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Randomized Search Trees 

R. Seidel 1 and C. R. Aragon 2 

This paper is dedicated to the memory of Gene Lawler. 

Abstract. We present a randomized strategy for maintaining balance in dynamically changing search trees 
that has optimal expected behavior. In particular, in the expected case a search or an update takes logarithmic 
time, with the update requiring fewer than two rotations. Moreover, the update time remains logarithmic, even 
if the cost of a rotation is taken to be proportional to the size of the rotated subtree. Finger searches and splits 
and joins can be performed in optimal expected time also. We show that these results continue to hold even if 
very little true randomness is available, i.e., if only a logarithmic number of truely random bits are available. 
Our approach generalizes naturally to weighted trees, where the expected time bounds for accesses and updates 
again match the worst-case time bounds of the best deterministic methods. 

We also discuss ways of implementing our randomized strategy so that no explicit balance information is 
maintained. Our balancing strategy and our algorithms are exceedingly simple and should be fast in practice. 
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1. In t roduc t ion .  Storing sets of items so as to allow for fast access to an item given 

its key is a ubiquitous problem in computer science. When the keys are drawn from a 
large totally ordered set the method of choice for storing the items is usually some sort of 

search tree. The simplest form of such a tree is a binary search tree. Here a set X o fn  items 

is stored at the nodes of a rooted binary tree as follows: some item y 6 X is chosen to be 

stored at the root of the tree, and the left and right children of the root are binary search 

trees for the sets X< = {x c X ] x.key < y.key} and X> = {x 6 X [ x.key > y.key}, 
respectively. The time necessary to access some item in such a tree is then essentially 
determined by the depth of the node at which thei tem is stored. Thus it is desirable that 
all nodes in the tree have small depth. This can easily be achieved if the set X is known 

in advance and the search tree can be constructed off-line. One only needs to "balance" 

the tree by enforcing that X< and X> differ in size by at most one. This ensures that no 

node has depth exceeding log2(n + 1). 
When the set of items changes with time and items can be inserted and deleted un- 

predictably, ensuring small depth of all the nodes in the changing search tree is tess 
straightforward. Nonetheless, a fair number of strategies have been developed for main- 
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Rotate Right 

Fig. 1. Rotation in a tree. 

taining approximate balance in such changing search trees. Examples are AVL-trees 
[11, (a, b)-trees [41, BB(a)-trees [25], red-black trees [13], and many others. All these 
classes of trees guarantee that accesses and updates can be performed in O(log n) worst 
case time. Some sort of balance information stored with the nodes is used for the restruc- 
turing during updates. All these trees can be implemented so that the restructuring can 
be done via small local changes known as "rotations" (see Figure 1). Moreover, with the 
appropriate choice of parameters (a, b)-trees and BB(ee)-trees guarantee that the average 
number of rotations per update is constant, where the average is taken over a sequence 
of m updates. It can even be shown that "most" rotations occur "close" to the leaves; 
roughly speaking, for BB(c~)-trees this means that the number of times that some subtree 
of size s is rotated is O(m/s) (see [17]). This fact is important for the parallel use of 
these search trees, and also for applications in computational geometry where the nodes 
of a primary tree have secondary search structures associated with them that have to be 
completely recomputed upon rotation in the primary tree (e.g., range trees and segment 
trees; see [18]). 

Sometimes it is desirable that some items can be accessed more easily than others. 
For instance, if the access frequencies for the different items are known in advance, 
then these items should be stored in a search tree so that items with high access fre- 
quency are close to the root. For the static case an "optimal" tree of this kind can be 
constructed off-line by a dynamic programming technique. For the dynamic case strate- 
gies are known, such as biased 2-3 trees [6] and D-trees [17], that allow accessing an 
item of "weight" w in worst-case time O (log(W/w)), which is basically optimal. (Here 
W is the sum of the weights of all the items in the tree.) Updates can be performed in 
time O (log(W/min{w-, w, w+}), where w -  and w+ are the weights of the items that 
precede and succeed the inserted/deleted item (whose weight is w). 

All the strategies discussed so far involve reasonably complex restructuring algorithms 
that require some balance information to be stored with the tree nodes. However, Brown 
[8] has pointed out that some of the unweighted schemes can be implemented without 
storing any balance information explicitly. This is best illustrated with schemes such as 
AVE-trees or red-black trees, which require only one bit to be stored with every node: 
this bit can be implicitly encoded by the order in which the two children pointers are 
stored. Since the identities of the children can be recovered from their keys in constant 
time, this leads to only constant overhead to the search and update times, which thus 
remain logarithmic. 
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There are methods that require absolutely no balance information to be maintained. A 
particularly attractive one was proposed by Sleator and Tarjan [29]. Their "splay trees" 
use an extremely simple restructuring strategy and still achieve all the access and update 
time bounds mentioned above both for the unweighted and for the weighted case (where 
the weights do not even need to be known to the algorithm). However, the time bounds 
are not to be taken as worst-case bounds for individual operations, but as amortized 
bounds, i.e., bounds averaged over a (sufficiently long) sequence of operations. Since in 
many applications long sequences of access and update operations are performed, such 
amortized bounds are often satisfactory. 

In spite of their elegant simplicity and their frugality in the use of storage space, 
splay trees do have some drawbacks. In particular, they require a substantial amount 
of restructuring not only during updates, but also during accesses. This makes them 
unusable for structures such as range trees and segment trees in which rotations are 
expensive. Moreover, this is undesirable in a caching or paging environment where the 
writes involved in the restructuring will dirty memory locations or pages that might 
otherwise stay clean. 

Recently Galperin and Rivest [12] proposed a new scheme called "scapegoat trees," 
which also needs basically no balance information at all and achieves logarithmic search 
time even in the worst case. However logarithmic update time is achieved only in the 
amortized sense. Scapegoat trees also do not seem to lend themselves to applications 
such as range trees or segment trees. 

In this paper we present a strategy for balancing unweighted or weighted search trees 
that is based on randomization. We achieve expected casebounds that are comparable 
with the deterministic worst-case or amortized bounds mentioned above. Here the expec- 
tation is taken over all possible sequences of "coin flips" in the update algorithms. Thus 
our bounds do not rely on any assumptions about the input. Our strategy and algorithms 
are exceedingly simple and should be fast in practice. For unweighted trees our strategy 
can be implemented without storage space for balance information. 

Randomized search trees are not the only randomized data structure ,for storing dy- 
namic ordered sets. Pugh [26] has proposed and popularized another randomized scheme 
called skip lists. Although the two schemes are quite different they have almost identical 
expected performance characteristics. We offer a brief comparison in the last section. 

Section 2 of the paper describes treaps, the basic structure underlying randomized 
search trees. In Section 3 unweighted and weighted randomized search trees are defined 
and all our main l~esults about them are tabulated. Section 4 contains the analysis of 
various expected quantities in randomized search trees, such as expected depth of a 
node or expected subtree size. These results are then used in Section 5, where the 
various operations on randomized search trees are described and their running times are 
analyzed. Section 6 discusses how randomized search trees can be implemented using 
only very few truly random bits. In Section 7 we show how randomized search trees can 
be implemented without maintaining explicit balance information. In Section 8 we offer 
a short comparison of randomized search trees and skip lists. 

2. 13reaps. Let X be a set of n items each of which has associated with it a key and a 
priority. The keys are drawn from some totally ordered universe, and so are the priorities. 
The two ordered universes need not be the same. A treap for X is a rooted binary tree with 
node set X that is arranged in in-order with respect to the keys and in heap-order with 
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respect to the priorities. 3 "In-order" means that for any node x in the tree y.key < x.key 
for all y in the left subtree ofx  and x.key < y.key for y in the right subtree ofx.  "Heap- 
order" means that for any node x with parent z the relation x.priority < z.priority holds. 
It is easy to see that for any set X such a treap exists. With the assumption that all the 
priorities and all the keys of the items in X are distinct--a reasonable assumption for the 
purposes of this paper--the treap for X is unique: the item with largest priority becomes 
the root, and the allotment of the remaining items to the left and right subtree is then 
determined by their keys. Put differently, the treap for an item set X is exactly the binary 
search tree that results from successively inserting the items of X in order of decreasing 
priority into an initially empty tree using the usual leaf insertion algorithm for binary 
search trees. 

Let T be the treap storing set X. Given the key of some item x E X the item can 
easily be located in T via the usual search tree algorithm. The time necessary to perform 
this access will be proportional to the depth of x in the tree T. How about updates? The 
insertion of a new item z into T can be achieved as follows: At first, using the key of z, 
attach z to T in the appropriate leaf position. At this point the keys of all the nodes in the 
modified tree are in in-order. However, the heap-order condition might not be satisfied, 
i.e., z's parent might have a smaller priority than z. To reestablish heap-order simply 
rotate z up as long as it has a parent with smaller priority (or until it becomes the root). 
Deletion of an item x from T can be achieved by "inverting" the insertion operation: 
First locate x, then rotate it down until it becomes a leaf (where the decision to rotate left 
or right is dictated by the relative order of the priorites of the children of x), and finally 
clip away the leaf (see Figure 2). 

At times it is desirable to be able to split a set X of items into the set X1 --- 
{x ~ X I x.key < a} and the set Xz = {x 6 X I x.key > a}, where a is some given 
element of the key universe: Conversely, one might want to join two sets X1 and X2 
into one, where it is assumed that the keys of the items in X1 are smaller than the keys 
from X2. With treap representations of the sets these operations can be performed easily 
via the insertion and deletion operations. In order to split a treap storing X according 
to some a, simply insert an item with key a and "infinite'! priority. By the heap-order 
property the newly inserted item will be at the root of the new treap. By the in-order 
property the left subtree of the root will be a treap for X1 and the right subtree will be a 
treap for X2. In order to join the treaps of two sets X1 and X2 as above, simply create a 
dummy root whose left subtree is a treap for X~ and whose right subtree is a treap for 
X2, and perform a delete operation on the dummy root. 

Recursive pseudocode implementations 4 of these elementary treap update algorithms 
are shown in Figure 3. 

Sometimes "handles" or "fingers" are available that point to certain nodes in a treap. 
Such handles permit accelerated operations on treaps. For instance, if a handle on a node 
x is available, then deleting x reduces just to rotating it down into leaf position and 

3 Edelsbrunner pointed out to Us that Vuillemin introduced the same data structure in 1980 and called it 
"Cartesian tree" [31]. The term "treap" was first used for a different data structure by McCreight, who later 
abandoned it in favor of the more mundane "priority search tree" [16]. 
4 In practice it is preferable to approach these operations the other way round. Joins and splits of treaps can be 
implemented as iterative top-down procedures; insertions and deletions can then be implemented as accesses 
followed by splits or joins. These implementations are operationally equivalent to the ones given here. 
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o 

Fig. 2. Deletion/Insertion of item (L, 69). 
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function EMPTY-TREAP 0 : treap 
tnull-+[priority, lchitd, rchild] ~- [-oo,tnull, tnull] 
re turn(  tnull ) 

procedure  Tt~AP-INsEIvr((k,p) : item, T : treap ) 
if  T = tnuU t h e n  T ~ NEWNODE 0 

T-+[key, priority, lchild, rchild] ~- [k,p, tnull, tnult] 
else i f  k < T-+key t hen  TREAP-INSEaT((k,p) ,T-+lehild ) 

if  T-+lchild -+priority > T-+priority t hen  ROTATE-RIGHT( T ) 
else i f  k > T-+keg t hen  TREAP-INSERT((k,p) ,T-+rchild ) 

i f  T-+rchild -+priority > T-+priority t hen  ROTATE-LEFT( T ) 
else (* key k already in treap T *) 

procedure  TREAP-DELETE ( k : key, T : treap ) 
tnull-+key ~ k 
REc-TREAP-DELETE( k, T ) 

procedure REC-TREAP-DELETE ( k : key, T : treap ) 
if k < T--tkey then REC-TREAP-DELETE( k,T-+Ichild ) 
else i f  k > T-+key t h e n  REC-TREAP-DELETE( k,T-+rchild ) 
else ROOT-DELETE( T ) 

procedure ROOT-DELETE( T : treap ) 
i f  IS-LEAF-OR-NULL( T ) t hen  T +- tnull 
else if T-~Ichild-+priority > T-+rchild-~priority t hen  ROTATE-RIGHT( T ) 

ROOT-DELETE( T-+~chitd ) 
else ROTATE-LEFT( T ) 

ROOT-DELETE( T-+lchild ) 

procedure TREAP-SPLIT( T : treap, k : key, 7'I, T2 : treap ) 
TREAP-INSERT( (k, oo), T ) 
[T1,T2] +- T-+[lchild, rchild] 

procedure TREAP-JOIN( TI, T~, T: treap ) 
T +- NEWNODE 0 
T-+[lehild, rehil~ <-- [ T1,T2] 
ROOT-DELETE( T ) 

procedure  ROTATE-LEFT( T : treap ) 
[ T, T-+ rchild, T-4 rchild -+ lchil~ ~.- [ T -+ rchild, T -+ rchild-41child, T] 

procedure  ROTATE-RIGHT( T : treap ) 
[ T~ T-+ lchild, T--r lchild--r rchild] +- [ T-+ lchild, T-+ lehild--+ rchild, T] 

funct ion Is-LEAF-oR-NULL( T : treap ) : Boolean 
re turn(  T-+ lchild = T-+ rchild ) 

Fig. 3. Simple routines for the elementary treap operations of creation, insertion, deletion, splitting, and joining. 
We assume call-by-reference semantics. A treap node has fields ke); priority, lchiM, rchiM. The global variable 
mull points to a sentinel node whose existence is assumed. [...] <-- [...] denotes parallel assignment. 
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clipping it; no search is necessary. Similarly the insertion of  an item x into a treap can 
be accelerated if a handle to the successor (or predecessor) s o fx  in the resulting treap is 
known: start the search for the correct leaf position of  x at node s instead of  at the root 
of  the treap. So-called "finger searches" are also possible where a node y in a treap is to 
be located but the search starts at some (hopefully "nearby") node x that has a handle 
pointing to it; essentially it is only necessary to traverse the unique path between x and 
y. Also, splits and joins of treaps can be performed faster if handles to the minimum and 
maximum key items in the treaps are available. These operations are discussed in detail 
in Sections 5.7 and 5.8. 

Some applications such as so-called Jordan sorting [ 15] require the efficient excision 
of  a subsequence, i.e., splitting a set of  X of  items into 

Y = { x ~ X l a < x . k e y < b }  and Z = { x ~ X l x . k e y < a o r x . k e y > b } .  

Such an excision can of  couse be achieved via splits and joins. However treaps also 
permit a faster implementation of  excisions, which is discussed in Section 5.9. 

3. Randomized  Search Trees, Let X be a set of  items, each of  which is uniquely 
identified by a key that is drawn from a totally ordered set. We define a randomized 
search tree for X to be a treap for X where the priorities of the items are independent, 
identically distributed continuous random variables. 

THEOREM 3.1. A randomized search tree storing n items has the expected performance 
characteristics listed in the table below: 

Performance measure Bound on expectation 

Access time O (log n) 

Insertion time O (log n) 

Insertion time for element with handle on predecessor or successor* O (1) 

Deletion time O (log n) 

Deletion time for element with handle* O (1)* 

Number of rotations per update 2 

Time for finger search over distance d~ O(log d) 

Time for fast finger search over distance d? O(log rain{d, n - d},) 

Time for joining two trees of size m and n 0(log max{m, n}) 

Time for splitting a tree into trees of size m and n O(log max{m, n}) 

Time for fast joining or fast Splitting~ O (log min{m, n }) 

Time for excising a tree of size d'~ O(log rain{d, n - d}) 

UPdate time if cost' of rotating a subiree of size s is O(s) .... O (log n) 

Update time if cost of rotating a subtree of size s is O(s log ~ s), k > 0 O(iog k+j n) 

Update time if cost of rotating a subtree of size s is O (s a) with a > 1 O (n ~- m) 
Update time if rotation cost is f(s), with f(s)  nonnegative 0 \(f(?~)rt - -  -~" Z,.~O<i<lt ~ f(i)i 2 ] 

*Requires parent pointers. 
?Requires parent pointers and some additional information, see Section 5.4. 
~Requires some parent pointers, see Sections 5.7 and 5.8. 
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Now let X be a set of items identifiable by keys drawn from a totally ordered universe. 
Moreover, assume that every item x 6 X has associated with it an integer weight 
w(x) > 0. We define the weighted randomized search tree for X as a treap for X where 
the priorities are independent continuous random variables defined as follows: Let F be 
a fixed continuous probability distribution. The priority of  element x is the maximum of 
w(x) independent random variables, each with distribution F.  

THEOREM 3.2. Let T be a weighted random&ed search tree for a set X of weighted 
items. The following table lists the expected performance characteristics of T. Here W 
denotes the sum of the weights of the items in X;for an item x, the predecessor and the 
successor (by key rank) in X are denoted by x -  and x +, respectively; Train and Tmax 
denote the items of minimal and maximal key rank in X. 

Performance measure Bound on expectation 

Time to access item x O (1 + log ~ )  

Time to insert item x O (l -4- 1 ̂~ w+~(x) 
__ .oN  min(w(x_),w(x),w(x+) } ] 

1 w Time to delete item x 0 ( + log min{w(x_),w(x),w(x+)}) 

Insertion time for item x withhandle 0[1 + l o g / 1  + ~(~) ~ ~'(~) + ~(~-)'~] 
k \ ,~,(x ) - -  w(x+) w ( x + ) ] ]  

on predecessor* 

Time to delete item x with handle* ..... O (1 + log (1 4- w(---7=5 + !~(~) H 

Number of rotations per update on item x 0 (1 + log (1 + ~ + ~ ( ~ ; !  

Time for finger search between x and y, 
where V is total weight of items between, O (log min{~(xV),w(),)} ) 
and including x and Yt 

- O (1 4- log  ~vl + log 
Time to join trees T, and T~ of weight W, and W2 ~y:z ,~ 
Time to split T into trees Tl, T2 of weight W~, W2 

Time for fast joining or fast splitting+ O (1 + log rain { ~(r,m,~) ' v c J  ~(r2~) } ) w 2  

Time for increasing the weight of item x by A* O (1 + log ~(x)+a 
w(x) 1 

Time for decreasing the weight of time x by A* O (1 + log ~,(x) w(x)-A ! 

*Requires parent pointers. 
tRequires parent pointers and some additional information, see Section 5.4. 
+Requires some parent pointers, see Sections 5.7 and 5.8. 

Several remarks are in order. First, note that no assumptions are made about the key 
distribution in X. All expectations are with respect to randomness that is "controlled" 
by the update algorithms. For the time being we assume that the priorities are kept 
hidden from the "user." This is necessary to ensure that a randomized search tree is 
transformed into a randomized search tree by  any update. If  the user knew the actual 
priorities it would a simple matter to create a very "nonrandom" and unbalanced tree by 
a polynomial number of  updates, 

The requirement that the random variables used as priorities be continuous is not 
really necessary. We make this requirement only to ensure that with probability 1 all 
priorities are distinct. Our results continue to hold for i.i.d, random variables for which 
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the probability that too many of them are equal is sufficiently small. This means that in 
practice using integer random numbers drawn uniformly from a sufficiently large range 
(such as 0 to 231) will be adequate for most applications. 

Comparing with other balanced tree schemes some of which require only one bit of 
balance information per node, it might seem disappointing that randomized search trees 
require to store such "extensive" balance information at each node. However, it is possible 
to avoid this. In Section 7 we discuss various strategies of maintaining randomized search 
trees that obviate the explicit storage of the random priorities. 

Next note that weighted randomized search trees can be made to adapt naturally to 
observed access frequencies. Consider the following strategy: whenever an item x is 
accessed a new random number r is generated (according to distribution F); if r is 
bigger than the current priority of x, then make r the new priority of x, and, if necessary, 
rotate x upin the tree to reestablish the heap-property. After x has been accessed k times 
its priority will be the maximmn of k i.i.d, random variables. Thus the expected depth of 
x in the tree will be O(log(1/p)),  where p is the access frequency of x, i.e., p = k /A,  
with A being the total number of accesses to the tree. 

How would an item x be inserted into a weighted randomized search tree with fixed 
weight k? This can most easily be done if the distribution function F is the identity, i.e., we 
start with random variables uniformly distributed in the interval [0, 1]. The distribution 
function G~ for the maximum of k such random variables has the form G~(z) = z ~. 
From this it follows that x should be inserted into the tree with priority r ~/k, where r is 
a random number chosen uniformly from the interval [0, 1]. Since the only operations 
involving priorities are comparisons and the logarithm function is monotonic, (log r ) / k  
can also be stored instead. Adapting the tree to changing weights is also possible, see 
Section 5.11. 

Finally there is the question of how much "randomness" is required for our method. 
How many random bits are required to implement randomized search trees? There is a 
rather simple-minded strategy that shows that an expected constant number of random 
bits per update can suffice in the unweighted case. This can be achieved as follows: Let 
the priorities be real random numbers drawn uniformly from the interval [0, 1]. Such 
numbers can be generated piece-meal by adding more and more random bits as digits 
to their binary representations. The idea is, of course, to generate only as much of the 
binary representation as needed. The only priority operation in the update algorithms 
are comparisons between priorities. In many cases the outcome of such a comparison 
will already be determined by the existing partial binary representations. When this is 
not the case, i.e., one representation happens to be a prefix of the other, simply refine 
the representations by appending random bits in the obvious way. It is easy to see that 
the expected number of additional random bits needed to resolve the comparison is not 
greater than four. Since in our update algorithms priority comparisons happen only in 
connection with rotations, and since the expected number of rotations per update is less 
than two, it follows that the expected number of random bits needed is less than twelve 
for insertions and less than eight for deletions. 

Surprisingly, we can do much better than that. Only O (log n) truly random bits suffice 
overall. This can be achieved by letting a pseudorandom number generator supply the 
priorities, where this generator needs O(log n) truly random seed bits. One possible 
such generator works as follows. Let U > n 3 be a prime number. Randomly choose 
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eight integers in the range between 0 and U - 1 and make them the coefficients of a 
degree-7 polynomial q (this requires the O(log n) random bits). As ith priority produce 
q(i) rood U. Other generators are possible. The essential property they need to have is 
that they produce "random" numbers that are 8-wise independent. (Actually a somewhat 
weaker property suffices; see Section 6.) 

THEOREM 3.3. All the results of  Theorem 3.1 continue to hold, up to constant factors, if 
the priorities are 8-wise independent random variables from a sufficiently large range, as 
for instance produced by the pseudorandom number generator outlined above. In order to 
achieve logarithmic expected access, insertion, and deletion time, 5-wise independence 
suffices. 

4. Analysis of Randomized Search Trees. In this section we analyze a number of 
interesting quantities in randomized search trees and derive their expected values. These 
quantities are: 

D(x), the depth of node x in a tree, in other words the number of nodes on the path 
from x to the root. 

S(x), the size of the subtree rooted at node x, i.e. the number of nodes contained in 
that subtree. 

P(x, y), the length of the unique path between nodes x and y in the tree, i.e. the 
number of nodes on that path. 

SL(x)  and SR(x),  the length of the right Spine of the Left subtree o fx  and the length 
of the left Spine of the Right subtree of x; by left spine of a tree we mean the 
root together with the left spine of the root's left subtree; the right spine is defined 
analogously. 

Throughout this section we deal with the treap T for a set X = {xi = (ki, Pi)] 
1 < i < n} of n items, numbered by increasing key rank, i.e., ki < ki+t for 1 < i < n. 
The priorities Pi will be random variables. Since for a fixed set of keys kl the shape of 
the treap T for X depends on the priorities, the quantifies of our interest will be random 
variables also, for which it makes sense to analyze expectations, distributions, etc. 

Our analysis is greatly simplified by the fact that each of our quantities can be repre- 
sented readily by two types of indicator random variables: 

Ai,j is 1 ifxi is an ancestor ofxj  in T and 0 otherwise. 
Ci;g,m is 1 i fxi is a common ancestor ofxe and x,~ in T and 0 otherwise. 

We consider each node an ancestor of itself. In particular we have: 

THEOREM 4.1. Let 1 < ~, m < n, and let s < m. 

(i) D(xe)  : Zl<i<n Ai,s 
(ii) S(xt) = ~-~.l<_j<n Ae,j 

(iii) P(xe ,  Xm) : I -~ ~.l<_i<m(Ai,s - Ci; s m) -4- Zs m - Ci;s ) 
(iv) S L ( x t )  : Z l<_i<s163  Ci;e._l,e) 

- '  A SR(xe) = Zs i,g+l - -  Ci;e ,e+l)  
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PROOF. (i) and (ii) are clear, since the depth of a node is nothing but the number of  its 
ancestors, and the size of  its subtree is nothing but the number of  nodes for which it is 
ancestor. 

For (iii) note that the path from xe to Xm is divided by their lowest common ancestor 
v into two parts. The part from xe to v, which consists exactly of  the ancestors of xe 
minus the common ancestors o f x t  and Xm, is accounted for by the first sum. (This would 
be clear if the index range of  that sum were between 1 and n. The smaller index range 
is justifed by the fact that for s < m < i the node xi is an ancestor of  xe iff it is a 
common ancestor of  xe and Xm, i.e., Ai,e = Ci;e,m in that range.) Similarly the second 
sum accounts for the path between x,n and v. Since v is not counted in either of  those 
two parts, the + 1 correction factor is needed. 

For (iv) it suffices to consider SL(xe),  by symmetry. If  xr has a left subtree, then the 
lowest node on its right spine must be xe-1. It is clear that in that case the spine consists 
exactly o f  the ancestors of  xe_1 minus the ancestors of  xe; but the latter are the common 
ancestor of  xe-1 and xe. Also, no xi with i > s can lie on that spine. 

If  xe has no left subtree, then either e = 1, in which case the formula correctly 
evaluates to 0, or xe-I  is an ancestor of  x~, in which case every ancestor of  xe-i is a 
common ancestor of  x~_l and xe, and the formula also correctly evaluates to 0. []  

I f  we let ai,j = Ex[Ai,j] and ci;e,,n = Ex[Ci;r then by the linearity of  expectations 
we immediately get the following: 

COROLLARY 4.2. Let 1 <_ s m < n, and let s < m. 

(i) 
(ii) 

(iii) 
(iv) 

Ex[D(xe)] = Y]l<i<n ai,s 
Ex[S(xe)] = ~J<j<_n ae,j 

Ex[P(xe,  Xm)] = l + ~l<i<m(ai,e - ci;e,m) + Zf.<i<n(ai,m -- ci;s 
Ex[SL(xe)] ---- ~l<i<s -- ci;e-l,e) 
Ex[SR(xe)] = ~g<i<n(ai,e+l - ci;~,r 

In essence our whole analysis has now been reduced to determining the expectations 
ai,j and ci;e,m. Note that since since we are dealing with indicator 0-1 random variables, 

we have 

ai,j = Ex[Ai,j] = Pr[Ai,j = 1] = Pr[xi is ancestor o fx j ]  

and 

Ci;s = Ex[Ci;e,m] ~-- Pr[Ci;e,m = 1] = Pr[xi is common ancestor of xe and Xm]. 

Determining the probabilities and hence the expectations is made possible by the fol- 
lowing ancestor lemma, which completely characterizes the ancestor relation in treaps. 

LEMMA 4.3. Let T be the treap for  X,  and let 1 <<_ i, j < n. Then, assuming that all 
priorities are distinct, xi is an ancestor o f  xj in T iff among all Xh, with h between and 
including i and j ,  the item xi has the largest priority. 



Randomized Search Trees 475 

PROOE Letxm be the item with the largest priority in T, and le tX '  = {xv[1 < v < m} 
and X" = {x u Im < / z  < n}. By the definition o fa  treap, Xm will be the root of T and its 
left and right subtrees will be treaps for X' and X", respectively. 

Clearly our ancestor characterization is correct for all pairs of nodes involving the root 
Xm. It is also correct for all pairs x~ 6 X' and xu 6 XI': they lie in different subtrees, and 
hence are not ancestor-related. However, indeed the largest priority in the range between 
v and/z is realized by xm and not by x~, or x~. 

Finally, by induction (or recursion, if you will) the characterization is correct for all 
pairs of nodes in the treap for X f and for all pairs of nodes in the treap for X". [] 

As an immediate consequence of this ancestor lemma we obtain an analogous common 
ancestor lemma. 

LEMMA 4.4. Let T be the treap f o r  X ,  and let 1 < ~, m,  i < n with s < m. Let  Pv 

denote the priority o f  item x~. Then, assuming that all priorities are distinct, xi is a 
common ancestor o f  xe and Xm in T i f f  

Pi = max{p~[i < v < m }  i f  1 < i < e, 

Pi - - - - m a x { p u l e < v < m }  i f  e < i < m, 

Pi = max{pule < v < i} /f m < i < n, 

which can be summarized as 

Pi ------- max{p~,j min{i, s m} < v < max{i, e, m}}. 

Now we have all tools ready to analyze our quantities of interest. We deal with the 
case of unweighted and weighted randomized search trees separately. 

4.1. The Unweighted Case. The last two lemmas make it easy to derive the ancestor 
probabilities ai,j and ci;g,m. 

COROLLARY 4.5. In an (unweighted) randomized search tree xi is an ancestor o f  xj  
with probability 1 / (li - j f + 1), in other word we have 

ai,j -- 1/(li  - Jl + 1). 

PROOE According to the ancestor lemma we need the priority of x~ to be the largest 
among the priorities of the li - J t + 1 items between xi and xj. Since in an unweighted 
randomized search tree these priorities are independent identically distributed continuous 
random variables this happens with probability t / ( t i  - J t + 1). [] 

COROLLARY 4.6. Let 1 < g. < m < n. In the case o f  unweighted randomized search 
trees the expectation f o r  common ancestorship is given by 

1 ~ ( m - - i + 1 )  i f  1 < i < s  
ci;s m = 1/ (m -- s + 1) i f  ~ < i < m, 

1/(i -- ~ + 1) i f  m < i < n ,  
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which can be summarized as 

ci,e,~ = 1/(max{i, s m} - rain{i, ~, m} + 1). 

PROOF. Analogous to the previous proof. [] 

Now we can put everything together to obtain exact exPressions and closed form 
upper bounds for the expectations of  the quantities of  interest. The expressions involve 
harmonic numbers, defined as H~ = ~I<_i<_~ 1/ i .  Note the standard bounds lnn < 
Hn < 1 + l n n  f o r n  > 1. 

THEOREM 4.7. Let 1 < s m < n, and let g. < m. In an unweighted randomized search 

tree o f  n nodes the fol lowing expectations hold: 

(i) 

(ii) 

(iii) 

(iv) 

Ex[D(xe)] - He + Hn+l-e - 1 
< 1 + 2 . 1 n n  

Ex[S(xe)] = He + H~+l-e - 1 
< l + 2 . 1 n n  

Ex[P(xe, x . , ) ]  = 4 H m - e + l  - ( H m  - H e )  - ( H n + l - e  - H . + I - . , )  - 3 
< l + 4 . 1 n ( m - s  

Ex[SL(xe)]  = 1 - 1/s 
Ex[SR(xe)]  = l - 1/(n + 1 - s 

PROOF. Just use Corollary 4,2 and plug in the values from Corollaries 4.5 and 4,6. [] 

It is striking that in an unweighted randomized search tree the expected number of  
ancestors of  a node x exactly equals the expected number of  its descendants. However, 
it is reminiscent, although apparently unrelated, to the following easily provable fact: in 
any rooted binary tree T the average node depth equals the average size of  a subtree. 

We want to point out a major difference between the random variables D(xe) and 
S(xe). Although both have the same expectation, they have very different distributions. 
D(xe) is very tightly concentrated around its expectation, whereas S(xe) is not. For 
instance, it can easily be seen that in an n-node tree Pr[D(xl)  = n] = 1/n! ,  whereas 
Pr[S(xl) --- n ] =  1/n.  Using the ancestor lemma it is not too hard to derive the exact 
distribution of  S(x~): one gets Pr[S(xe) = n] = l / n  and Pr[S(x~) = s] = O ( 1 / s  2) for 
1 < s < n. We leave the details as an exercise to the reader. Here we briefly prove a 

concentration result for D (x~). 

LEMMA 4.8. In an unweighed randomized search tree with n > 1 nodes we have f o r  

index l < s < n and any c > 1 

Pr[D(xe,) _> 1 + 2c lnn]  < 2(n /e )  -Cln~c/e). 

PROOF. Recall that D (xe) = ~ 1 <i<n Ai,e, where Ai,e indicates whetherxi is an ancestor 
of  xe. Let L = ~-~<i<~ Ai,e count t]ae "left ancestors" of  xe and let R = ~e<i<_~ Ai, e 
count the "right ancestors." Since D(xe) = 1 + L + R, in order for D(xe) to exceed 
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1 + 2c In n at least one of L and R has to exceed c In n. It now suffices to prove that the 
probability of either of those events is bounded by (n/e)  -cln(c/O. We just consider the 
case of R. The other case is symmetric. 

The crucial observation is that for i > ~ the 0-1 random variables Ag.~ are inde- 
pendent and one can therefore apply so-called Chernoff bounds [14], [9] which, in one 
form, state that if random variable Z is the sum of independent 0-1 variables, then 
Pr[Z > c .  Ex[Z]] < e -cln(c/e)ExtZ]. 

In order to make the bound independent of s we consider random variable R' = 
~e<i<e+n Ai, e, where we use additional independent 0-1 variables Ai,e for i > n, with 
Ex[Ai,e] = 1/(i - s + 1). Obviously for any k > 0 we have Pr[R > k] < Pr[R' > k]. 
Using Ex[R'] = Hn - t, and using Inn - 1 < H,  - 1 < Inn and applying the Chernoff 
bound we get the desired 

Pr[R > c lnn]  < Pr[R' > c lnn]  < Pr[R' > c(Hn 1)1 
< e-Cin(c/e)(H. -1) < e-cln(c/e)(lnn-l) = (n/e)-c ln(c/e) .  [] 

Note that this lemma implies that the probability of least one of the n nodes in an 
unweighted randomized search tree having depth greater than 2c In n is bounded by 
n(n /e )  -c~n(c/e). In other words, the probability that the height of a randomized search 
tree is more than logarithmic is exceedingly small, and hence the tree's expected height 
is logarithmic also. In contrast to the random variables studied in this section the random 
variable h~, the height of an n-node unweighted randomized search tree, is quite difficult 
to analyze exactly. Devroye [10], though, has shown that hn/ In  n ~ y almost surely, as 
n -+ ~ ,  where y = 4.31107. . .  is the unique solution of y ln(2e/y) = 1 with V -> 2. 

4.2. The Weighted Case. Recall that in the weighted case every item xi has associated 
with it a positive integer weight wi, and the weighted randomized search tree for a set 
of items uses as priority for x~ the maximum of wi independent continuous random 
variables, each with the same distribution. 

For i < j let Udi: j denote ~i<h<_j wh, and for i > j define wi:j = wj : i .  Let W = wl: n 
denote the total weight. 

COROLLARY 4.9. In an weighted randomized search tree xi is an ancestor o f  x) with 
probability wi/wi:j ,  in other word we have 

ai, j = t o i / w i : j .  

PROOE According to the ancestor lemma we need the priority of xi to be the largest 
among the priorities of the items between xi and xj.  This means one of the wi random 
variables "drawn" for xi has to be the largest of the wi: j random variables "drawn" 
for the items between xi and xj. However, since these random variables are identically 
distributed this happens with the indicated probability. [] 

COROLLARY 4.10. Let 1 < ~ < m < n. In the case o f  unweighted randomized search 
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trees the expectation for  common ancestorship is given by 

I wi/wi: m i f  1 < i < g, 
ci.,e,m = ~ wi/we:m if  e < i < m, 

[ wi/we:i if m < i < n. 

PRooE Analogous to the previous proof, but based on the common ancestor lemma. [] 

Now we just need to plug our values into Corollary 4.2 to get the following: 

THEOREM 4.11. Let 1 <_ s m < n, and let ~ < m. In an weighted randomized search 
tree with n nodes o f  total weight W the following expectations hold: 

(i) Ex[D(xe)] = 
.< 

(ii) Ex[S(xe)] = 

(iii) Ex[ P (xe, Xm)] = 

(iv) 

< 

Ex[SL(xe)] = 
.( 

Ex[SR(xe)] = 
< 

Z l < i ~ n  Wi/wi:e 
1 + 2 .  l n (W/we)  

El~_i~_, we/wi:e 
1 + ~ l<i<e(wi /w i :e  -- wi /wi:m)  

"~ Ze<_i<m(Wi/we:i -~- wi/Wi:m -- 2Wi/Wg:m) 

-~ Zm<i<n(Wi/Wm:i -- Wi/Wg:i ) 
1 + 2 .  In(we:re~we) + 2 .  In(we:re~win) 

~l<i<e(Wi/Wi:g_l  -- wi /wi:e)  

1 + ln(1 + we~we-l)  

~e<i<_n (wi/we+l:i - wi/we:i) 

1 + ln(1 + we~We+l) 

PROOF. The exact expressions follow from Corollaries 4.9 and 4.10. 
The quoted upper bounds are consequences of the following two inequalities that can 

easily be verified considering the area underneath the curve f ( x )  = 1/x: 

(1) u / A < l n A - l n ( A - c ~ )  f o r 0 < ~ < A .  

(2) a / A - o t / B < _ ( l n A - l n ( A - o t ) ) - ( l n B - l n ( B - ~ ) )  f o r 0 < o t < A < B .  

For instance, to prove (i) we can apply inequality (I) and use the principle of telescoping 
sums to derive 

wi/w~:e < ~ (lnw~:e -lnw,+~:e) = lnw,:e-lnwe = ln(w,:e/we) < ln(W/we) 
1 <i <e 1 ~i <g 

and analogously ~e<i_<, wi /we  < ln(we: , /wD < l n ( W / w D ,  which, adding in the 1 
stemming from i = s yields the stated bound. 

Similarly we can use inequality (2) to derive (iv); we just show the case ofEx[SL (xe)]: 

Z ( w i / w i : e - 1 - w i / w i : D  < 1 + Z (( tnwi:e-1- lnwi+i :e- i )  
l_<i<e l < i <e - t  

- (ln wi:e - In wi+l:e)) 
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= 1 + (In wt:e -1  - In w e - l : e - 1 )  - (ln wl:e - In W~-l:e) 

< 1 + In we-l:e - In W~-l:e-1 

= 1 + ln(1 + w e ~ w e - l ) .  

For proving (iii) inequality (2) and telescoping is used to bound the first sum by 
In(we:re~we)  and the third sum by In(we:re~Win). The middle sum can be broken into 
three pieces. The third piece evaluates to - 2 ,  and using inequality (1) the first piece is 
bounded by 1 + In(we:re~we)  and the second piece by 1 + I n ( w e : m / w i n ) .  Together this 
yields the indicated bound. [] 

With sufficiently uneven weight assignments the bounds listed in this theorem can 
become arbitrarily bad, in particular they can exceed n, the number of nodes in the tree, 
which is certainly an upper bound for every one of the discussed quantities. Somewhat 
stronger bounds can be obtained by optimizing over all possible weight assignments 
while leaving the total weight W and the weight of xe (and possibly xm) fixed. Although 
this is possible in principle it seems technically quite challenging in general. We just 
illustrate the case D ( x l ) .  

Which choice of w i  maximizes Ex[D(xl)] = Y~t<_i<_~ Wi/Wl:i while leaving wl and 
W = wl:n fixed? Rewrite the sum as 

(WI:i- Wl:i--I)/Wl: i = 1+ Z (1- W l : i _ l / W l : i ) = n - -  ~ Wl:i__I/Wl: i- 1 +  
l<i<n l<i<n l<i<n 

A little bit of calculus shows that the last sum is minimized when all its summands are the 
same, which, using our boundary conditions, implies that each of them is (wl / W) 1/(n-1~. 
Thus it follows that S = Ex[D(xl)] is bounded by 

n - (n - 1 ) ( w l l W ) ! / ( n - t )  = 1 q- (n - 1)(1 - (Wl /W) l / (n -1 ) ) ,  

which, however, is not a particularly illuminating expression, except that it is easily seen 
never to exceed n. 

5. Analysis of Operations on Randomized Search Trees. In this section we discuss 
the various operations on unweighted and weighted randomized search trees and derive 
their expected efficiency, thus proving all bounds claimed in Theorems 3.1 and 3.2. 

5.1.  S e a r c h e s .  A succesful search for item x in a treap T commences at the root of T 
and, using the key of x traces out the path from the root to x. Clearly, the time taken by 
such a search is proportional to the length of the path or, in other words, the number of 
ancestors ofx .  Thus the expected time for a search for x is proportional to the expected 
number of its ancestors, which is O (log n) in the unweighted and O (1 + l o g ( W / w ( x ) ) )  

in the weighted case by Theorems 4.7 and 4.11. 
An unsuccessful search for a key that falls between the keys of successive items x -  and 

x + takes expected time O (log n) in the unweighted and O ( l o g ( W / m i n { w ( x - ) ,  w(x+)})) 
in the weighted case, since such a search must terminate either at x -  or x + (ignoring the 
two cases where x -  or x + does not exist). 
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5.2. Insertions and Deletions. An item is inserted into a treap by first attaching it at 
the proper leaf position which is located by an (unsuccessful) search using the item's 
key; then the item is rotated up the treap, as long as it has a parent with smaller pri- 
ority. Clearly the number of those rotations can be at most the length of the search 
path that was just traversed. Thus the insertion time is proportional to the time needed 
for an unsuccessful search, which in expectation is O(logn) in the unweighted and 
O(log(W/min{w(x-), w(x+)})) in the weighted case, where x -  and x + are the prede- 
cessor and successor of x in the resulting tree. 

The deletion operation requires essentially the same time since it basically reverses 
an insertion operation: first the desired item is located in the tree using its key; then it is 
rotated down until it is in leaf position, at which point it is clipped away; during those 
downward rotations the decision whether to rotate right or left is dictated by the priorities 
of the two current children, as the one with larger priority must be rotated up. 

What is still interesting is the expected number of rotations that occur during an update. 
Since in terms of rotations a deletion is an exact reversal of an insertion it suffices to 
analyze the number of rotations that occur during a deletion. 

So let x be an item in a treap T to be deleted from T. Although we cannot tell just 
from the tree structure of T which downward rotations will be performed, we can tell 
how many there will be: their number is the sum of the lengths of the right spine of the 
left subtree of x and the left spine of the right subtree of x. The correctness of this fact 
can be seen by observing that a left-rotation of x has the effect of shortening the left 
spine of its right subtree by one; a right-rotation of x shortens the right spine of the left 
subtree. 

Thus we know from Theorems 4.7 and 4.11 that in expectation the number of rotations 
per update is less than 2 in the unweighted case and less than 2 + ln(1 + w(x)/w(x-)) + 
ln(1 + w(x)/w(x+)) = O(1 + log(1 + w(x)/w(x-) + w(x)/w(x+))) in the weighted 

case. 

5.3. Insertion and Deletions Using Handles. Having a handle, i.e., a pointer, to a node 
to be deleted from a treap of course obviates the need to search for that node. Only 
the downward rotations to leaf position, and the clipping away needs to be performed, 
which results in expected time bound of O(1) in the nnweighted and O(t  + log(1 + 
w(x)/w(x-) + w(x)/w(x+))) in the weighted case. 

Similarly, if we know the leaf position at which a new node x is to be inserted (which 
is always either the i~esulting predecessor x -  or successor x + of x), then, after attaching 
the new leaf, only the upward rotations need to be performed, which also results in the 
expected time bounds just stated. If just a pointer to x -  is available, and x cannot be 
attached as a leaf to x -  since it has a nonempty right subtree, then the additional cost of 
locating x ~ is incurred. Note that in this case x + is the bottom element of the left spine of 
that right subtree of x -  and locating it amounts to traversing the spine. The expected cost 
for this is therefore 0(1)  in the unweighted and O(1 + log(1 + w(x-)/w(x+))), which 
results in a total expected cost of O (1) and O (1 + log(1 + w(x)/w(x-) + w(x)/w(x +) + 
w(x-)/w(x+))) in the respective cases. 

Note that in contrast to ordinary insertions, where the sequence of ancestors can be 
computed during the search for the leaf position, insertions using handles require that 
ancestor information is stored explicitly in the tree, i.e., parent pointers must be available, 
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so that the upward rotations can be performed. Deletions based on handles also require 
parent pointers, since when the node x to be deleted is rotated down it is necessary to 
know its parent y so that the appropriate child pointer of y can be reset. 

5.4. Finger Searches. In a finger search we assume that we have a "finger" or "handle" 
or "pointer" on item x in a tree and using this information we quickly want to locate 
the item y with given key k. Without loss of generality we assume that x = Xe and 
y = xm with s < m. The most natural way to perform such a search is to follow the 
unique path between xe and Xm in the tree. The expected length of this path is given in 
Theorems 4.7 and 4.11 for weighted and unweighted randomized search trees, which 
would immediately yield the bounds of Theorems 3.1 and 3.2. However, things are not 
quite that easy since it is not clear that the path between x~ and xm can be traversed in 
time proportional to its length. Such a traversal would, in general, entail going up the 
tree, starting at xe, until the lowest common ancestor u of xe and Xm is reached, and then 
going down to Xm. However, how can one tell that u has been reached (for all we know, 
xe may be u already)? 

If  one reaches during the ascent toward the root a node z whose key is larger than the 
"search key" k, then one has gone too far (similarly, if one reaches the root of the entire 
tree via its right child). The desired u was the last node on the traversed path that was 
reached via its left child, or, if no such node exists, the start node x. This excess path 
between u and z may be much longer than the path between x and y and traversing this 
path may dominate the running time of the finger search. 

There are several ways of dealing with this excess path problem. One is to try to argue 
that in expectation such an excess path has only constant length. However, this turns out 
to be true for the unweighted case only. Other methods store extra information in tile tree 
that either allows us to shortcut such excess paths or obviates the need to traverse them. 

Extra Pointers. We first discuss a method of adding extra pointers. Define the left 
parent of v to be the first node on tile path from v to the root whose key is smaller 
than the key of v, and the right parent of v to be the first node on the path with larger 
key. Put differently, a node is the right parent of all nodes on the fight spine of its left 
subtree and the left parent of all nodes on the left spine of its right subtree. We store with 
every node v in the tree besides the two children pointers also two pointers set to the left 
parent and right parent of v, respectively, or to nil if such an parent does not exist. Such 
parent pointers have been used before in [3]. Please note that during a rotation or when 
adding or clipping a leaf these parent pointers can be maintained at constant cost. Thus 
no significant increase in update times is incurred. 

A finger search now proceeds as follows: starting at x chase fight pal, ent pointers until 
either a nil pointer is reached or the next node has key larger than k (using a sentinel 
with key +cx~ obviates this case distinction). At this point the lowest common ancestor 
u of x and y has been reached, and using the key k the path from u to y can be found by 
following children pointers in the usual fashion. Note that the number of links traversed 
is at most one more than the length of the path between x and y, and that it can be much 
smaller because of the shortcuts provided by the right parent pointers. 

Extra Keys. With every node u in the tree one stores min(u) and max(u), the smallest 
and largest key of any item in the subtree rooted at u. With this information it can be 
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seen in constant time whether an item can possibly be in the subtree rooted at u: its key 
has to lie in the range between rain(u) and max(u). The common ancestor ofxe and Xm 
is then the first node z on the path from x~ to the root with min(z) < k < max(z). 

Maintaining this min0/max0  information clearly only takes constant time during 
rotations. However, when a leaf is added during an insertion or is clipped away at the 
end of a deletion the min0/max0  information needs to be updated on an initial portion of 
the path toward the root. To be specific, consider the change when leafx is removed. The 
nodes for which the rain0 information changes are exactly the nodes on the left spine 
of the right subtree of the predecessor of x. The max0  information needs to be adjusted 
for all nodes on the right spine of the left subtree of the successor of x. The expected 
lengths of those spines are given in Theorems 4.7 and 4.11. They need to be added to 
the expected update times, which asymptotically is irrelevant in the case of unweighted 
randomized search trees, but can be the dominant factor in the case of weighted trees. 

Finally, to make this argument applicable to the items with smallest and largest keys in 
the tree, it is necessary to maintain treaps with two sentinel nodes that are never removed: 
one with key - c ~  and one with key + ~  (both with random priorities). 

Relying on Short Excess Paths. Finally we consider the method, suggested to us by 
Mehlhorn and Raman [22], that traverses the excess path and relies on the fact that 
in expectation this path is short, at least for unweighted trees. (In the weighted case 
examples can be concocted where this expectation can become arbitrarily large.) The 
advantage of this method is that only the one usual parent pointer needs to be stored per 
node, and not two parent pointers. However, as we shall see soon, it is also necessary to 
store one additional bit per node. 

As before let u be the lowest common ancestor between x = xe and y = xm and let 
the right parent of u be z, the endnode of the excess path. Call the nodes on the path 
between, but not including u and z the excess nodes. Note that u = x,  for some v with 

< v < m (namely the one with largest priolity in that range), and z = xj for some j 
with m < j < n, and any excess node must be some xi with 1 < i < L We estimate the 
expected number of excess nodes by introducing for each i with 1 < i < ~ a 0-1 random 
variable Xi indicating whether or not xi is an excess node and summing the expectations. 
Now Ex[Xi] is the probability that xi is an excess node, which we represent as the sum 
of the probabilities of the disjoint events Eij that xi is an excess node and z is xj. Now, 
for Eij tO happen xj must be the right parent of xi and of u, or in other words, xi and 
u must both be on the right spine of the left subtree of xj. This happens if in the range 
between i and j ,  item xj has the largest priority and xi has the second largest, and if u has 
the largest priority in the range from e to j - 1. By the definition of u this last condition 
can be reformulated that the largest priority in the range g to j - 1 occur in the range 
to rn. By the assumption that all priorities are independently, identically distributed, it 

follows that 
t 1 m - g + l  

Pr[Eij] = 
( j - i + l )  ( j - i )  ( j - e )  

and the expected number of excess nodes is 

1 1 m - g + l  
Z Ex[Xi]--- E E Pr[Eij]= E ~< ( j - - i + l )  ( j - - i )  ( j - - e )  

1<i<s 1<i<s m<j<n 1<i<~ m<j_n 
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Summing first over i and applying the bound 2a<_k<b 1/k(k + 1) < I/a it can be seen 
that the double sum is upper bounded by 

m - g + l  
Z ( j - g ) ( j - - g + l ) '  

m<j<n 

which in turn by applying the same bound can be seen to be upper bounded by 1. Thus 
we have proved that in the case of unweighted trees the expected number of excess nodes 
is always less than one. 

The above analysis relies on the existence of z, i.e., the lowest common ancestor 
u must have a right parent. This need not be the case: u can lie on the right spine of 
the entire tree. In this case a naive finger search would continue going up past u along 
the spine until the root is reached. This could be very wasteful. Consider for instance 
a finger search from xn-1 to x,  which with probability 1 would this way traverse the 
entire spine, which has O (log n) expected length. To prevent this we require that every 
node has stored with it information indicating whether it is on the right or left spine of 
the entire tree. With this information a finger search can stop going up as soon as the 
right spine of the entire tree is reached, and thus in effect only the path between x and y 
is traversed. 

5.5. Fast Finger Searches. Now assume we have a "finger" or "pointer" on item x and 
also one on item z and we want to quickly locate item y with key k. A natural thing to 
do is to start finger searches both at x and at z that proceed in lockstep in parallel until 
the first search reaches y. If X and Z are the lengths of the paths from x and z to y, 
respectively, then by the previous subsection the time necessary for such a parallel finger 
search would be proportional to min{X, Z}, and the expected time would be proportional 
to Ex[min{X, Z}] _< min{Ex[X], Ex[Z]}. 

This can be exploited as follows: Always maintain a pointer to Train and Tmax, the 
smallest and largest key items in the tree. Note that this can be done with constant 
overhead per update. If one now wants to perform a finger search starting at some node 
x = xe for some node y = x,~ and, say, y ' s  key is larger than the one of x, then start 
in parallel a finger search from Tmax = x,. The expected time for this search is now 
proportional to the minimum of the expected path lengths from x and Tmax to y, which 
by Theorem 4.7 is O(min{log(m - ~ + 1), log(n - m + 1)}. If  we let d ----- m - ~ + 1 
be the key distance between x and y, then this is at most O(min{log d, log(n - d)}) = 
O(log rain{d, n - d}), as claimed in Theorem 3.t, since n - m + 1 < n - d. 

5.6. Joins and Splits. Two treaps T1 and T2 with all keys in T1 smaller than all keys 
in T2 can be joined by creating a new tree T whose root r has as left child /'1 and 
right child T2, and then deleting r from T. Creating T takes constant time. Deleting r, 
a s w e  observed before, takes the time proportional to the length of the right spine of 
T1 plus the length of the left spine of T2, i.e., the depth of the largest key item of T1 
plus the depth of the smallest key item of T2. By Theorem 4.7 this is in expectation 
O(logm + logn) = O(logmax{m, n}) if Tl and T2 are unweighted randomized search 
trees with m and n items, respectively. In the weighted case Theorem 4.11 implies an 
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expected bound of O (1 + log(W1/w(Tlmax)) +log(W2/w(T2min))), if we let Wi denote 
the total weight of T~. 

Splitting a treap T into a treap T~ with all keys smaller than k and treap T2 with all 
keys larger than k is achieved by essentially reversing the join operation: An item x 
with key k and infinite priority is inserted into T; because of its large priority the new 
item will end up as the root; the left and right subtrees of the root will be/ '1 and T2, 
respectively. This insertion works by first doing a search starting at the root to locate the 
correct leaf position for key k, adding item x as a leaf, and then rotating x up until it 
becomes the root. Note that the length of the search path is the same as the number of 
rotations performed, which in turn is the sum of the lengths of the right spine of Tl and 
the left spine of T2. Thus the time necessary to perform this Split is proportional to the 
sum of the lengths of those two spines, and therefore the same expected time bounds 
hold as for joining/'i  and T2. 

5.7. Fast splits. How can the split operation described and analyzed above be made 
faster? It is necessary to shorten the search time for the correct leaf position and to reduce 
the number of subsequent rotations. Assume the size (or total weight) of the eventual/'1 
is small. Then it makes sense to determine the correct leaf position for x in T by a finger 
search starting at Tmin, the item in T with minimum key. Let z be the lowest common 
ancestor of Tmin and the leaf added for x. Note that z is part of the path between Tmin 
and x and that z must be on the left spine of T. Now, when rotating x up the tree one can 
stop as soon as x becomes part of the left spine of the current tree, or, in other words, 
as soon as z becomes the left child of x: The current left subtree o f x  will then contain 
exactly all items of T with key smaller than the splitting key k and forms the desired T~. 
The tree T2 is obtained by simply replacing the subtree rooted at x by the right subtree 
of  X. 

The time to do all this is proportional to the length L of the path in the original 
T between Tmin and the leaf added for x: as argued before, the finger search takes 
this much time, and the number of subsequent rotations is exactly the number of edges 
on this path between x and z. In the unweighted case the expected value of L is by 
Theorem 4 . 7 0  (tog m) where m is the number of nodes that end up in T1. This is 
not particularly good if T1 is almost all of T. In this case it would be much better 
to proceed symmetrically: start the finger search at Tmax, the item in T with largest 
priority, and identify the path from Tmax to x. The expectation of the length R of that 
path, and hence of the splitting time would then be O(logn), where n is the size of Tz. 
Of course in general it is not known in advance whether T1 or T2 is smaller. However, 
this problem can be circumvented by starting both searches in lockstep in parallel, 
terminating both as soon as one succeeds. This would take O(min{L, R}) time, and 
since Ex[min{L, R}] < min{Ex[L], Ex[R]}, the total expected time for the fast split 
would be O (rain{log m, log n}) = O (log rain{m, n}). 

For the weighted case it now would seem to suffice to observe that by Theorem 4.11 
the expectation of L is O(1 + log(W1/w(Tlmin) + Wl/w(Tlmax))), where Tlmax is 
the item with largest key in/'1, which is of course nothing but x - ,  the predecessor of x 
in T. However, this is not quite true, since the new leafx is not necessarily a child of x - ,  
but could be a child ofx +, the successor ofx.  In that case the path in T from x -  to x + (in 
other words the right spine of the left subtree of x - )  that needs to be traversed additionally 
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after x -  has been reached could be quite long, namely O(1 + log(1 + w(x-)/w(x+)). 
This additional traversal and cost can be avoided if more space and stores with every 
item in the tree a predecessor and successor pointer are used. (Note that those additional 
pointers could be maintained with constant overhead during all update operations.) 

What kind of information needs to be maintained so that such a split procedure can 
be implemented? Train and Tmax are required; since the finger searches start at Tmin 
and Tmax and the upward parts of the searches only proceed along the spines of T, it is 
necessary to maintain parent pointers only for spine nodes and not for all nodes. 

5.8. Fast Joins. In a fast join of T1 and T2 one tries to reverse the operations of a fast 
split. Starting at Tlmax and T2min the right spine RS of T1 and the left spine LS of T2 
are traversed in a merge-like fashion until either a node x of RS is found whose priority 
is larger than the one of the root of T2 or, symmetrically, a node y of LS is found whose 
priority exceeds the one of the root of T1. In the first case the subtree Tx of T1 rooted at x 
is replaced by the join of Tx and T2, computed using the normal join algorithm, and the 
root of 7"1 becomes the root of the result. In the other case one proceeds symmetrically 
and the root of T2 becomes the root of the result. 

This in effect reverses the operation of a fast split, except that no finger searches had to 
be made. Therefore the time required for fast joining/'1 and T2 into T is upper bounded 
by the time necessary to fast split T into/'1 and T2. 

5.9. Excisions. Let x and y be two items in an n-node treap T and assume we have a 
"finger" on at least one of them. We would like to extract from T the treap T' containing 
all d items with keys between and including the keys of x and y, leaving in T all the 
remaining items. First we show that we can do this in time proportional to P(x, y) the 
length of the path from x to y plus SL(x) and SR(y), the lengths of the right spine of 
the left subtree of x and the left spine of the fight subtree of y. By Theorem 4.7 the 
expectation of this would be O (log d). 

With a finger search first identify the path connecting x and y, and with this the lowest 
common ancestor u of x and y, all in time O(P(x, y)). Let T, be the subtree rooted at 
u. It suffices to show how to excise T' from T,. Let LL be the sequence of nodes on 
the path from x to u with keys less than the key of x and let A be the sequence of the 
remaining nodes on that path, not including u. Symmetrically, let RR be the sequence 
of nodes on the path from y to u with keys greater than the key of y and let B be the 
sequence of the remaining nodes not including u. Now the desired treap T t has as its 
root u; its left subtree is formed by stringing together the nodes in A along with their 
right subtrees; its right subtree is formed by stringing together the nodes in B together 
with their left subtrees. Clearly, T' can thus be formed in time O(P(x, y)). 

The remaining pieces of Tu can be put back into a treap as follows: Form a treap L 
by stringing together the nodes in LL together with their left subtrees, adding the left 
subtree of x at the bottom of the right spine. Symmetrically, form a treap R by stringing 
together the nodes in R R, adding the right subtree of y at the bottom of the left spine. The 
remainder of T, is constructed by stringing the members of LL into a tree L and RR into 
a tree R (see Figures 4 and 5). Clearly, L and R can be constructed in time O(P(x, y)). 
In Section 5.7 we showed that the time necessary for the join operation is proportional 
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Fig. 4. Subtree Tu before the excision. 

to sum of the lengths of the fight spine of L and the left spine of R. However, this sum 
is at most P(x,  y) + SL(x) + SR(y). 

The excision of T r from T can also be performed in expected O(log(n - d)) time 
using the following method: Split T into treaps L and T", where L contains all items 
with key less than the key of x; split T" into the desired T' and R, where R contains all 
items with key greater than the one of y; finally join L and R-to form the remainder treap. 
L and R each contain at most n - d nodes. Thus using the fast split method of Section 5.7 
and the normal join method, this can all be performed in expected O(log(n - d ) )  time. 

Of course, d is not usually known in advance. Thus we face the usual dilemma of 

Fig. 5. The trees L, T', and R. 
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which method to choose. This can be resolved as follows: In lockstep in parallel perform 
a finger search from x to y and perform a finger search from Tmin to x, followed by a 
finger search from Tmax to y. If the search from x to y is completed first, use the first 
method for the excision, otherwise use the second method. 

5.10. Expensive Rotations. How expensive is it to maintain unweighted randomized 
search trees under insertions and deletions when the cost of a rotation is not constant but 
depends as f ( s )  on the size s of the subtree that is being rotated? 

Since an insertion operation is just the reverse of a deletion operation it suffices to 
analyze just deletions. Recall that in order to delete a node x it first has to be located and 
then it has to be rotated down into leaf position, where it is then clipped away. Since the 
search time and the clipping away is unaffected by the cost of rotations we only need to 
analyze the expected cost Rf (x) of rotating x into leaf position. 

As before let xl . . . . .  xn be the items in the treap numbered by increasing key rank. 
Assume we want to delete xk. 

For i < k <  j let Ek;i,j denote the event that at some point during this deletion Xk is 
the root of a subtree comprising the j - i + 1 items xi through xj, Then the total expected 
cost of the deletion is given by 

Rf(xk) = Z Pr[Ek;i,j]. f ( j  - i + ! ) .  
I<i<k 
k<jsn 

We need to evaluate Pr[Ek;i,j]. We can do this by characterizing those configurations of 
priorities that cause e v e n t  Ek;i,j to happen. 

We claim that in the generic case 1 < i < k < j < n this event occurs exactly if 
among the j - i + 3 items xi-1 through xj+l the items xi-1, xk, xj+l have the largest 
three priorities (the order among those three is irrelevant). 

As a consequence of the ancestor lemma Xk is root of a subtree comprising Xl through 
xj exactly if xk has largest priority in that range and x/-1 and xj+l each have larger 
priority than xk, i.e., xi-1 and xj+l have the largest two priorities among xi-1 through 
x j+l andxk has third largest priority. Now the deletion ofxk can be viewed as continuously 
decreasing its priority and rotating xk down whenever its priority becomes smaller than 
the priority of one of its children, thus always maintaining a legal treap. This means 
that if xi_l, xk,-xj+l have the largest three priorities among xi-I  through xj+l, at some 
point during the decrease xk will have third largest priority and thus will be root of a tree 
comprising xi through xj as claimed. Similarly, xk can never become the root of such a 
tree if x~_a, xk, x j+l do not initially have the largest three priorities among xi-~ through 
Xj+ l. 

Using the same type of argument it is easy to see that the left-marginal event Ek;1,j 
happens iffxk and xj+l have the largest two priorities among the j + 1 items xl through 
xj+l. The fight-marginal event Ek;i,n happens iffxk andxi: l  have the largest two priorities 
among xj-1 through x,. Finally Ek~ l,n of course occurs exactly if xk has the largest of 
all n priorities. 

Since in an unweighted randomized search tree the priorities are independent 
identically distributed continuous random variables we can conclude from these 
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characterizations that 5 

[ 6 / ( j  -- i + 1) i 

12/j2 
Pr[Ek.i,j] = [ 2 / ( n  i + 1) ~ 

I 1/n 

for 1 < i < k < j < n (generic case), 

for i = 1 and k _ j < n (left-marginal case), 

for 1 < i < k and j = n (right-marginal case), 
for i = 1 and j = n (full case). 

Substituting these values now yields 

2 f ( j )  
n _ l<i<_k 

f (n  -- i + 1) 

(n -- i + t) i 
+ E E 6 f - s  

l<i<kk<i<n ( j - - i  + 1) i 

In this form this expression is not particularly illuminating. Rewriting it as a l inear 
combination of f ( 1 )  . . . . .  f (n)  yields for k < (n + 1)/2 

6 ( 6 ( k  - 1) 2 ) 
Rf(Xk)  -- f(n)n § E (s + 1) ~ ' f(s)  + < Z  \ ~ + ~-~ f (s)  

t<s<k  k s < n - k  

( 6 ( n  + 1) 2 ) 

n--k<~'<n 

and for k > (n + 1)/2 we can exploit symmetry and get Rf (xk) = Rf (xn -k+ 1). This is the 
exact expectation and applies to any arbitrary real-valued function f .  For nonnegative 
f it is easy to see that for any k this expression is upper bounded by 

From this the bounds of Theorem 3.1 about expensive rotations follow immediately. 
There is a slightly less cumbersome way to arrive at this asymptotic bound. For 

any k and any s < n item xk can participate in at most s generic events Ek;i.j with 
j - i + 1 = s, each having a probability of O(1/s3), which yields a contribution of 
O(f(s)/s  2) to Rf (Xk). Similarly xk can participate in at most two marginal events  Ek;i,j 
with j - i + 1 = s each having a probability of  O (1/s2), which also yields a contribution 
of  O(f(s) / s  z) to Rf(xk) .  Finally xk participates in exactly one "full" event Ek; t , ,  which 
has probability 1/n and gives the f (n ) /n  contribution to Rf (xk). 

5.10.1. A D(fferent Rotation Cost ModeL The above analysis hinges on the fact that the 
probability that three particular random variables are the smallest in a set of s independent 
identically distributed continuous random variables is O (1/s  3). In the next section, which 
deals with limited randomness, we will see that it is advantageous if it is only necessary 
to consider two out of s variables, and not three. 

In order to achieve this we slightly change how the cost of a rotation is measured. 
If node x is rotated, then the cost will be f(g) + f(r) ,  where s and r are the sizes of 
the left and right subtrees of x. This cost model is asymptotically indistinguishable from 

5 We use the notations x 'h = x ( x  + I ) . , .  (x + m - 1) and x ~  = x ( x  - 1 ) . . .  (x - m + 1), 
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the previous one as long as there exist constants cl and c2 so that Q(f(g.) + f(r)) < 
f(/~ + r + 1) < e2(f(s + f(r)) for all s r > 0. This is the case for all nondecreasing 
functions that satisfy f (n  + 1) < c. f(n/2),  which is true essentially for all increasing 
functions that grow at most polynomially fast. 

We distribute this cost of a rotation at x to the individual nodes of the subtrees as 
follows: a node y that differs in key rank from x by j is charged A f  (j)  = f ( j )  - f ( j  - 1 ), 
with the convention that f (0 )  = 0. Since the right subtree of x contains the first r 
nodes that succeed x in key rank, the charge distributed in the right subtree is thus 
Y~q_<j<_r A f ( j )  which evaluates to f (r)  as desired. Symmetrically, the total charge in 
the left subtree adds up to f(e). 

Now let x = xk be the node to be deleted and let y = xk+j be some other node. The 
node y may participate in several rotations during the deletion of x. What are the roots 
z = Xk+i of the (maximal) subtrees that are moved up during those rotations? It is not 
hard to see that before the deletion began both y and z must have been descendants of 
x and after completion of the deletion y must be a descendant of z. This charaterizes 
the z's exactly and corresponds to the following condition on the priorities: In the index 
range between the minimum and the maximum of {k, k + i, k + j} the node x = Xk 
must have the largest priority and z = xk+i must have the second largest. Note that 
with uniform and independent random priorities this condition holds with probability 
1/s ~ = 1/s(s + 1) if the size of the range is s + 1. 

If  Di, j denotes the event that y = Xk+j participated in a down rotation of x = xk 
against z = xk+i, then the expected cost of the rotations Rf(xk) incurred when Xk is 
deleted from an n-node tree using cost function f can be written as 

Ry(Xk)= ~ Z Pr[Di, j]Af(IJl). 
-k<j<_n-k -k<_i<n-k 

j#o i#o 

Since Pr[Di,j ] = 1/(max{k + i, k + j ,  k} - min{k + i, k + j ,  k})2, the inner sum evaluates 
for a fixed j > 0 to 

1 1 /<~ 1 

-k<_i<o (J i) -'-'----~ + 2 -fi + 7~' O<i<j j <  _ - 

which using ~ < ~ < b  1/v~ = 1/a - 1/b evaluates to 

( 1 1 ) ( ~ + 1 )  ( 1 1 ) 3 3 
j + l  j + k  + + j + l  n - k + l  < j + l  < j 

For y = *k-j a symmetric argument shows that the inner sum is also upper bounded by 
3/j. When f is nondecreasing, i.e., A f  is nonnegative, we therefore get 

l < j < k  J l < j < n + l - k  

= 6(f~n-----~) + ~ f ( J )~  

3Af(j__..__~) < 6 Z Af_(j) 
J 1 l < j < n  
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from which again the bounds on expensive rotations stated in Theorem 3.1 follow. Note 
that this method actually also allows the exact computation of Rf  (x~) for any arbitrary 
real-valued function f .  

5. t 1. Changing Weights'. If  the priority p of  a single item x in a treap is changed to 
a new priority p ' ,  then the heap property of  the treap can be re-established by simply 
rotating x up or down the treap as is done during the insertion and deletion operations. 
The cost of  this will be proportional to the number of  rotations performed, which is 
ID(x)  - D' (x)] ,  where D(x)  and D'(x)  are the depth of  x in the old and new tree, 
respectively. 

Now assume the weight w of  an item x in a weighted randomized search tree of  total 
weight W is changed to w'  and after the required change in the random priorities the tree 
is restructured as outlined above. In the old tree x had expected depth 0 ( t  + l og (W/w) ) ,  
in the new tree it has expected depth 0 (1 + log(W' /w ' ) ) ,  where W' = W - w + w' is the 
total weight of  the new tree. It is now tempting to claim that the expected depth difference 
and hence the expected number of  rotations to achieve the change is 0 ({ log(W/w)  - 
log(W' /w ' )  r), which is about 0 (1 log(w' /w)f )  if  the weight change is small relative to 
W. There are two problems with such a quick claim: 

(a) In general it is not true that Ex[IX - YI] = IEx[X] - Ex[Y]I. 
(b) One cannot upper bound a difference A - B using only upper bounds for A and B. 

For the sake of definiteness we deal with the case of  a weight increase, i.e., w' > w. 
The case of a decrease can be dealt with analogously. We first address problem (a). 
In Section 3 we briefly outlined how to realize weighted randomized search trees. As 
priority p for an item x of weight w use u 1/w (or equivalently (log u) /w) ,  where u is a 
random number uniformly distributed in [0, 1]. This simulates generating the maximum 
of w random numbers drawn independently and uniformly from [0, 1]. If  the new weight 
o f x  is w' and p '  = v 1/w', where v is a new random number drawn from [0, 1], is chosen 
as new priority then p '  is not necessarily larger than p. This  means that D'(x) ,  the new 
depth of x, could be larger than the old depth D (x), in spite of  the weight increase, which 
is expected to make the depth of  x smaller. Thus, since the relative order of  D(x)  and 
D'(x)  is unknown, Ex[ID(x)  - D ' (x) l ]  becomes difficult to evaluate. 

This difficulty does not arise if  pl = ul/W , (or equivalently (log u) /w') ,  where u 
is the random number originally drawn from [0, 1], is chosen as new priority. Note 
that although the random variables p and p '  are highly dependent, each has the correct 
distribution, and this is all that is required. Since w'  > w we have u 1/w' > u 1/~, i.e., 
p '  > p. Thus we have D(x)  > D'(x) ,  and therefore 

Ex[ lD(x)  - D' (x) l ]  = Ex[D(x)  - D ' (x) ]  = Ex[D(x)]  - Ex[D' (x)] .  

Addressing problem (b) pointed out above, we can bound the difference o f  those two 
expectations using the fact that we know exact expressions for each of  them. Assume 
that x has key rank s i.e., x = xe, and let A = w' - w be the weight increase, From 
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Theorem 4.11 we get (using the notation from there) 

l_i<, wi:, wi:e + a + ~-" ', we l we:i + a s 

Applying the methods used in the proof of part (iv) of Theorem 4.11 it is easy to show 
that each of the last two sums is bounded from above by ln((we + A)/we)  = ln(wl/w).  
From this bound on the expected difference of old and new depth of x it follows that the 
expected time to adjust the tree after the weight of x has been increased from w to w' 
is O(1 + log(w'/w)) .  Using the same methods it can be shown that decreasing w to w' 
can be dealt with in time O(1 + log(w/w')) .  

When implementing the method outlined here, it is necessary to store for every item 
the priority implicitly in two pieces (w, u), where integer w is the weight and u is a 
random number from [0, 1]. When two priorities (w, u) and (~b, t~) are to be compared 
u 1/w has to be compared with ~7 l/~. Alternatively the pieces (w, log u) could be stored 
and (log u) /w  used for the explicit Comparison. 

This raises the issue of the cost of arithmetic. We can postulate a model of computation 
where the evaluation of an expression like u 1/w or log u takes Constant time and thus 
dealing with priorities does not become a significant overhead to the tree operations. We 
would like to argue that such a model is not that unrealistic. This seems clear in practice, 
since there a floating-point implementation would definitely be used. (This is not to say 
that weighted trees are necessarily practical.) From the theoretical point of view, the 
assumption of constant time evaluation of those functions is not that unrealistic since 
Brent [7] has shown that, when measured in the bit model, evaluating such functions up 
to a relative error of 2 - "  is only slightly more costly than multiplying two m bit numbers. 

Thus we assume a word model where each of the four basic arithmetic operations 
and evaluating functions such as log u using operands specified by logarithmically many 
bits costs constant time. It seems natural to assume here that "logarithmically" means 
O (logW). We now need to deal with one issue: it is not cleat" that a word size of O (log W) 
suffices to represent our random priorities so that their relative order can be determined. 

Here is a simple argument why O (log W) bits per word should suffice for our purposes. 
Following the definition of a weighted randomized search tree the priorities of an n 
node tree of total weight W can be viewed as follows: W random numbers are drawn 
independently and uniformly from the interval [0, 1] and certain n of those chosen 
numbers are selected to be the priorities. Now basic arguments show that with probability 
at most 1 /W k-2 the difference of any two of the W chosen numbers is smaller than 1 /W ~. 
This means that with probability at least 1 - 1 /W k~2 all comparisons between priorities 
can be resolved if the numbers are represented using more than k log 2 W bits, i.e., a word 
size of O(log W) suffices with high probability. 

6. Limited Randomness. The analyses of the previous sections crucially relied on 
the availability of perfect randomness and on the complete independence of the random 
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priorities. In this section we briefly discuss how one can do with much less, thus proving 
Theorem 3.3. We show that for unweighted trees all the asymptotic results about expec- 
tations proved in the previous sections continue to hold, if the priorities in the tree are 
integer random variables that are of only limited independence and are uniformly dis- 
tributed over a sufficiently large range. In particular we show that 8-wise independence 
and range size U >_ n 3 suffice. The standard example of a family of random variables 
satisfying these properties is Xi = q(i) rood U for i < i < n, where U > n 3 is a prime 
number and q is a degree 7 polynomial whose coefficients are drawn uniformly and 
independently from {0 . . . .  , U - 1}. Thus q acts as a pseudorandom number generator 
that needs O (log n) truly random bits as seeds to specify its eight coefficients. 

It is quite easy to see why one would want U > n 3. Ideally all priorities occurring 
in a randomized search tree should be distinct. Our algorithms on treaps can easily be 
made to handle the case of equal priorities. However, for the analysis and for providing 
guarantees on the expectations it is preferable that all priorities be distinct. Because of 
the pairwise independence implied by 8-wise independence, for any two distinct ran- 
dom variables Xi, Xj we have Pr[Xi = Xj] = 1/U. Thus the probability that any two 
of the n random variables happen to agree is upper bounded by (~) / U and, as the birthday 

paradox illustrates, not much smaller than that. With U >_ n 3 the probability of some 
two priorities agreeing thus becomes less than 1/n. We can now safely ignore the case 
of agreeing priorities since in that event we could even afford to rebuild the entire tree 
which would incur only O(log n) expected cost. 

Why 8-wise independence? Let A' be a finite set of random variables and let d be 
some integer constant. We say that 2C has the d-max property iff there is some constant 
c so that for any enumeration X1, X2 . . . . .  Xm of the elements of any subset of r we 
have 

Pr[X1 > X2 > -- .  > Xd > {Xa+I, Xa+2 , . . . ,  Xm}] < c /m ~-. 

Note that identically distributed independent continuous random variables have the d- 
max property for any d with a constant e = 1. 

It turns out that all our results about expected properties of randomized search trees 
and of their update operations can be proved by relying only on the 2-max property of 
the random priorities. Moreover, the 2-max property is implied by 8-wise independence 
because of the following remarkable lemma that is essentially due to Mulmuley [23]. 

LEMMA 6. I. Let ,,Y be a set of  n random variables, each uniformly distributed over a 
common integer range of size at least n. 2( has the d-max property if its random variables 
are (3d + 2)-wise independent. 

A proof of this lemma (or rather, of a related version) can be found in Mulmuley's book 
[23, Section 10.1]. 

We now need to show that results of Section 4 about unweighted trees continue to 
hold up to a constant factor if the random priorities satisfy the 2-max property. This 
is clear for the central Corollaries 4.5 and 4.6. As a consequence of the ancestor and 
common ancestor lemma they essentially just give the probability that a certain one in 
a set of priorities achieves the maximum. For those two corollaries the 1-max property 
would actually suffice. From the continued validity of Corollary 4.5 the asymptotic 
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versions of points (i) and (ii) of Theorem 4.7 about expected depth of a node and size of 
its subtree follow immediately, also relying only on the 1-max property. Note that this 
means that if one is only interested in a basic version of randomized search trees where 
the expected search and update times are logarithmic (although more than an expected 
constant number of rotations may occur per update), then 5-wise independence of the 
random priorities provably suffices. 

Points (iii) and (iv) of Theorem 4.7 do not follow immediately. They consider expec- 
tations of random variables that were expressed in Theorem 4.1 as the sum of differences 
of indicator variables (Ai,e - -  Ci;g,rn) and upper bounds for the expectations of (Ai,e and 
Ci;s  yieldno upper bound for the expectation of their difference. Now (A~,e - Ci;e,m) 
really indicates the event Ei;s that xi is an ancestor of xe but not an ancestor of xm. We 
need to show that if the priorities have the 2-max property, Pr[Ei;s is essentially the 
same as if the priorities were completely independent. 

Without loss of generality we assume s < m. In the case i < s the even t  Ei;s 
happens exactly when the following constellation occurs among the priorities: xi has the 
largest priority among the items with index between and including i and g, but not the 
largest priority among the items with index between i and m. For s < i < m event Ei;s 
occurs iff xi has the largest priority among the items with indices in the range between 

and i, but not the largest in the range s to m. (For the case i > m the event is empty.) 
Thus in both cases we are dealing with an event Ex,y z of the following form: For a 

set 2 of random variables and X ~ 32 C Z the random variable X is largest among the 
ones in 32 but not the largest among the ones in Z. In the case of identically distributed, 
independent random variables clearly we get Pr[ E x,y,z ] = 1/ ]321-1/ I Z l. The following 
claim shows that essentially the same is true if 2 has the 2-max property. 

CLAIM 1. I f  Z has the 2-max property, then Pr[Ex.y,z] = O(1/1321 - 1/IND. 

PROOF. Let a = lY[ and b = IZ] and let Xb X2 . . . . .  Xb be an enumeration of Z so 
that X1 = X and 3; = {X~ . . . . .  Xa}. For a < i _< b let F~ denote the event that Xi is 
largest among {X1 . . . . .  X;} and X1 is second largest. Because of the 2-max property of 
Z we have Pr[F/] = 0(1/i2-). Since Ex,y,z  = [,.Ja<i<_b Fi we therefore get 

Pr[Ex'y'z] < ~-'~" Pr[Fil= O ( y ~  I / i2 )  = a<i<b 

as desired. [] 

Thus points (iii) and (iv) of Theorem 4.7 hold, up to constant factors, if priorities have 
the 2-max property. This immediately means that all results listed in Theorem 3.1, except 
for the ones on expensive rotations, continue to hold; up to constant factors, if random 
priorities satisfying the 2-max property are used. The results on expensive rotations rely 
on the 3-max property. However, if the alternate cost model as explained in Section 5.10.1 
is used, then the 2-max property again suffices. This cost model is equivalent to the first 
one for all rotation cost functions of practical interest. 

The only result for unweighted trees that seems to require something more than the 
2-max property is the one on short excess paths for finger searches in Section 5.4. This 
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is not too serious since other methods for implementing finger searches are available. 
We leave it as an open problem to determine weak conditions on priorities under which 
excess paths remain short in expectation. 

7. Implicit  Priorities. In this section we show that it is possible to implement un- 
weighted randomized search trees so that no priorities are stored explicitly. We offer 
three different methods. One uses hash functions to generate or regenerate priorities on 
demand. The other stores the nodes of the tree in a random permutation and uses node 
addresses as priorities. The last method recomputes priorities from subtree sizes. 

7.1. Priorities From Hash Functions. This method is based on an initial idea of Sleator 
[28]. He suggested choosing and associating with a randomized search tree a hash 
function h. For every item in the tree the priority is then declared to be h(k), where 
k is the key of the item. This priority need not be stored since it can be recomputed 
whenever it is needed. The hope is, of course, that a good hash function is "random 
enough" so that the generated priorities behave like random numbers. 

Initially it was not clear what sort of hash function would actually exhibit enough 
random behavior. However, the results of the previous section show that choosing for h 
the randomly selected degree-7 polynomial q mentioned at the beginning of the previous 
section does the trick. If  one is only interested in normal search and update times, then 
a randomly selected degree-4 polynomial suffices, as discussed in the previous section. 
In order to make this scheme applicable for any sort of key type we apply q not to the 
key but to the address of the node where the respective item is stored. 

It may be argued that from a practical point of view it is too expensive to evaluate 
a degree-7 polynomial whenever a priority needs to be looked at. Note, however, that 
priorities are compared only during updates, and that priority comparisons are coupled 
with rotations. This means that the expected number of priorities looked at during a 
deletion is less than two and during an insertion it is less than four. 

Tarjan [30] pointed out to us that this method also yields a good randomized method 
for the so-called unique representation problem where one would like subsets of a finite 
universe to have unique tree representations (see e.g., [2] and [27]). 

7.2. Locations As Priorities. Here we store the nodes of the tree in an array L[] in 
random order. Now the addresses of the nodes can serve as priorities, i.e., the node L[i] 
has priority i. We assume here that the underlying treap has the rain-heap property, and 
not the max-heap property. Thus L[1] will be the root of the tree. 

How does one insert into or delete from an n-node tree stored in this fashion? Basically 
it is necessary to update a random permutation. In order to insert an item x some i with 
1 < i < n + 1 is chosen uniformly at random. If  i = n + 1, then x is stored in location 
L[n + 1], i.e., it is assigned priority n + 1, and it is then inserted in the treap. If  i _< n, 
the node stored at L[i] is moved to L[n -k 1], i.e., its priority" is changed to n -t- t. This 
means in the tree it has to be rotated down into leaf position. The new item x is placed 
into location L[i] and it is inserted in the treap with priority i. 

When item x = L[i] is to be removed from the tree, it is first deleted in the usual 
fashion. Since this vacates location L[i] the node stored at L[n] is moved there. This 
means its priority was changed from n to i and it has to be rotated up the tree accordingly. 
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This scheme is relatively simple, but it does have some drawbacks. Per update some 
extra node changes location and has to be rotated up or down the tree. This is not a 
problem timewise since the expected number of those rotations is constant. However, 
changing the location of a node y means that it is necessary to access its parent so that 
the relevant child pointer can be reset. For accessing the parent it is either necessary to 
maintain explicit parent pointers, which is costly in space or it is necessary to find it via 
a search for y, which is costly in time. Explicit parent pointers definitely are necessary 
if a family of trees is to be maintained under joins and splits. The nodes of all the trees 
can be kept in one array. However, when an extra node is moved during an update, it is 
not known which tree it belongs to and hence its parent cannot be found via search: Also 
note the bookkeeping problem when the root of a tree is moved. 

Finally, there is the question what size the array L[] should have. This is no problem 
if the maximum size of the tree is known a priori. If this is not the case, the size can be 
adjusted dynamically by, say, doubling it whenever the array becomes filled, and halving 
it whenever it is only one-third full. With a strategy of this sort the copying cost incurred 
through the size changes is easily seen to be constant in the amortized sense. 

7.3. Computing Priorities from Subtree Sizes. This method was suggested by Bent and 
Driscoll [5]. It assumes that for every node x in the tree the size S(x) of its subtree is 
known. In a number of applications of search trees this information is stored with every 
node in any case. 

During the deletion of a node y for every down rotation it is necessary to decide 
whether to rotate left or right. This decision is normally dictated by the priorities of the 
two children x and z of y: the one with larger priority is rotated up. The priority of x is 
the largest of the S(x) priorities stored in its subtree. The priority of z is the largest of the 
S(z) priorities in its subtree. Thus the probability that the priority of x is larger than the 
priority ofz is p = S(x)/(S(x) + S(z)). This means that p should also be the probability 
that x is rotated up. Thus the decision which way to rotate x can be probabilistically 
con'ectly simulated by flipping a coin with bias S(x)/(S(x) + S(z)). It is amusing that 
this can actually be done without storing the sizes. Before the rotation determine S(x) 
and S(z) in linear time by traversing the two subtrees. This makes the cost of the rotation 
linear in the size of the subtree rotated, and our results about costly rotations imply that 
the expected deletion time is still logarithmic. 

Unfortunately this trick does not work for insertions. How does one perform them? 
Note that when a node x is to be inserted into a a tree rooted at y it becomes the root of 
the new tree with probability 1/(S(y) + 1). This suggests the following strategy: Flip a 
coin with bias 1/( S (y) + 1). In case of success insert x into the tree by finding the correct 
leaf position and rotating it all the way back up to the root. In case of failure apply this 
strategy recursively to the appropriate child of y. 

we  leave the implementation of joins and splits via this method as an exercise. 

8. Randomized Search Trees and Skip Lists. Skip lists are a probabilistic search 
structure that were proposed and popularized by Pugh [26]. They can be viewed as a 
hierarchy of coarser and coarser lists constructed over an initial linked list, with a coarser 
list in the hierarchy guiding the search in the next finer list in the hierarchy. Which list 



496 R. Seidel and C. R. Aragon 

items are used in the coarser lists is determined via random choice. Alternatively, skip 
lists can also be viewed as a randomized version of (a, b)-trees. 

The performance characteristics of skip lists are virtually identical to the ones of 
unweighted randomized search trees. The bounds listed in Theorem 3.1 all hold if the 
notion of rotation is changed to the notion of pointer change. The only possible exceptions 
are the results about costly rotations: here, it seems, only partial results are known for 
skip lists (see [21] and Section 8.1.1 of [23]). 

Just as with randomized search trees it is possible to generalize skip lists to a weighted 
version [20]. This is done by appropriately biasing the random choice that determines 
how far up the hierachy a list item is to go. Apparently again the expected performance 
characteristics of weighted skip lists match the ones of weighted randomized search trees 
listed in Theorem 3.2. 

No analogue of Theorem 3.3 about limited randomness for skip lists has appeared 
in the literature. However, Mehlhorn [19] has adapted the approach taken in this paper 
to apply to skip lists also. Dietzfelbinger [11] apparently has also proved results in this 
direction. 

Comparing skip lists and randomized search trees seems a fruitless exercise. They are 
both conceptually reasonably simple and both are reasonably simply to implement. Both 
have been implemented and are for instance available as part of LEDA [21], [24]. They 
seem to be almost identical in their important performance characteristics. Differences 
such as randomized search trees can be implemented using only exactly n pointers, 
whereas this appears to be impossible for skip lists, are not of particularly great practical 
significance. 

There seems to be ample room for both skip lists and randomized search trees. We 
refer the reader to Chapter 1 of Mulmuley's book [23], where the two structures are used 
and discussed as two prototypical randomization strategies. 

Acknowledgments. We thank Kurt Mehlhom for his constructive comments and 
criticism. 

References 

[I] G.M. Adel'son-Velskii and Y. M. Landis, An algorithm for the organization of information, Soviet 
Math. Dokl., 3 (1962), 1259-1262, 

[2l A. Andersson and T. Ottmann, Faster uniquely represented dictionaries, Proc. 32rid FOCS, I991, 
pp. 642-649. 

[3] H. Baarngarten, H. Jung, and K. Mehlhorn, Dynamic point location in general subdivision, Proc. 3rd 
ACM-SIAM Symp. on Discrete Algorithms (SODA), 1992, pp. 250-258. 

[4l R. Bayer and E. McCreight, Organization and maintenance of large ordered indices, Act. Inf., 1 (1972), 
173-189. 

[5] S.W. Bent and J. R. Driscotl, Randomly balanced search trees, Manuscript (1991). 
[6] S.W. Bent, D. D. Sleator, and R. E. Tarjan, Biased search trees, SIAM J. Comput., 14 (1985), 545-568. 
[7] R.P. Brent, Fast multiple precision evaluation of elementary functions, J. Assoc. Comput. Mach., 23 

(1976), 242-251. 
[81 M. Brown, Addendum to "A Storage Scheme for Height-Balanced Trees;' ln~b~Tn. Process. Lett., 8 

(1979), 154-156. 



Randomized Search Trees 497 

[9] K.L. Clarkson, K. Mehlhorn, and R. Seidel, Four results on randomized incremental construction, 
Comput. Geom. Theory Appl., 3 (1993), 185-212. 

[ 10] L. Devroye, A note on the height of binary search trees, J. Assoc. Comput. Mach., 33 (1986), 489498. 
[11] M. Dietzfelbinger (private communication). 
[121 I. Galperin and R. L. Rivest, Scapegoat trees, Proc. 4th ACM-SIAM Symp. on Discrete Algorithms 

(SODA), 1993, pp. 165-174. 
[13] L.J. Guibas and R. Sedgewick, A dichromatic framework for balanced trees, Proc. 19th FOCS, 1978, 

pp. 8-21. 
[14] T. Hagerup and C. Rflb~ A guided t~ur ~f Chem~b~unds~ ~nf~rm. Pr~cess. Lett.~ 33 ( ~ 989~9~)~ 3~5-3~8. 
[15] K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan, Sorting Jordan sequences in linear time 

using level linked search trees, Inform. and Control, 68 (t986), 170-184, 
[16] E. McCreight, Priority search trees, S1AMJ. Comput., 14 (1985), 257-276. 
[17] K. Mehthorn, Sorting and Searching, Springer-Verlag, Berlin, 1984. 
[18] K. Mehlhorn, Multi-Dimensional Searching and Computational Geometry, Springer-Verlag, Berlin, 

1984. 
[19] K. Mehlhorn (private communication). 
[20] K. Mehlhorn and S. N~iher, Algorithm design and software libraries: recent developments in the LEDA 

project, inAlgorithms, Software, Architectures, Information Processing 92, Vol. 1, Elsevier, Amsterdam, 
1992. 

[21 ] K. Mehlhorn and S. N~er, LEDA, a platform for combinatorial and geometric computing. Commun. 
ACM, 38 (1995), 95-102. 

[22] K. Mehlhorn and R. Raman (private communication). 
[23] K. Mulmuley, Computational Geometry: An Introduction through Randomized Algorithms, Prentice- 

Hall, Englewood Cliffs, NJ, 1994. 
[24] S. Naher, LEDA User Manual Version 3.0. Tech. Report MPI-I-93-109, Max-Planck-Institut ftir Infor- 

matik, Saarbrticken, 1993. 
[25] J. Nievergelt and E, M. Reingold, Binary search trees of bounded balance, SIAM J. Comput. 2 (1973), 

33-43. 
[26] W. Pugh, Skip lists: a probabilistic alternative to balanced trees. Commun. ACM, 33 (1990), 668-676. 
[27] W. Pugh and T. Teitelbaum, Incremental computation via function caching, Proc. 16th ACM POPL, 

1989, pp. 315-328. 
[28] D.D. Sleator (private communication). 
[29] D.D. Sleator and R. E. Tarjan, Self-adjusting binary search trees, J. Assoc. Comput. Mach., 32 (1985), 

652-686. 
[30] R.E. Tarjan (private communication). 
[31] J. Vuillemin, A unifying look at data structures, Comm. ACM, 23 (1980), 229-239. 


