as [S'[> n 9/10.

[]

PROOF OF THEOREM 6.1. Let St be the set S in Process_ 1 after t runs of the for loop; So
is the initial set S. By Lemma 5.2, the probability that there is a t ~ [T] such that (f t , gt)
is not d-good for S is at most Tn -2e < n-e~2 for sufficiently large n. For the remainder
of the proof, for all t E IT], fix (ft, gt) to be d-good for S and all probabilities are with
respect to random at.

Lemma 6.1 implies that, with probability at least (1 - e-nlJt~ T ,

max / ISt-ll2, n 9/1~ } (]) s, _<

for all t ~ [T]. The theorem follows by solving the recursion and by observing that
the probability there is some t ~ [T] for which (1) does not hold is at most n-e~2 for
sufficiently large n. []

We now describe the second process. It is basic for simulating a write step of a
PRAM, and also for simulating a read step when we want to come close to time-processor
optimality. With respect to the simulation of a write step, the set At below denotes the
set of unsatisfied ~ t e requests stored in the intermediate data structure SM after t steps,
compare Section 3,

Let h: U --+ [n] and 0 < T < n 1/1~ be fixed. Let St c U be a set o fn elements for
1 < t < T, S = u T 1 St. Fix g > 0 arbitrarily. For the results with respect to 7~dp,n, let
d be chosen large enough with respect to g so that a random (f , g) is d-good for S with

-,~.k let d and k be probability at least 1 - n-e~2 and for the results with respect to TOp, n,
chosen large enough so that a random (f , r o s) is d-good for S with probability at least
1 - n-e~2.

Process_2

A0 := 0.
For t = 1 to T do

At :=- At-1 U St
For i a In] let Ci be the set of keys x ~ At with h(x) = i.

Remove from At min{4, ICi I} keys x c Ci.

Note that there is a more involved analysis that shows essentially the same result as
stated in the following theorem when only two elements (as opposed to four) are removed

from each Ci.

- a.k with probability at least THEOREM 6.2. For h randomly drawn from Tgdn or Tgp, n,

1 - n -~, Process_2fulfills IAtl _< 2 d 2 n f o r a U t ~ [T].

Efficient PRAM Simulation on a Distributed Memory Machine 529

PROOF. By Lemma 5.2 a random (f , g) fails to be d-good for S with probability at
most n-e~2. For the remainder of the proof we fix (f , g) to be d-good for S, and all
probabilities and expectations are with respect to random a. Let h be defined by (f , g, a).

CLAIM6.1. ForaUt E [T],Exp[IAtl] < d2n.

t~OOF. In [8] (see Definition 5.5 and Theorem 6.1) the following is shown.

LEMMA 6.2. Let S c U, [S[< tn for some t > 1. Let h be as above; h splits S into
buckets B1 Bn. Then,for any u > 4 and for each i E [n],

Prob[IBil > ut] <_ 2 -ut/d.

If, at some step t, ICil ~ u, then thereis a t ' < t suchthat S~, t = Ul=t-t'+l S1 contains
a set B;, of at least u + 4t' keys which are mapped to i by h. From Lemma 6.2,

(2)

Prob[ICi[>_ u] _< Z P r o b [B ; , >_ u + 4 t ']
t' <t

< Z 2-(u+4t')/d = 2-u/d Z 2-4t'/d < - -
#<_t # < t

d2-U/d

Thus

and

Exp[ICil] _< ~ P r o b [I C i l >__ u] 5_ d 2,
u>_0

Exp[[Atl] = Z Exp[[Ci[] < d2n.
ic[n]

This completes the proof of Claim 6.1. []

We now apply the tail estimate Theorem 5.1 to the function which maps S according
to a random a. By the definition of goodness, at most 2[S[/~/'ff < 2n 3/5 keys from S are
affected by the change of one ai. The worst effect on IAtl would be that none of these
keys are in At before the change of ai, but all of them are afterwards. Thus ~ < 2n 3/5.
Theorem 5.1 now yields

Prob[IAt[_> 2d2n] < Prob[lAtl > Exp[tAtt] + d2n] < e -a4n3~m/8.

Thus, the probability that there is a t ~ [T] such that [At l > 2d2n is at m o s t Te -d%~/1~
which is at most n-e~2 for sufficiently large n. This completes the proof of
Theorem 6.2. []

Inequality (2) shown in the proof of Claim 6.1 immediately implies the following
remark.

530 R.M. Karp, M. Luby, and E Meyer auf der t-Ieide

REMARK 6.1. At the end of Process_2, Ifil = O(log(n)) for all i E In], with proba-
bility at least 1 - n -e.

For our time-processor optimal simulation we need an extension of Process_2 which
we call Extended_Process_2. In the Extended_Process_2, after each group of
loglog(n) rounds of Process_2 a size-reduction is executed. In the size-reduction,
min{2d log log(n), [Cil} keys from Ci are removed from A, for i = 1 n.

THEOREM 6.3. In addition to the property from Theorem 6.2, the following holds for
the Extended_Process_2. After each size-reduction, IAI = O (n / log(n)) with probability
at least 1 - n-e.

PROOF. By Lemma 5.2 a random (f , g) fails to be d-good for S with probability at
most n-e~2. For the remainder of the proof we fix (f , g) to be d-good for S, and all
probabilities and expectations are with respect to random a. Let At be as in the last proof.
Assume that a size-reduction is executed in the Extended_Process_2 after t steps. Let
Ci ~ At be the set of key from At mapped to i by h. As shown in the proofofLemma 6.2,
Prob[ICil > u] < d2-~/d/2. Thus, Exp[l{i, Ifil > 2dloglog(n)}I] < dn/logZ(n). A
further application of the tail estimate Theorem 5.1 shows that

Prob [1{i, ICil

for sufficiently large n. Also,

2d~n] n -~
> 2dloglog(n))l > log(n)2 j <
- - - 4

n-s
Prob[max]Ci[> 3s log(n)] <

l < i < n - - - - 4

for sufficiently large n can be easily concluded. For all i e [n], the reduction phase
removes min{ICi [, 2d log log(n)], and thus at most 6~d~n/log(n) elements are in At
after the size reduction, with the desired probability. []

We now describe the third process. It is basic for simulating a read step of a PRAM
in the last three simulations. For this process we need the stronger universal properties

- d , k of ~p.n for the analysis. Let S C U be a set of n/16 keys. Let hi and h2 map U into [n].

l~ocess_3

Repeat until S = 0
F o r j = 1 ,2do

For/ ~ {1 n}
remove one x c h~fl(i) from S

Let s > 0. Let d and k be sufficiently large constants relative to s so that a random s is
1-perfect for S with probability at least 1 - n-e~4.

THEOREM 6.4. Let hi and h2 be randomly and independently chosen from - d,k ~p,n" With

probability at least 1 - n- e, the repeat until loop of' Process_3 is executed at most
D log log(n) times before S = O for some constant D.

Efficient PRAM Simulation on a Distributed Memory Machine 531

PROOF. Fix sl and s2 so that they are both l-perfect on S. All probabilities in the
- d k - d k s following are with respect to random hi ~ T~p',n(Sl) and h2 ~ 7~p'on(2). Consider the

following directed labeled graph G = {[n l, E} (with multi-edges and self-loops allowed)
defined by hi, h2, and S. There is an edge from hi (x) to h2(x) labeled x for each x ~ S.
This graph has the structural properties stated in Lemma 6.3 and Claim 6.2 below. Similar
properties are well known for random graphs [3] and are proved using similar techniques.
Note that both hi and h2 are (1, ,r on S because of Lemma 5.4.

LEMMA 6.3. Let H be the graph obtained from G by removingall labels and directions
from the edges. For each ~ > 1 there are/3, s > 1 such that:

(a) Prob[H has a connected component of size at least [3 log(n)] < n-e~4
(b) Prob[H has a connected component A with at least IAI + s - 1 edges] < n-e~4.

PROOF. The proof of the lemma relies on the following claim.

CLAIM 6.2. Let k > 2, s > 0, k + s - I < ~/'ff. The probability there is a subgraph
G' c_ G such that G' contains k vertices and at least k + s - 1 edges is at most

n -~+1 �9 (k + 1) ~-l . 2 -(k+2~-5).

PROOF. Let ~ . s be the set of all directed labeled (with elements of S) graphs on node
set [n] with k vertices and k + s - 1 edges. Then,

< ' k § s - 1 \ 1 6]

<_ n 2 k + s - 1 �9 e 2k+s �9 (k + 1) s -1 �9 2 - 4 (k+s - !) .

Because k + s - 1 < 4eft and hi, h2 are independently chosen from a (1, ~/-n)-universal
class of hash functions the following is true. For a fixed G' 6 ~ , s l for randomly chosen
h i and h2, the probability that the directions and labels with respect to h 1 and h2 coincide
with G r, i.e., the probability that G I is a subgraph of G, is at most n -2(~+~-1). Therefore,
the probability there is some G ' E G~,s such that G f is a subgraph of G is at most

n -~+1 . (k + 1) s- t �9 2 -(k+2~-5).

This complete the proof of Claim 6.2. []

Now we complete the proof of Lemma 6.3. Part (a) follows from Claim 6.2 with
k --- t3 log(n) for/3 a sufficiently large constant and s = 0. Part (b) follows from Claim 6.2
and by applying part (a) and then applying Claim 6.2 for s fixed to a sufficiently large
contant and using all values of k ~ [/3 log(n)]. []

To finish, the proof of Theorem 6.4, we translate the effect of the repeat until loop
into a game on the graph H: Each run of the loop corresponds to removing, for each
nonisolated node of H , an incident edge. The end of the loop corresponds to the situation
where H has lost all its edges.

532 R.M. Karp, M. Luby, and E Meyer auf der Heide

Consider a connected component of H with vertex set A, tAI = k, and edge set
E(A), IE(A)I = k + s - 1. Let E'(A) c_ E(A) form a spanning tree of this component,
IEr(A)l = k - 1. We consider our game on H restricted to A.

There are at most s moves in which edges from E(A)\Er(A) are removed. The other
moves only remove edges of the spanning tree. In each of these moves at least half of the
remaining edges of the spanning tree are removed, i.e., log(k) moves suffice to remove
all these edges. Thus all edges of the component are removed after log(k) + s moves.
As, by Lemma 6.3, for each component, k = O(log(n)) and s = O(1) holds with high
probability the theorem follows. []

7. Two Fast Simulations. We present two simulations of an n processor PI~AM on
an n processor DMM. The first simulation has delay and work (i.e., overall number of
operations executed by the DMM to simulate one PRAM step) | log(n)log*(n))
with high probability. Thus it cannot be directly converted into a time-processor optimal
simulation. It has the advantage that it uses hash functions from 7~, n rather than the

-d,k more complicated class 7~p, n.
The second simulation is faster; its delay is only O (log log(n)). More importantly, it

only uses optimal work O (n) for simulating one step of the PRAM with high probability.
It is the basis for the time-processor optimal simulation. Its disadvantage is that we need

-d,k the more complicated class of hash functions 7~p,n in order to make our analysis work.

We show how to simulate a phase of up to n 1/1~ steps of the PRAM. After a phase,
we perform a cleanup step which consists of dumping all the data currently stored in
the temporary shared memories into their final locations. After the cleanup step, all
temporary shared memories are empty for the start of the next phase of the simulation.
The purpose of the cleanup step is to ensure that all temporary shared memories are of
size O (n) at alt points in time with high probability. Remark 6.1 shows that the cleanup
step takes time O (log(n)) per temporary shared memory, with high probability.

Let S c U, ISI < n 11/1~ denote the set of keys used as shared memory addresses
in the phase of the PRAM to be simulated. Both simulations use an algorithm WRITE,
which in turn uses a hash function h and a perfect hash table SM (see Section 4). The

-d,k hash function h is randomly chosen from 7~p~ or T~e, . for suitable d, k > 0. During
the simulation, the name of each shared memory cell x, together with its current content
c(x), is stored in SM or in a module, such that the following holds:

INVARIANT. At each time t, for each shared memory cell x 6 U for which c(x) has
been defined at time t, (x, c(x)) is either stored in SM, or, if not, in Mh(xl.

Hereafter, for brevity we refer to names x of shared memory cells as keys, and we
write x instead of (x, c(x)). Recall that we use SM to refer to both the name of the perfect
hash table and its contents.

Let X = {xl x,} denote the keys to be written during a PRAM write step. In
case of an EREW PRAM x~ Xn are distinct, in case of a CRCW PRAM this is not
necessary, i.e., X may be a multiset. For i = 1 n let xi be associated with processor
P/. The first step is to add X to SM using the algorithm HASH described in Section 4. The

Efficient PRAM Simulation on a Distributed Memory Machine 533

second step attempts to simultaneously move the keys in SM into the memory modules.
Recall that a temporary perfect hash table SM is distributed among the memory

modules, with at most c entries of SM stored in each module for some constant c. Let
D be an integer. The algorithm WRITE_M(SM, h, D) moves

min{lSM Cq h -1 (i).1, D}

keys x c SM f) h-l(i) from SM to memory module Mh~x), for all i = 1 n. This is
implemented as follows. Simultaneously, for all i c [n], processor Pi reads in sequence
the at most c entries of SM stored in memory module Mi. Then, simultaneously, for all
i ~ In], P/tries to write in sequence, for j = 1 c, the j th key x to memory module
Mh~x~ up to D times. Each memory module can accept up to one write request per time
step. This takes time O(c �9 D), i.e., constant time.

WRITE(h , SM, X)

HASH(SM, X)
If "failure" returned then call EMERGENCY_WRITE(h, SM, X)
WRITE_M(SM, h, 4)

EMERGENCY_WRITE(h, SM, X)

WRITE_M(SM U X, h, ec)

LEMMA 7.1. WRITE satisfies the following:

(a) WRITE fulfills the invariant.
(b) WRITE runs within time 0 (log* (n)) with high probability.

PROOF. (a) is immediate from the description.
(b) is immediate from the description and the analysis of HASH, if EMER-

GENCY_WRITE is not invoked. EMERGENCY_WRITE takes time O (n) in the worst
case. Therefore, (b) is implied by the following claim.

CLAIM 7.1. Let At C U be the contents of SM after t simulated steps. There is a
constant c > 0 such that for each t, 1 < t < n 1/1~ IAtl < cn with high probability.

PROOF. Observe that the additions and deletions from SM during the algorithm are
captured by Process_2. The claim now follows from Theorem 6.2. []

The following two PRAM simulations use WRITE as a subroutine. The first simula-
tion uses log log(n) hash functions hi, h2 hloglog~n~ chosen randomly and indepen-

d dently from 7~p,n, to 'store log log(n) copies of each PRAM cell. The j th copy of cell
x is to be found either in SMj or in module MhAx). A read step consists of loglog(n)
iterations. At the j th iteration, each processor that has not yet succeeded in reading looks
for its key x first in SMj and then, if it has still not succeeded, in Mhj~x). The second
simulation is similar, but uses only two hash functions, hi and h2, and hence only two

534 R.M. Karp, M. Luby, and E Meyer auf der Heide

copies of each cell. The read step again consists of log log(n) iterations. At each itera-
tion, each proce~ssor that has not yet succeeded tries to access both copies of the cell it is
seeking. Our analysis of this second algorithm requires that the hash functions be drawn
from the more complicated family ~p,,.-a,k

7.1. A Simulation with Nonoptimal Work. This simulation stores each shared memory
cell in ~ = log log(n) modules, specified by ~ hash functions from ~p a , for suitable d.
We use e shared memories SM1 SMt of size c'n, each.

Let S c U, [SI < n 11/1~ be the set of keys used in a phase of n 1/1~ PRAM steps.
Each PRAM step consists of two substeps: a write step followed by a read step. We
let X = {xl x~} denote the multiset of n keys that are to be written or read
during a particular PRAM step. We use the algorithm LOOKUP described in Sec-
tion 4. Let READ(x, M, ans) indicate a read request to module M for key x. If M
has many simultaneous read requests to different keys, it can only successfully com-
plete one of them. It returns ans = ok for the successful read request and ans = f a i l
for all the unsuccessful read requests. If Read(x, M, arts) is called by several proces-
sors (as is allowed in the CRCW PRAM), then either all of them or none of them are
successful.

SIMULATION_I

PREPROCESSING_I
Choose h l he randomly and independently from ~d,~.

WRITE_I(X)
For j = 1 g, WRITE(hi, SMy, X)

READ_I(X)
(i) For all i ~ [n], status(i) := "failure."

For j = 1 e, LOOKUP(SMj, X).
Simultaneously, for all i c [n],

If contents of xi found in SMj
then status(i) := "success"

(ii) F o r j = l ~ - 1
Repeat D times

Simultaneously, for all i ~ [n]
If status(i) = "failure" then READ(xi, Mhj(x~), arts)
If ans = ok then status(i) := "success"

(iii) Repeat until, for all i 6 In], status(i) = "success"
Simultaneously, for all i = I n

READ(x/, Mh~(xi), arts)
If arts = ok then status(i) := "success"

THEOREM 7.1. SIMULATION_ 1 simulates an n processor CRCW-PRAM on an n pro-
cessor DMM using delay 0 (log log(n) log* (n)) with high probability.

Efficient PRAM Simulation on a Distributed Memory Machine 535

PROOF. It is clear that the above algorithm correctly, simulates a PRAM. PREPRO-
CESSING_I runs within time O(loglog(n)) in the worst case. From Lemma 7.1, it
follows that WRITE_I runs within time O (log log(n)log* (n)) with high probability.

Each run of each of the above three loops within READ_ 1 take constant time. Thus
(i) and (ii) take time O(l) = O(loglog(n)) . Loop (ii), which tries to find keys in the
modules according to the hash functions hi he_~, follows the rules of Process_l.
Thus, at the end of loop (ii), at most a set X', IX'l _< n 9/10, has not obtained an answer,
i.e., their corresponding read requests are not yet satisfied, with high probability. This is
shown in Theorem 6.1.

In [8], it is shown that a random he ~ 7~pdn is d-perfect (for a sufficiently large

constant D) on a set X' of size at most n 9/10, with high probability. Thus loop (iii) is
finished after D rounds, with high probability. []

It is easily verified that SIMULATION_ 1 can not be converted into a time-processor
optimal simulation, because it needs work f2 (n log log(n)) for simulating one step of the
PRAM. The reason for this is that we use a nonconstant number of hash functions,

7.2. A Simulation with Optimal Work. We now present a simulation that uses only two
hash functions, but we have to choose them from the more complicated class -d,k 7~, n for
suitably chosen constants d and k. We use two shared memories, SM1 and SM2. Again
let X = {xl, �9 . . , xn} be the multiset of keys requested by the PRAM step. The new
algorithm for reading now proceeds like Read_ 1, except that it does not need loop (iii).
Instead, it altemates between the two hash functions in 10op (ii). For technical reasons,
we satisfy the read requests to the modules in 16 batches of n/16 keys, each.

SIMULATION_2

PREPROCESSING_2
-d,k Choose hi, h2 randomly and independently from 7~p, n.

WRITE_2(X)
For j = 1, 2, WRITE(h j, SMj, X)

READ_2(X)
(i) For all i c [n], status(i) := "failure."

For j = 1, 2 do LOOKUP(SMj, X)
Simultaneously, for all i ~ [n],

If contents of xi found in SMj
then status(i) := "success"

(ii) For t = 0 15 do
u := 1 + t n / 1 6 , v = (t + 1)n/16
Repeat until, for all i ~ {u v}, status(i) = "success"

f o r j = 1,2
Simultaneously, for all i ~ {u v}

If status(i) = "failure" then READ(x/, Mhj(xl), ans)
If a n s = ok then status(i) := "success 'I

536 R.M. Karp, M. Luby, and E Meyer auf der Heide

THEOREM 7.2. SIMULATION_2 simulates an n processor CRCW PRAM on an n pro-
cessor DMM using delay 0 (log log(n)) with high probability.

PROOF. Clearly the above algorithm correctly simulates a PRAMo PREPROCESS-
ING_2 runs in constant time. From Lemma 7.1, WRITE_2 runs in time O(log*(n))
with high probability. The LOOKUPs in SM1 and SM2 within READ_2 each take con-
stant time. Because the loop within READ_2 follows the rules of Process_3, it follows
from Theorem 6.4 that, when D is chosen to be a sufficiently large constant, for each
value of t = 0 15, the number of iterations of this loop is D log log(n) with high
probability. []

It can easily be checked that this simulation uses optimal work O(n) to simulate a
step of the PRAM, with high probability.

8. Fast and Almost Optimal Simulation. In this section we present a simulation of an
n log log (n) processor CRCW PRAM on an n- processor DMM. The simulation achieves
almost optimal delay O ((log log(n)log* (n)), with high probability. Let s : log log(n).
Assume that the PRAM-processors are grouped into n blocks of I processors each. The
DMM has processors Qt Qn, where, for i = 1 n, Qi simulates the ith block.
For k = 1 s we let Xk denote the multiset ofn keys, the kth key from each block, to
be written or read during a particular PRAM step. We use three hash functions ho, hi, h2,
three intermediate hash tables SMo, SMa, SM2, and one additional temporary hash table
S'---M for each execution of the read algorithm. All of the hash tables are maintained using
the algorithm HASH described in Section 4.

The interesting aspect of this algorithm is how the read requests are processed by
READ_3. Step (i) processes the read requests associated with keys currently stored
in SM0, SM1, or SM2. All the read requests successfully processed in (i) require no
further processing in (ii). In step (ii) most of the remaining read requests are successfully
satisfied within the loop using hash function ho. SM is used to store the unsatisfied read
requests during the execution of this loop. In step (iii) the remaining O(n) unsatisfied
read requests in SM are then satisfied using h 1 and h 2.

The algorithm D_READ_M(SM, ho) removes, for all i E [n],

min{IS---M fq hol (i)[, 4}

keys from S---M, and sends these read requests to the appropriate module, i.e., the request
for key x is sent to module Mho~x~. We say that these read requests have been satisfied.
Mh0(x) does not immediately send back the value of the key c(x) associated with x (The
"D" in "D_READ" stands for "delayed"); instead it maintains a list of read requests it has
promised to process, and delays sending back the values until RESPOND_REQUESTS
is executed in step (iv). Clearly, this algorithm runs in constant time if [SMI = O(n).

The loop within step (ii) is similar to WRITE: At the beginning of iteration k, the read
requests that have not been satisfied among X1 U .-- U Xk-I are currently__ residing in
SM. First, Xk is added to S---M using HASH, and then D_READ_M(SM, h0) is executed
to ensure that ISMI -- O(n) at all times within the loop. The fact that SM stays small
follows from how Process_2 works.

Efficient PRAM Simulation on a Distributed Memory Machine 537

At the termination of step (ii), SM still stores up to O(n) read requests that have not
been satisfied. In step (iii) D_READ_2 is used to process these remaining read requests
using hash functions h t and h2 exactly how READ_2 works, except that once again the
only immediate action of the modules is to acknowledge which of the read requests they
will process, and they delay sending back the values until RESPOND_REQUESTS is
executed in step (iv). EMERGENCY_READ is analogous to EMERGENCY_WRITE
described above.

SIMULATION_3

PREPROCESSING_3
-d,k Choose h0, hi, h2 randomly and independently from 7~p, n

WRITE_3(X1 Xe)
Fo r j = 0, 1,2

For k = 1 s WRITE(hy, SMj, Xk)

READ_3(X1 Xe)
(i) For j = 0, 1, 2

For k = 1 s LOOKUP(SMj, Xk)
(ii) SM := 0

Fork = 1 s
HASH(SM, Xk)
If "failure" then call EMERGENCY_READ(h0, SM, Xk)
D_READ_M(SM, h0)

(iii) D_READ_2(SM) (Using hi and h2)
(iv) RESPOND_REQUESTS.

In the algorithm RESPOND_REQUESTS, the modules finally send back the values for
the read requests to the issuing processors they have promised to answer during the
execution of D_READ_M and D_READ_2. This is done as follows: When READ_3 is
executed, a key may move from one memory module to another, i.e., when HASH is
executed and SM is reformed. During this time, each module that receives a key saves
a pointer indicating where the key came from. When RESPOND_REQUESTS is finally
executed, this trail of pointers indicating the path of key x is followed in a pipeline fashion
back to the version of SM to which x was added by an execution of HASH. At this point,
all processors that have requested x at this time execute LOOKUP(x, SM) for this version
of SM. Since each key moves O (log log(n) log* (n)) times, the total time for pipelining
back all of the values to the originating processors takes time O (log log(n) log* (n)).

THEOREM 8.1. SIMULATION_3simulatesannloglog(n)processorCRCWPRAMon
an n processor DMM using delay O(log log(n) log*(n)) with high probability.

PROOF. The above algorithm clearly simulates a CRCW-PRAM correctly PREPRO-
CESSING_3 runs in constant time. WRITE_3 runs in time O(log log(n)log*(n)) with
high probability.

In READ_3, step (i) runs in time O (log log(n)) in the worst case. There are O (log tog(n))

538 R.M. Karp, M. Luby, and E Meyer auf der Heide

iterations of the loop in step (ii), and each iteration runs in time O(log*(n)) with high
probability, if EMERGENCY_READ is not invoked. (This time is governed by the t ime
for reforming SM using HASH, and this time is O (log* (n)) with high probability.) As
the manipulation of SM during the loop follows the rules of Process_2; Theorem 6.2
guarantees that EMERGENCY_READ is not invoked with high probability. In step (iii),
the execution of D_READ_2 runs in time O (log log(n)) with high probability as shown
in the analysis of SIMULATION_2. The time for step (iv) is dominated by the time for
steps (ii) and (iii). []

9. A Fast, Optimal Simulation. To describe the fast and optimal simulation, we first
introduce one more hashing technique.

9.1. Simultaneous Hashing. For the time-processor optimal simulation we need a
highly efficient implementation of a data structure called an approximate compaction
table which is less powerful than a parallel hash table. An approximate compaction table
stores a set of up to cn key-value pairs in a table with c'n cells, each of which is capable
of storing a key-value pair. Unlike a parallel hash table, an approximate compaction table
is not required to support the LOOKUP operation.

The basic operation that we require is called SIMULTANEOUS-HASH. To describe
this operation we require some preliminary definitions. Let the set ofn processor-module
pairs (Pi, Mi) be partitioned into log* (n) sets of cardinality n/log* (n). Let the rth of these
sets be denoted DMML For each r, let yr be a set of key-value pairs stored in the memory
modules of DMM r, such that at most log*(n) keys of Y~ reside in any memory module.
The elements of yr that a module contains are stored in an array within the module.
For each r, let SM r be a parallel hash table of size c'n distributed among the n memory
modules, occupying c' cells in each module. The constant c' will be specified below.

SIMULTANEOUS-H_ASH(SM, Y)

Input: A collection SM = {SM r } of approximate compaction tables and a collection
y = { yr } of sets of key-value pairs, where r ranges over [log* (n)].

Result: For each r, the following holds: if [SM r U W I exceeds cn, then the value "full"
is returned; otherwise, SM r is augmented by the insertion of the set yr.

We now give an algorithm to perform SIMULTANEOUS-HASH(SM, Y). The set of
processors of the DMM is partitioned into log* (n) subsets, each of size n/log* (n); the
rth subset is denoted DMM r. For r = 1, 2 tog*(n), a c'n/log*(n) • log*(n) array
g--~r is set up in the memory modules of DMM", where the constant c' is large enough
so that 2cn/log*(n) keys can be stored in a parallel hash table of size c'n/log*(n) in
time O (log* (n)) with failure probability at most n -e. Each of these n/tog* (n) memory
modules holds c' rows of the array.

For all r = 1 log* (n), the contents of SM r is copied into g--~r. The elements of
yr are then inserted into ~--~r; this process will fail if [SM r U Yr I > cn. Finally, if the
process succeeds, the new contents of the array ~---~r is copied into SMC

In order to perform the first step, an arbitrary but fixed one-to-one correspondence
is established between the cells of SM r and the cells of SM r. The copying operation

Efficient PRAM Simulation on a Distributed Memory Machine 539

can then be scheduled to execute in time O(log*(n)), since each module sends only
O(log*(n)) key-value pairs (at most c' keys from each parallel hash table SM') and
receives only O (log* (n)) key-value pairs. The third step is performed similarly.

We now describe the second step, in which, simultaneously for all r, the set yr of

key-value pairs is inserted into g-~r, using the processors and modules in DMM r. For
each r this is done as follows.

�9 In each row of g-~r the processor associated with that row moves its keys to the
rightmost positions in the row.

�9 For each i, let the key (if any) in the first cell of the ith row of S--Mr be ai, and let the
key (if any) in the second cell of the ith row ofS'M r be hi. Let

S = a i , b i : i ~ [.log*(n)] "

Using the O (log* (n))-time parallel hash table algorithm, store S in a parallel hash table
T of size dn/log*(n), It can be verified that if IS'Mr I < cn, then ISI _< 2cn/log*(n),
and thus by the choice of c' this step fails with probability at most n-e.

�9 For all i: ifai is stored in T[j]n then the processor associated with row i copies the first
cell of row i into the second cell of row j ; For all i: ifbi is stored in T[j] then the proces-
sor associated with row i copies the second cell of row i into the second cell of row j .

�9 The set Yr is copied to the first column ofS--M ~.

THEOREM9.1. SIMULTANEOUS-HASH(SM, Y) can be performed within time
O(log*(n)), with high probability.

PROOF. The first and third steps run in worst-case time O(log*(n)). We now show that
the second step operates within the required time bound with sufficiently high probabil-
ity, provided that c' is chosen large enough. The step consists of four substeps. The first,
third, and fourth substeps terminate within worst-case time O(log*(n)). By the choice
of c', the second step fails with probability at most n-e. []

9.2. The Simulation. In this subsection we present a simulation of an
n log log(n)log*(n) processor EREW PRAM on an n processor DMM which achieves
optimal delay

O (log log(n) log* (n))

with high probability.
Assume that the PRAM processors are Pi,k, i E [n], k 6 [loglog(n) log*(n)]. The

processors of the DMM are Q1 Qn, where Oi simulates

Pi, 1 Pi.log log(n) log*(n),

for i = 1 n. We again use three hash functions h0, hi, h2. Q1 Qn are parti-
tioned into log*(n) groups G1 Glog*(n), each of size n/log*(n).In the same way,
M~ Mn are partitioned into groups H1 Hlog*(,).

540 R.M. Karp, M. Luby, and E Meyer auf der Heide

Let ~ = log log(n). Let X = (U*s[e],reOog*(n)l X~,,) c_ U, Xr = Us~tel Xr, s is stored in
Gr, each processors of Gr has stored log*(n) keys from each Xr,,, s = 1 log log(n).
Let X ~ = Ur@og*(,)j Xr, s, fo r s = 1 &

The idea of the simulation is as follows: Let SIMULATION_3 run separately for each
group Gr. In the sth round, the n keys from X~,s are accessed. A naive implementation
would need time O(log log(n)(log*(n))Z)) altogether, with high probability. We see that
the algorithm SIMULTANEOUS-HASH can be used to reduce this runtime by a log* (n)
factor.

For each hi, j = 0, 1, 2, we use a c'n log* (n)-array SMj with columns SM~, r =
1 log* (n). As SIMULTANEOUS-HASH is not able to eliminate duplicates of keys,
we have to assume that all keys used in a PRAM-step are different, i.e., that we simulate
an EREW PRAM. At the end of the write phase the (at most cn) keys from SIVlj are
stored in a parallel hash table GMj of size c'n. For reading, we use the c'n • log*(n)
array SM with columns SM r, r = 1 log*(n), and a further hash table G M of
size c'n.

SIMULATION_4

PREPROCESSING_4
Choose h0, h 1, h2 uniformly and independently from 7~d'~ for suitable d,

k > 0 .
WRITE_4(X1 Xe)

For j = 0, 1,2
(i)For s = 1

SIMULTANEOUS:HASH(SMj, Xs)
If "failure" then EMERGENCY_WRITE(hi , SMj, Xs)
For r = 1 log*(n), WRITE-M(SMrj , h j, D)

Comment: At the end of loop (i), each SMrj, r = 1 log*(n), has
size O(n) with high probability. The next loop reduces each SM rj to size
O (n / log (n)), with high probability.

(ii) For r = 1 log*(n), WRITE_M(SMrj, hj, log log(n))
HASH(SMj, GMj, fu l l)
If full = true, then EMERGENCY_WRITE(hi , SMj, 0)

READ_4(X1 Xe)
For j = 0, t, 2

(i) LOOKUP(X1 U . . . (3 Xe, GMj)
(ii) execute (i) and (ii) of WRITE_4(X~ Xe) for g = 0

where EMERGENCY_WRITE is replaced b.~y EMERGENCY_READ,
WRITE_M by D_READ_M, and GMj by GM.

(iii) D_READ_2(SM) (using hi and h2)
(iv) RESPOND REQUESTS

THEOREM 9.2. SIMULATION_4 simulates an n log log(n) log* (n) processor EREW
PIL4M on an n processor DMM using optimal delay O(log log(n)log*(n)) with high
probability.

Efficient PRAM Simulation on a Distributed Memory Machine 541

PROOF. It is easy to see that the above algorithm is correct. For fixed j, loops (i) and
(ii) of WRITE_4 run in time O(log log(n) log*(n)). For fixed j and r, loops (i) and (ii)
follow the rules of the Extended_Process_2. Therefore, by Theorem 6.3 EMERGENCY
is only invoked with inverse polynomial probability. Thus WRITE_4 (i) and (ii) a) run in
time O (log log(n) log* (n)) with high probability. The analysis for READ_4 is analogous
and yields the same performance as for WRITE_4. []

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. Wiley, New York, 1991.
[2] H. Bast and T. Hagerup. Fast and reliable parallel hashing. Proc. 3rd Ann. ACM Symp. on Parallel

Algorithms and Architectures, pages 50-61, 1991.
[3] B. Bollob~is. Random Graphs. Academic Press, London, 1985.
[4] J.L. CarterandM.N. Wegman. Universalc!assesofhashfunctions.J. Comput.SystemSci., 18:143-154,

1979.
[5] B.S . Chlebus, K. Diks, T. Hagerup, and T. Radzik. Efficient simulations between concurrent-read

concurrent-write PRAM models. Proc. MFCS '88, pages 231-239, 1988.
[6] B.S. Chlebus, K. Diks, T. Hagerup, and T. Radzik. New simulations between CRCW PRAMs. Proc.

MFCS '89, pages 95-104, 1989.
[7] M. Dietzfelbinger, A. Karlin, K. Mehlhom, E Meyer auf der Heide, H. Rohnert, and R. E. Tarjan.

Dynamic Perfect Hashing: Upper and Lower Bounds. Technical Report 77, Universit~it-GH Paderborn,
FB Mathematik-Informatik, Jan. 1991. (Revised version of paper with same title that appeared in Proc.
24th IEEE FOCS, pages 524-531, 1988.) To appear in SlAM J, Comput..

[8] M. Dietzfelbinger and E Meyer auf der Heide. How to distribute a hash table in a complete network.
Proc. 22nd Ann. ACM Syrup. on Theory of Computing, pages 117-127, 1990.

[9] M. Dietzfelbinger and E Meyer auf der Heide. A new universal class of hash functions and dynamic
hashing in real time. In M. S. Paterson, editor, Proc. 17th ICALP, pages 6--19, 1990. Lecture Notes in
Computer Science, Vol. 443. Springer-Verlag, Berlin.

[10] E E. Fich, P. L. Ragde, and A. Wigderson. Relations between concurrent-write models of parallel
computation. SlAM J. Comput., 17:606-627, June 1988.

[11] E E. Fich, P. L. Ragde, and A. Wigderson. Simulations among concurrent-write PRAMs. Algorithmica,
3:43-51, 1988.

[12] J. Gil and Y. Matias. Fast hashing on a PRAM-designing by expectation. Proc. SODA '91, pages 271-
280, 1991.

[13] J. Gil and Y. Matias. Leaders election without a conflict resolution rule--fast and efficient randomized
simulations among CRCW PRAMs. Proc, LATIN '92, pages 204-218, 1992.

[14] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel algorithms. Proc.
FOCS '91, pages 698-710, Oct. 1991.

[15] A. Karlin and E. Upfal. Parallel hashing--an efficient implementation of shared memory. Proc. 18th
Ann. ACM Symp. on Theory of Computing, pages 160-168, 1986.

[16] C.P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel algorithms. Theoret.
Comput. Sci., 71:95-132, 1990.

[17] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time--with applications to
parallel hashing. Proc. 23rd Ann. A CM Symp. on Theory of Computing, pages 307-316, 1991.

[18] C. McDiarmid. On the method of bounded differences. In J. Siemons, editor, Surveys in Combinatorics,
pages 148-188. London Mathematical Society Lecture Note Series, Vol. 141. Cambridge University
Press, Cambridge, 1989.

[19] K. Mehlhorn and U. Vishkin. Randomized and deterministic simulations of PRAMs by parallel machines
with restricted granularity of parallel memories. Aeta Inform., 21:339-374, 1984.

[20] A.G. Ranade. How to emulate shared memory. Proe. 28th IEEEAnn. Symp. on Foundations of Computer
Science, pages 185-194, 1987.

542 R.M. Karp, M. Luby, and E Meyer auf der Heide

[21] A. Siegel. On universal classes of fast high performance hash functions, their time-space tradeoff, and
their applications. Proc. 30th 1EEE Ann. Syrup. on Foundations of Computer Science, pages 20-25,
1989. Revised Version.

[22] E. Upfal. Efficient schemes for parallel communication. J. Assoc. Comput. Mach., 31(3):507-5t7,
1984.

[23] L.G. Valiant. General purpose parallel architectures. In J. van Leeuwen, editor, Handbook of Theo-
retical Computer Science, Vol. A: Algorithms and Complexity, Chapter 18, pages 943-971. Elsevier,
Amsterdam, 1990.

