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Abstract. We systematize the study of reflection positivity in statistical 
mechanical models, and thereby two techniques in the theory of phase 
transitions: the method of infrared bounds and the chessboard method of 
estimating contour probabilities in Peierls arguments. We illustrate the ideas 
by applying them to models with long range interactions in one and two 
dimensions. Additional applications are discussed in a second paper. 

1. Introduction 

Among the recent developments in the rigorous theory of phase transitions have 
been the introduction of two powerful techniques motivated in part by ideas from 
constructive quantum field theory: the method of infrared bounds [10, 4] which 
provides the only presently available tool for proving that phase transitions occur 
in situations where a continuous symmetry is broken, and the chessboard estimate 
method of estimating contour probabilities in a Peierls' argument [14, 9]. This is 
the first of three papers systematizing, extending and applying these methods. In 
this paper, we present the general theory and illustrate it by considering phase 
transitions in one and two dimensional models with long range interactions. In II, 
I-7], we will consider a large number of applications to lattice models and in III, 
I-8] some continuous models including Euclidean quantum field theories. Reviews 
of some of our ideas and those in I-4, 9, 10, 14] can be found in [5, 6, 23, 27, 43]. An 
application can be found in [19]. 

Three themes are particularly emphasized in these papers. The first, §§2--4, is 
the presentation of a somewhat abstract framework, partly for clarification (e.g. 
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the tricks in [4] to handle the quantum antiferromagnet may appear more natural 
in the light of §§2, 3 below) but mainly for the extensions of the theory thereby 
suggested (e.g. the second theme below and the use, for classical systems, of 
reflections in planes containing sites: this idea, occurring already in [9], will be 
critical for many of our applications, e.g. to the classical antiferromagnets in 
external field). The abstract framework also clarifies various limitations of the 
theory such as its present inapplicability to the quantum Heisenberg ferromagnets 
and its restriction to reflections in planes between lattice planes for quantum 
systems. The second theme is the extension of the methods beyond the nearest 
neighbor simple cubic models emphasized in [10, 4, 9]. It will turn out (§3) that 
rather few additional short range interactions can be accomodated but that a 
larger variety of long range interactions can be treated. This extension will allow 
us (§ 5) to recover and extend to suitable quantum models the results of Dyson [3] 
(resp. Kunz-Pfister [26]) on long range one (resp. two) dimensional systems. It will 
also allow us (see II) to discuss a number of lattice Coulomb gases : for example, a 
"hard core model" where each site can have charge 0, + 1 or - 1  will have two 
"crystal phases" for sufficiently low temperatures and large fugacity and, for 
sufficiently low temperatures and suitable fugacity, a third phase which can be 
thought of as a "plasma" or "gas" phase. Finally it will allow us to construct (see 
III) a two dimensional quantum field theory (a q5 ~ perturbation of a generalized 
free field) with a spontaneously broken continuous symmetry. 

For pair interactions, Hegerfeldt and Nappi [18] have proposed our sufficient 
condition for reflection positivity but they did not discuss the connection with 
phase transitions or the quantum case; see also their footnote on p. 4 of their 
paper. 

The final theme involves the development of an idea in [10, 5] for proving that 
phase transitions occur in a situation where there is no symmetry broken and thus 
no a priori clear value of external field or fugacity for the multiple phase point. In 
all cases, the value can be computed for zero-temperature and one shows that 
there are multiple phases at some nearby value for low temperature, although our 
methods do not appear to specify the value by any computationally explicit 
procedure. This technique, which we do not discuss until Paper II, allows us in 
particular to recover some results of Pirogov-Sinai [33-35] including the occur- 
rence of transitions in the triangle model (ordinary Ising ferromagnet in external 
field but with an additional interaction K ~ i o - F k  over all triples ijk where i and k 
are nearest neighbors of j in orthogonal directions) and the occurrence of three 
phases in the Fisher stabilized antiferromagnet in suitable magnetic field (ordinary 
Ising antiferromagnet but with additional next nearest neighbor ferromagnetic 
coupling). As another example we mention an analysis of some models of Ginibre, 
discussed by Kim-Thompson [-32] in the mean field approximation, with the 
property that at low temperatures there are an infinite number of external field 
values with multiple phases. 

Next we want to make some remarks on the limitations, advantages and 
disadvantages of the reflection positivity (RP) methods. As regards the chessboard 
Peierls argument, it is useful to compare it with the most sophisticated Peierls type 
method that we know of, that of Pirogov-Sinai (PS method) [33-35, 20] (a 
comparison with the "naive" Peierls argument can be found in [-27]): 
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1) The most serious defect in the RP method is that the requirement of 
reflection positivity places rather strong restrictions on the interactions, especially 
for finite range interactions. For example, the PS analysis of the Fisher anti- 
ferromagnet would not be affected if one added an additional ferromagnetic 
coupling ~r~j for pairs ij with i - j  = (8, 10) (for example) while our.argument would 
be destroyed no matter how small the coupling! More significantly, the RP 
analysis in this case requires that o-(0,0)a(1 ' 1) and o-(0,o)O-(1 ' _ 1) have equal couplings ; 
PS does not. Similarly in the triangle model, an RP argument requires the four 
kinds of triangles to have equal couplings while PS does not. 

2) RP can handle certain, admittedly special, long range couplings, among 
them interactions of physical interest such as Coulomb monopole and dipole 
couplings. PS in its present form is restricted to finite range interactions. 

3) Inherent in the PS method is the notion that one is looking at a system with 
a "finitely degenerate ground state". This is not inherent in the RP method : all that 
is important is that a finite number of specific periodic states have a larger internal 
energy per unit volume than the true ground states. In some cases, e.g. the 
antiferromagnet without Fisher stabilization, there is no practical difference since 
the finite number of states of importance in RP are among the infinitely many 
ground states that prevent the application of PS. However, there is a model (of a 
liquid crystal) with an infinitely degenerate ground state to which Heilmann and 
Lieb [19] have applied the RP method with success. This model has only two 
ground states in finite volume with suitable boundary conditions, but infinitely 
many ground states in the PS sense in infinite volume. 

4) The PS method gives much more detailed information than the RP method 
on the manifold of coexisting phases. For example in the Fisher antiferromagnet, 
there is, for T small, an external field, g(T), near the computable number g(0), so 
that there are three (or more) phases at that value of T and #. PS obtain continuity 
of #(T) in T while RP does not, but shows only that #(T)~g(O) as T ~ 0 .  

5) While neither PS nor we have tried hard to optimize the lower bounds on 
transition temperatures, it seems reasonably clear that RP methods would 
produce better bounds. 

6) PS require the number of values that a given spin takes to be finite. RP 
methods effortlessly extend to models like the anisotropic classical Heisenberg 
model (see [9]). 

7) PS can only handle classical models, at least in its present version. RP 
methods can handle certain quantum models quite efficiently (see [9]). 

8) RP works most naturally for states with periodic boundary conditions. This 
can occasionally be awkward. 

9) PS obtain the exact number of phases at the maximum phase points while 
RP only yields a lower bound. This difference is probably not intrinsic, and RP 
methods could probably be combined with [111 to yield the exact number of 
phases. 

10) To our, admittedly biased, tastes the RP method seems considerably 
simpler than the PS method. 

As regards the infrared bounds method, there is no comparable method with 
which to compare it, but we note it is most unfortunate that the only available 
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method for proving phase transitions depends so strongly on reflection positivity. 
We mention two examples to illustrate this remark: 

1) In [10], it is proven that the classical Heisenberg ferromagnet with nearest 
neighbor interaction has a phase transition for a simple cubic lattice. The methods 
of §§2~4 easily extend this result to face centered cubic and many other lattices, but 
not to the body centered cubic lattice. This remains an open problem. 

2) There has been some discussion recently (see [36] and references therein) of 
an intriguing model, originally due to Elliott [28], which should have "helical" 
long range order: consider a one dimensional plane rotor or N-vector, N > 3  
model with nearest neighbor ferromagnet coupling, J, and somewhat stronger 
second neighbor antiferromagnet coupling, K. It will have a helical ground state, 
i.e. in a ground state a~.a~ + 1 = cos 0 for some 0 =t: 0, ~ depending on the exact value 
of J/K. Of course, this helical ordering won't persist to finite temperature in the 
one dimensional case, but if one adds two more dimensions with conventional 
nearest neighbor ferromagnetic couplings one expects helical order will persist. We 
do not see how to prove this with RP methods ; indeed, infrared bounds obtained 
by RP methods always seem to blow up at a single p while at least two p's are 
involved here due to the evenness of the function Ep. We note that if one could 
prove an infrared bound, helical order would be proven since E,  vanishes at 
precisely two p's with a zero of order p2. 

Finally, we summarize the contents of the remaining sections. In § 2, we present 
an abstract framework for reflection positivity and provide the basic perturbation 
criteria which allow one to go from reflection positivity for uncoupled spins to 
reflection positivity for suitably coupled spins. In §3, we specialize to spin systems 
and examine two questions : about what kinds of planes does one have reflection 
positivity for the system of uncoupled spins, and what kinds of interactions obey 
the basic perturbation criteria of §2? In §4, we review and describe the two basic 
RP methods of proving phase transitions when one has reflection positivity about 
the large family of planes obtained by translating a basic family of planes. In § 5, we 
discuss the applications to recover the Dyson and Kunz-Pfister results already 
mentioned. 

2. Abstract Theory of Reflection Positivity 

Reflection positivity was introduced in quantum field theory by Osterwalder and 
Schrader [30] and it has continued to play an important role there. Its significance 
in the study of phase transitions for lattice gases was realized in [10, 5, 9], although 
we must emphasize that transfer matrix ideas are intimately connected with 
reflection positivity. Klein [25] has considered other abstractions in somewhat 
different contexts. 

To understand the framework we are about to describe, it is useful to keep in 
mind a particular example, describing a chain of Ising spins, that is essentially that 
given in [-10, 9] (we describe the example after the basic framework). 

92[ will be a real algebra (with unit) of observables. (We note that to say 92 is a 
real algebra does not preclude 9,1 from being, say, an algebra of complex valued 
functions: "real" means that we only suppose that one can multiply by real 
scalars.) Below we will freely use and expand exponentials and use the Trotter- 
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product formula (in cases where 92 is non-abelian). In most applications these 
manipulations present no problem since 92 is usually finite dimensional. In III, we 
will deal with some unbounded operators and exercise some care on this point. We 
suppose we are given a linear functional A ~ f A ) o  on 9,1 with <1)0=1, Given 
Ha92, we define 

(A)H= <Ae-U)o/<e U)o. (2.1) 

Moreover, we suppose 92 contains two subalgebras 9/+ and 9 /  and a real linear 
morphism 0:92+--,9/ . [The phrase "real linear" does not preclude 0 from being 
complex linear or complex antilinear ; morphism means O(AB) = O(A)O(B). In most 
examples, 0 has an extension to 91+ w 9 2  obeying 02= 1, but this property plays 
no role in our considerations below.] 

The example to keep in mind involves 2n spin 1/2-Ising spins a , + l ,  
a_,  + z, . . . ,  a,. Then 9/is the family of polynomials in all the a's, 9/+ (resp. 92_) the 
polynomials in o-1, . . . , a  n (resp. 0-o, 0--1 '"0---n+l), and 0 is defined so that O(a~) 

=or-i+1 ; <A(a))0= ~,  =+Z A(0-,). Although 92+ and 92_ have trivial intersection 
~ i -  - 1 

in this example, we will not suppose this to be true in the abstract setting; we will 
not even suppose that 92+ and 92_ commute with each other, although it will turn 
out that there are no cases for which we can prove perturbed reflection positivity 
with non-mutually-commuting 9/+ and 9 /  (with the exception of some Fermion 
systems). 
Definition. A real linear functional <. ) on 9/is called reflection positive (RP) if and 
only if <AO(A))>0 for all A~92+. 

The reader should check RP and GRP (defined below) for the functional < • )o 
in the example. Unfortunately, we know of no abstract perturbation theory for 
functionals satisfying RP in the fully non-commutative setting, but a slightly 
stronger notion is preserved under suitable perturbations: 
Definition. <. ) is called 9eneralized reflection positive (GRP) if and only if 

<A 10(AI)... AmO(Am) ) >= 0 

for all Aa, ...,Am~92 +. 

Theorem 2.1. I f  - H = B + O(B) + 
k 

CiO(Ci) (or more generally B + O(B) + ~ C(x) 
j = l  

O[C(x)]d9(x) for a positive measure do) with B, Ci~92 + and if < • )o is GRP, then 
<" )H, defined in (2.1) is GRP. 

Proof. For simplicity, let us consider first the case where 92 is abelian even though 
it is a special case of the general situation we then discuss. Then, since 0 is a 
morphism 

e - n = eBO(e ~) e~C,O(C~). 

Expanding the exponential, we see that 

e -U= sum of terms of the form (DIO(D1)... D;O(Dj)), 

so that by GRP for <. )o, <e-~)0 >0  and <e-HAIO(A1)...AmO(Am))o>O. 
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For  the general non-abelian case, we first use the Trotter product formula to 
write 

e-U= lirn [eB/kO(e ~/k) ~i eC~°(ca/k] k 

and then expand to get e - "  as a limit of sums of u[DjO(D)]. [] 
In the next section, we will give a relevant example (Example 6) of a situation 

with < - }o RP but not GRP. There is one case where RP implies GRP (this, in fact, 
is the only case for which we know how to prove GRP!) :  

Theorem 2.2. I f  9,I+ and 9 1  commute with each other, a linear functional is RP if 
and only if it is GRP. 

Proof. 7cAiO(A)=(uA~)O(uAi) since the Aj and O(Ai) commute and 0 is a 
morphism. [] 

We will also need: 

Theorem 2.3. I f  91+ and 9 1  commute with each other and if < • }o is RP, then for 
any A,B, Cf, Di~91 + : 

I<e A+OB+ Zc,°D,)ol2 < <e A+OA+ Zc,oC,)o (eB+OB+ ZD,0(Da)0 ' 

Proof. For  simplicity of notation we suppose that 91 is abelian. The general case 
follows by using the Trotter formula as in the proof  of Theorem 2.1. Since < • )o is 
RP, we have a Schwarz inequality I<AOB)ol2<= <AOA)o <BOB)o and so (here we 
use that 91+ and 9 1  commute) 

I(AIO(B1)... AjO(B))ol 2 

< (AIO(AI).,. AjO(A)) o <BIO(B1).,. BjO(B))o. (2.2) 

Now 

o~ =-- e A + oe + ECho(Do = eAO( eB)eX C~O(~,) , 

so expanding the sums we can write it as sum of terms of the form 
E10(F1)... EIO(F 3. Using (2.2), we see that 

I<~>ol < ~ <~E,O(E,)>A :~ <~F,O(F,)>~ :~ , 

so using the Schwarz inequality for sums 

I%~>ol 2 __< [~ (~E,O(E,)>ol [~ <~r2(F,))ol. 
We can now resum the exponential and so obtain the desired result. 

Remarks. Notice that only (2.2) was needed to obtain the result, so we could have 
paralleled the discussion of GRP and given (2.2) a name. We only know how to 
prove (2.2) when 91+ and 9 1  commute. 

The theorems in this section are only mild abstractions of ideas in [10, 4]. In 
fact, [4] already noted the importance of inequalities like those in Theorem 2.3 
and of Hamiltonians of the form singled out in Theorem 2.1. 

Remark. Independently, Osterwalder and Seiler have discussed RP for Euclidean 
Fermi lattice field theories [31] using ideas similar to ours. 
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There is a generalization of Theorem 2.3, which, while it will not be used in the 
sequel, is potentially of interest. 

Theorem 2.4. I f  9,I+ and 9,1 commute with each other and ( . ) o  is RP, then for any 
Ci,  D i ~  ~[ + 

(e~C,O,~ 1)o 2 /[ ~c,oc~ 
<\ te  ~ --1))o((e~D'°D'--I)) o . 

Proof. The same as for Theorem 2.3. One merely has to notice that the first term 
(namely 1) in the expansion of the exponential cancels. [] 

Remark. Theorem 2.3 is a Corollary of Theorem 2.4. Merely add 
(2-~A + 2 ) x  (2-~OB + 2) to the exponential in Theorem 2.4 and then let 2 ~  Go. 

3. Reflections in a Single Plane 

In this section, we consider the case where ~I is an algebra of observables for a 
classical or quantum spin system on a lattice, ( • )0 is an uncoupled expectation 
and 0 is a reflection in a plane. We concentrate on two distinct questions which are 
connected with our discussion in the last section: a) When is ( ' ) o  RP and/or 
GRP ? b) What interactions lead to a Hamiltonian with - H = B + OB + ~ CiOCg ? 
We discuss the first question in a series of examples. 

1) Reflections in a Plane Without Sites-Classical Case 

We imagine the finite lattice A (which may be a torus) being divided by a plane 
into two subsets A+ (to the "right" of ~) and A ,  with no sites on ~z. There is some 
"reflection" r on A such that r takes A+ into A and r 2 = 1. The "spin" at each site 
is a random variable taking values in a compact set K with some "a priori" Borel 
probability distribution d~o. Let K A = [-IKi and K_+ = [ I  Ki (where each Ki is a 

iEA i~A ± 

copy of K). For  x ~ K _ ,  define O,x~K÷ by (O,x)i=x~(i). We take 9X to be all 
real-valued continuous functions on K A with 2[± the subalgebras of functions 
depending only on the spins in A±. Define 0: 9.1+ ~ 9 /  by 

(OF)(x) =F(O,x). 

Finally, we let ( F ) o  = f F(x) H do(xi). Then ( • )o is RP since 
KA ieA 

(F(OF))o= ~ ~ F(x)F(O,y) [I  do(xi) I] do(yj) 
K -  K + i~A + jEA 

Since ~f is abelian, ( • )o is GRP. This example includes the kind of classical system 
in [10]. Alternatively, we could allow 9/, 9.[+ to be complex valued and then define 
(OF)(x) =F(O,x). 
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2) Reflections in a Plane Without Sites-"Real" Quantum Case 

The setup is very similar tO 1) but now for each leA, we take a copy ~ oflR m with 
the natural inner product. One defines 5 f  = @ ~ and ~ (resp. ~¢'+) as the tensor 

lEA 

product of the spaces associated with sites in A_ (resp. A+). 9X is now all matrices 
on Yt ~ and (A)o=Tr~e(A)/Tr~,(1). ~i+ (resp. 2 [ )  consists of all operators of the 
form I ® A  (resp. A®I)  under the tensor decomposition 2/{=.9f ®2/t~+. Finally 
O(I®A)=A®I .  Then for B = I ® A  

Tr(BOB) = Trse(A®A ) = T r y +  (A) 2 >~0 

since Tr(A) is real. Thus ( • )0 is RP and, since 9,1+ and 9,1[ commute, GRP. This (0 ;) 
example includes the quantum xy model [4] in the realization ~ =  

1 ' 

~ r= ( ~  _ 01). Alternatively, we could take jt~i = qT" and 0(1 ®A) = A ® 1 where - is 

complex conjugation. 

3) Reflections in a Plane Without Sites-General Quantum Case 

This is identical to the setup in (2) except for the fact that ~ is a copy of (12 TM. If we 
take 0(1 ®A) = A ®  1, then ( • )o is not RP since Tr(A) may not be real. Indeed if ~,1 
and 0 are chosen in some other way so that Tr is GRP, then the ferromagnetic 
Heisenberg Hamiltonian will not be expressible as - H = B + OB + ~ CiOCi, since 
Tr(a  1 • o-0) 3 <0,  while (o- 1 • O-o) 3 is a sum of AIOA1... A30A 3. Of course, if one takes 
0 1 ( I ® A ) = A ® I  w h e r e -  is ordinary matrix complex conjugation, then for 
B = I ® A  

Tr (B0~ B) = Yr~e(A ®A) = ITrse + (A)J 2 > 0. 

So one recovers RP and GRP, but the usual Heisenberg ferromagnet is no longer 
of the form ~Ci01Ci, since al.01a~=crzxao~+alzo-o=-~ly¢oy in the usual re- 
alization of the o-'s. 

The fact that < • )o is not RP does not stop it from being RP on a subalgebra; 
indeed in the Heisenberg case, for functions of a~'s alone, it is RP. It could happen 
that for the usual (anisotropic) Heisenberg case, < . ) n  is also RP on this 
subalgebra and this would lead to phase transitions in the two dimensional 
anisotropic case [-9]. However, the failure of full GRP implies that our simple 
perturbation scheme of §2 will not yield a proof of this type of restricted PP. 

4) Twisted Reflections in a Plane Without Sites 

It is sometimes useful to define 0 with a "twist". For  example, in the setup of 3), 
take m = 2S + 1 and take o-z, ay, a s as the usual spin S spins ; i.e. a z is diagonal and 
o - ±  iay are raising and lowering operators. Thus ax, a~ are real and ay is pure 
imaginary. Let U be the operator on Jt ~_ which rotates about the y axis by 180 ° at 
each site. Let 

O(I®A)=(UAU-1)@I.  
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Then for B = 1 ®A 

Tr(BOB) = Tr(UA U -  ~ ®A) = Tr(UA U -  1) Tr(A) 

= ITr(A)r 2 = 0 .  

So ( - ) o  is RP and GRP. Moreover, 0 ( a ) = - G ( j )  so that the antiferromagnet 
- H = -  ~ o-~.aj with a sum over nearest neighbors, is of the form B+OB 

(i J) 
+ ~ C~OC r This is essentially the method [-4] used to discuss the antiferromagnet. 

5) Reflections in a Plane Containing Sites-Classical Case 

The setup is very similar to 1), but now there may be sites on re. Therefore we break 
up A into three pieces, A_, A o, A+ corresponding to sites to the "left" of ~, on ~, 
and to the right ofn. r now maps A+ to A and leaves A o invariant. 9/+ (resp. 9 / )  
is the family of all funetions of the spins in AouA + (resp. A uAo) and for 
X = {Xi}iE A_ uAo, O,X =x,(i)~K + × K o. AS before (G)o = ~ G I-[ dQ(xi) and (OF)(x) 

l E A  

=F(O,x). Then writing (x, y,z) according to the decomposition K_  x K o x K+" 

(FOF)o= yF(y,z)F(O,(x,y)) [-[ de(x,) 1-[ do(y) [I do(z~) 
i E A  - j ~ A o  k ~ A  + 

= Ko y j~Ao[I dQ(y) yF(y,z) k~aH+ do(z~) 2>-0'' (3.1) 

Thus we have RP and GRP since 9/is abelian. This kind of reflection is mentioned 
in [9] and will play a major  role in many  of the examples in II. 

6) Reflections in a Plane Containing Sites-"Real" Quantum Case 

The setup is as in 2) but with the modifications in 5). Thus Jt~ =~tf_ ®~o®~¢~ +, 
91+ is the linear span of the 1@A®B, and 9.1 the one of the B®A®I.  We take 
0(1 ® A ® B) = B ® A ® 1. Noticing that for C, an operat or on H o @ jig+ [the analog 
of (3.1)3: 

Tr (COC) = Tr~e ° ([Try)+ (C)] 2) ~ 0, 

where Try)+ is the partial trace on g/f+, we see that ( • )o is RP. In this case 9,1+ and 
9.1_ are not mutually commuting so that G R P  is not automatic ; indeed it is false. 
For  let ~ +  = J t e  =~tfo =C2  and let 

OC=ax®(1 + G ) ® I  + G ® ( i  + ax)®l  

OD --- a~®(1 - a~)® l + o'~ ®(1 - a~)® 1 

in terms of the usual Pauli matrices. Then: 

Tr(C(OC)D(OD)) = 8 Tr((1 + G)(1 + ax)(1 - G)(1 - r~)) 

= - 3 2 < 0 .  
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Since this example is not so far from what could arise when expanding realistic 
spin systems, we conclude that reflections in planes containing sites are not likely 
to be permitted for quantum spin systems, even "real" ones. 

We summarize the above examples in: 

Theorem 3.1. < • )o is GRP for conventional reflections in planes without sites for 
classical and simultaneously real quantum systems and for reflections in planes with 
sites (lattice planes) for classical systems. 

Now we turn to the question of which interactions lead to Hamiltonians of the 
form 

- H = OB + B + ~ C(x)O[C(x)O@(x).  (3.2) 

To illustrate the ideas, we will first consider the case of pair interactions in one 
dimension and then more general cases. The main result is that the interaction has 
to be "reflection positive" for (3.2) to hold. The net result of the analysis and 
Theorem 2.1 is that ( • >n is RP if and only if the interaction is reflection positive. 
This is very reminiscent of theorems of Schoenberg [40] (see also [-2, 12, 38]) 
relating positive definiteness of e ÷ tr to (conditional) positive definiteness of F, and, 
indeed, our results can be viewed as a special case of that circle of ideas (see 
Theorem 3.5). 

We begin with consideration of spins a_,__ 1, .-., %- 

Definition. A function (J(j))j>_ 1 will be called reflection positive if and only if for all 
positive integers m and z 1 . . . . .  zm~tE: 

-~izJ(i + j - 1)>0.  (3.3) 
i,j> l 
If we know a priori that J is real-valued [it is by (3.3)] (3.3) need only be 

checked for z real. In this case the left side of (3.3) can be viewed as the interaction 
between spins at sites 1 .. . .  , m with values zl, ..., zm and the reflections of these spins 
at j =  ½ if the basic interaction is ~ J(~-fl)o-=a~. This explains the name given. 

The following comes from the realization of (3.3) as the condition of solvability 
of the Hamburger moment problem. For the readers ease, we sketch a standard 
proof  ([37]) : 

Proposition 3.2. Let (J(j))j~ 1 be a real-valued bounded function. Then (3.3) holds if 
and only if 

1 
J(])=c6jl + ~ 2 j-~dO(2) (3.4) 

- 1  

for a positive measure do and c > O. 

Remark. If we interpret 0 j -  1 as 6jl, then e6al is just the contribution of a 3(2) piece 
of do. We write it as c3j1 to be explicit. 

Proof. If (3.4) holds, then 

} ~ )~i-t2i2do().) ~, -fizJ(i+j- 1 ) = C I Z l l  2 + ~ 0  
i,j>~l --1 i=1 
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so (3.3) holds. Conversely, if (3.3) holds, form a Hilbert space, Jr ,  by starting with 
finite sequence (zl, ... , z,,) (arbitrary m) and letting 

((z), (w)) = ~ -fiwjJ(i + j -  1) 

and then dividing out by z's with ((z),(z))=0 and completing. For a finite 
sequence (zl, ..., zm), let A(z 1 . . . . .  zm) = (0, zl, ..., zm) and note that by repeated use of 
the Schwarz inequality" 

p[Az[I < I]zrl 1/2 ipAezip 1/2 < [iz[i 1 - 1/zOrlA=,,zr I :/=o. 

But 
/ rA2"z r l2  = 2-fizjJ(i+j+ 2 '~+1 -- 1) 

< (~  Jzil) 2 sup IJ(j)[ 

so, lim rJA2"zH1/2"<l as n--*oo. We conclude that llAzlr < I[zll, so A extends to a 
map of J :  to ~,~. Moreover, by a direct calculation (z, Az) = (Az, w). We conclude 
that A is self-adjoint. Thus for any z 

1 
(Z, A j -  1 z ) =  f ~ ] -  l dOz(~  ) 

- 1  

by the spectral theorem, where 0 j-1 =8jl.  Let z=(1,0, ...) so that (z, AJ lz)=J(j') 
and (3.4) holds. [] 

We want to emphasize two features of (3.4). First J ~0  is not required. Secondly 
only the function J(j)=ebb1 obeys (3.4) and has bounded support. 

In order to obtain the simplest result relating (3.2) to (3.3) we consider free 
boundary conditions" 

P r o p o s i t i o n  3.3. Let (J(J))j~ l be given. For each m, consider spin 1/2 Ising spins, 
a m+~, ...,am and let O(Ti~G_i+ 1 

-Hm(a ) = ~, J(i - j)aia j . 
i , j=  - - m + l  

i < j  

Then H m has the form (3.2)for every m if and only if J obeys (3.3). 

Remark. One half of this theorem is also contained in Hegerfeldt and Nappi [18]. 

Proof. If J obeys (3.3), then J has a representation (3.4), so that 

- H,~(a) = B m + OB,, + i Cm(2)0[C,~(2)] do(Z), 
- 1  

where B m = ~, J( i - j )a f i j  and C,,(2)= ~ Z j-  laj. Conversely, suppose that 
1 < i< j< rn  m j =  1 

H,~ has the form (3.2). Then C(x)= ~ #i(x)a, and so ~ C(x)[OC(x)-Id~(x) 
i=1  

= ~ J(i-j)aiaj, where, for 1 <=i,j<=m: J ( i + j - 1 ) =  ~#i(x)#j(x)do(x) because 
j ~ 0 < l = < i  

if F(a)= ~ KiFia j, then Kij is unique. Thus ~ zi-~J(i + j - 1 )  
1 < i,j<=m 

m 2 

= ~ ~ zi#i(x ) dQ(x) and therefore J is reflection positive. [] 
i - - I  
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This propos i t ion  is the basic result ;  we present  a number  of extensions and  
var ia t ions : 

A) In  applications, it is useful to know that  periodic bounda ry  consitions lead 
to a state obeying OS positivity. Given m as above,  we define for i = i, 2 . . . .  ,2m - I. 

J~( i )=  ~ J(li+2km]). (3.5) 
k = - - c o  

The Hami l ton ian  

H p e r  - -  2 P " ' Jm(J -- 0 a F i  - - - - r n  - -  
--rn+ 1 <~i'<j<=m 

is the Hami l ton ian  with periodic bounda ry  conditions. If  J has the form (3.4), then 
1 

JP(i) = c[6~1 + •i, 2m- 1] -F 5 [ ) i -1  -t- •-i+ 122,,](1 _ )u2m)-I dO(X ) 
- 1  

so by the above arguments ,  - H  = B + OB + ~ [C(x)OC(x)]d, (x) for suitable C's. We 
summar ize  in : 

Proposit ion 3.4. Under the hypothesis above, if J obeys (3.3), then H pff' has the form 
(3.2). 

B) We could consider reflections abou t  a plane containing a site. Then the 
1 

above  arguments  imply that  J(1) is arbitrary and J(i)= cc~i2 -F i ) j -  2do(x) for i=> 2. 
- 1  

In part icular,  in tha t  case, one can have second "linear" neighbor  coupling. 
C) If one considers a mul t id imensional  cubic system and considers reflection 

in the plane i 1 = 1/2, the kind of analysis above shows that  what  one needs is that  

2 -zizjJ(il +Jl - 1, i z -J2 , . . . ,  i , - j~ )>O (3.6) 
i l , j l  >= l 

which leads to the requirement that for i~ >~ i 
1 

J(il'i2' "'"iv)=ci ...... i~5i~1 q- ~ )'il-ldoi ...... iv (}c)' 
- 1  

where c i ...... ~ is a positive definite function on ;&-~ and d o obeys a similar 
condition. In part icular,  if 

J(i)---c~ if 1 i l la+. . .+1i ,12=1 

=/~ if 1i ,12+.. .+1i~1z=2, 

= 0 otherwise 

(i,e. nearest  neighbor  coupling e, next nearest  fi), then one will have RP abou t  any 
plane bisecting a nearest  neighbor  bond  as long as 

- 21/3](v - 1) > 0 .  (3.7) 

In part icular,  fl can be negative. The case fi = - ~/2(v - 1) is of some subtlety and is 

discussed in detail in Paper  II. ]To check (3.7) is equivalent  to RP, we note that  the 
F 

/ 
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function c, which has to be positive definite on 7/v- i, has a Fourier transform 
V - - 1  

c(p)=a-2fl ~ cospj so that the infimum occurs at p j = 0  (all j) if f l>0  and at 
j = l  

1 

(all j) if fl__<0.] pj=TE 
3 

D) Some clarity is obtained by considering a lattice gas in a very general 
language, i.e. by allowing multi-particle interactions. We will not explicitly use 
Theorem 2.1, and the connection with Schoenberg's work on conditionally 
positive definite functions will be manifest. 

At each si teja  7~ V we are given a Copy Kj of some configuration space K and a 
fixed probability measure d~(xj) on K j; xj denotes a point in Kj. (For the 
mathematically inclined reader we remark that K is assumed to be a compact 
Hausdorff space, and d0 is chosen to be a regular Borel measure. In fact all our 
spaces, resp. measures will have these properties.) 

It helps one's intuition to imagine that K is the two point set {l, - 1}, and dQ 
the measure assigning probability ½ to 1 and - 1 .  This will correspond to Ising 
models (see also Corollary 3.6, below). 

Given a subset X__c 7/~, we define 

K x = X K j  and K~°=K z~. 
jEX 

(Since K is a compact Hausdorff space, so is K x, for all X =c ~ . )  
To each bounded subset A C ~v there corresponds a finite system in A with 

configuration space K A, an algebra of "observables" C(Ka), and whose states are 
the probability measures on K A. [These are precisely the continuous, normalized, 
positive linear functionals on C(KA).3 

We denote by tr the expectation on C(K ~) given by the product measure 
[I do(x). Clearly tr defines a state of the finite system in A, denoted trA, by 

jEZ ~ 

restriction to C(KA). 
The dynamics of such systems is given in terms of an interaction, ¢b. This is a 

map from bounded subsets X C7/~ to C(K ~) with the properties that 

• (X) ~ C(KX), (3.8) 

and 

try(~b(X)) = ~ I-I d~(xj)¢b(X)(x) = 0, (3.9) 
jaY 

for all Y with Y~X d= 0 ; x = {xj}j~ z v. 
Condition (3.9) is not loss of generality: given an arbitrary interaction 

satisfying (3.8), one can always find a physically equivalent interaction ~ obeying 
(3.8) and (3.9)! 

The Hamilton function of a finite system in A with interaction ~b is given by 

XCA 
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and the Gibbs equilibrium state with boundary condition O~AEL 1 (K A, ~ de(x)), 
\ / 

describing the interactions of the system in A with its complement in A c (recall the 
Dobrushin-Lanford-Ruelle equations [39, 22]), is given by 

( f )  (~b, 0oa) = ZA 1 trA(Fe- n 200A), (3.10) 

for arbitrary F~ C(KA). Here 

Z A = trA(e- W e~A)" 

We now consider a decomposition of ;g~ into two disjoint sublattices F+, F 
(generally separated by a hyperplane); r is the reflection taking F to F+ and 0, 
the obvious reflection map from K r to K r*. For  FsC(Kr+), we set 

OF(x_)=F(O,x ), 

where x_+ ={xj}j~r~ ; we set A_+ = A ~ F + ,  and if A+ =rA_ 
reflection symmetric (RS). 

Our previous notion of RP is equivalent to 

(FOF)  (~), ~BA) ~ O, (3 .11)  

for all F~C(KA÷). In this case ( - ) ( 0 5 ,  0oa) is said to be RP. 
We say that a b.c. 00A satisfies RP iff trA(FOFo~A) >= 0, (3.12) 

for all F~C(KA+). 
Clearly there are b.c. ~A which are not RP, but there are also plenty of b.c. 

which are (e.g. ~ a  = ~ GkOGk, GkEC(K a+) for all kt! 
\ k / 

Remark. Consider two b.c. 0ea and 0~'a such that 

we say that A is 

OOA.O'oA~LI (KA, j~ A d~(x)). 

If 0c~A and ~0A are RP then so is 

O~A =O~A'~A, (3.13) 

by Schur's theorem. 
From now on we shall always assume that ~ is reflection covariant, i.e. 

Oq)(X) = ~b(rX), (3.14) 

for arbitrary X C F+. 
Our aim is to state and prove a necessary and sufficient condition on an 

interaction q~ such that ( - ) (~b, OOA) is RP, for all RP b.c. ~OA and all bounded, RS 
regions A. 

We call an interaction CRN (for "conditionally reflection negative") if and only 
if 

tr(FOF q)(X)) <=O, (3.15) 
Xc~F:~ • 0 

for all F~ C(Kr), with Y an arbitrary bounded subset of F+, obeying tr(F)=0.  
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We call an interaction 4) RN (for "reflection negative") if and only if 

tr(FOF O(X)) < O, (3.16) 
X • F ± ::I: 0 

for all F e C ( K  ~) and for arbitrary, bounded YCF+. 
Let diamX =max {ji-jl: i , j~X}, let X + a denote the translate of X by a vector 

aEZ ~, and let % denote the natural isomorphism from C(K x) to C(KX+~), for 
arbitrary X, i.e. {ra} are the translations. Finally, let [[. p[ denote the supnorm on 
C(K~). 

Theorem 3.5. 1) The Gibbs state ( - > (fi4~, OOA) is RP, for all inverse temperatures 
~>-_0, all RP b.c. O~A and all RS regions A if and only if q~ is CRN. 

2) Suppose an interaction 4) fulfills (3.9) and has the property that 

sup { II ~(x)II : diamX > r} ~ 0 ,  (3.17) 

as r ~ o e  (this condition is fulfilled if 4) obeys any reasonable condition of 
thermodynamic stability t.) Then q~ is CRN if and only if q~ is RN. 

3) I f  q) is RN and A some RS bounded set then 

Z +(x) 
X n A ~  ~- 0 

is a weak limit of functions of the form 

- - E  A A Gk OGk , 
k 

where A G k eC(KA+), for all k. An analogous statement holds for RP b.c. ~A. 

Remarks. 1) The class of (C)RN interactions 4) forms a convex cone. An analogous 
statement holds for RP b.c. By (3.13), the convex cone of RP b.c. is muItiplicative. 
Furthermore, note that RP is stable under taking the thermodynamic limit AT~ ~ 
through a sequence of RS regions A, with RP b.c. OOA. 

These facts and Theorem 3.5 represent a rather complete, mathematical 
characterization of RP Gibbs states in the classical case; see also Corollary 3.6. 

2) Generally, CRN interactions and periodic b.c. lead to RP Gibbs states ; (see 
also Proposition 3.4). If q~ obeys (3.17) and the periodic Gibbs states are RP, for all 
bounded hyper cubes A, then • must be RN. 

Clearly, periodic b.c. lead to translation invariance, so that A is RS with respect 
to many different pairs of hyperplanes, and-- if  4)(X + a)= G(4)(X)) (translation 
invariance)--the Gibbs state is translation invariant. For these reasons translation 
invariant 4)'s and periodic b.c. play an (annoyingly) important role in our theory. 

Proof of Theorem 3.5. 1) First we choose ~OA----1. This b.c. is clearly RP. In this 
case, the Gibbs state ( - ) (/~4), 1) is RP if and only if 

R~+=exp [ - ~ fl4)(X) + Xc  A:~ 0 

has the property 

tr(FOFR~ ~) > O, 
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for all FsC(KA+). This follows easily from (3.14) and the definition of the Gibbs 
state. If R~a~(X+, x ) denotes the integral kernel of R~ ~ the above inequality takes 
the form 

I] do(x) do(y) F(x +) F(y +) R~*(x +, O,y +) > 0 
j eF  + 

(3.18) 

for all F~C(Ka+). 
Assuming that (3.18) holds for arbitrary RS regions A and all fl > 0 and using a 

straight forward extension of Schoenberg's theorem [38] (Theorem Xlii.52) we 
conclude that # must be CRN, i.e. 

tr (FOF ~b(X)) < O. 
X n F ±  + 0 

for all Fe C(K A+) with tr(F)--0 and arbitrary, bounded A+ C F+. [Here we have 
used (3.9) to include regions X ~A in the summation. We recall that Schoenberg's 
theorem says that a matrix (bi) has the property that (e ~b'j) is positive definite for 
all f l>0  if and only if ~'iizsbis>O for all z's with ~z i=0 . ]  This proves one 
direction of Theorem 3.5(1). Conversely suppose now that ~ is CRN. Then 

tr(FOFq~(X))<O, for all FcC(K A+) with tr(F)=0, for any RS region A. 

Now fix some RS, bounded d. By (3.9), it follows that 

~' tr (FOF ~b(X)) = ~ tr a (FOF q)(X)) <= O, 
Xc~A:~ 4-0 Xc~A~: ~-0 

XC_A 

for all FEC(K A+) with trA(F)=0. If we write this out as an integral and use 
Schoenberg's theorem in the other direction we immediately conclude that 
R~(x+, O,y+) is a positive definite kernel. 

Next, if Oc~A is RP then the kernel of O~a, OeA(X+, O,y+) is positive definite. By 
Schur's theorem, R~e(x+, O,y+)OOA(X+, O,y+) is positive definite, so that 

[[ de(x) do(y) F(x + ) F(y + ) RCA~'(X +, 0, y + )eoA(X +, O ,y +) 
j~A + 

= trA(FOFRPa~eoA) > O, 

for all FEC(Ka+). 
Since, by condition (3.14), e -en~ =e-~2 ~ is obviously of the form GAOGAR~AO , 

with GA~C(KA+), Theorem 3.5.1) is now proven. 
2) It is trivial that if • is RN then q~ is CRN. Therefore we must only show that 

if q~ is CRN and satisfies (3.9) and (3.17) then ~b is RN. For this purpose, let 
F~ C(KY), for an arbitrary, but hence forth fixed YCF+. We define 

= F - - ~ o ( f ) ,  
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where a is a t ranslat ion such that  Y+ a C F+, i.e. G ~ C(K r~ r +,) with Yw Y+ a C F+. 
Clearly tr(G) = tr(F) - tr(%(F)) = tr(F) - tr(F) = 0. Hence  if • is C R N  then 

tr(FOF~b(X))- ~ tr(FO%(F)~b(X1) ) 
Xc~F± #O X l c ~ F e  ~=O 

- ~ tr(G(F)OF~(X2)) 
X2nF-~ ~ 0 

+ F~ tr(~a(F)O~a(F)~(X3))<=O. 
X 3 n F ±  ~= 0 

By condit ion (3.9), the only non-vanishing terms in the last three sums on the 
1.s. of  this inequali ty fulfill the condit ions XICY~r(Y+a),  X2CY+awrY  and 
X 3 C (Y+ a)wr(Y+ a). Moreove r  Xf~F+ 4 = 0, j = 1, 2, 3. Applying now condit ion 
(3.17) we see that  these three sums thend to 0 as a tends to oo in a direction for 
which F+ + a C F+, for all a of this direction. Thus 

tr(FOF~(X))<O, 
Xc~F~= # 0 

for all F~ C(KY). Since Yis an arbi t rary,  bounded  set in F+, this proves  Theorem 
3.5(2). 

3) LetPbeanorthogonalproject iononL2+=L2(KA+,j~ A+ d~(xj)). Then the 

distr ibution kernel of  P, P(x+, y+), is a weak limit of  functions of  the form 

~7~k(X+)~Uk(y+), where ~k~L2+, f o r a l l k .  
k 

This observat ion combined  with the spectral  theorem for negative, (resp. positive) 
bounded  opera tors  and  the relation tPk(O,y_)= (O~k)(y_) clearly proves  Theo rem 
3.5(3). [ ]  

As an appl icat ion of this general theory  we consider a classical spin system 
with m a n y  body  interactions. The classical spin at site i is denoted % and a x 

= I-[ °-i- The expectat ion tr is chosen such that  tr(o-x)= 0 and t r ( a~ )>  0, for all non-  
ieX 

empty  X. The interact ion ~ is given by 

~b :X ~ - Jxax, (3.19) 

where J = {Jx} is a family of real numbers  indexed by the bounded  subsets of  Z~. 
The interact ion ~ is t ranslat ion invar iant  if Jx +~ = Jx, for all a E Z~, and reflection 
covariant ,  see (3.14), if Jx =J~x, for all X C F+. 

Example. Ising model  with mult i-spin interactions. 

Definition. We say that  J is RP if and only if 

~xZ~Jx~>=o, (3.2o) 
X,  Y c A +  

for arbi t rary,  finite sequences {Zx}xcr+ of complex numbers .  

tr(GOG4~(X))<O, i.e. 
X n F e  t ¢ 
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Corollary 3.6. 1) Let • be given by (3.19). Then q~ is CRN if and only if J is RP. 
2) The family of all RP J's forms a convex, multiplicative cone. 

Proof 1) It is not hard to see that if J is RP then q~, given by (3.19), is RN, thus 
CRN. Conversely, if • is CRN then, for an arbitrary function F of {o-j}j~r+ with 
tr ( f )  = 0 

Jx~ry tr (Fax)tr(f ay) >O. (3.21) 
X, YcF+ 

Now choose F = ~ 5xax, where Zx = zxtr (a2) - 1, and {Zx}xcr, is a finite sequence 
of complex numbers. Then 

tr (F) = ~ 5 x tr (ax) = O, 

and 

tr (Fax) = ~ ~rtr (arax) = ~ ~rtr (a2~x)tr (arAX) = ~xtr (a 2) = Zx, (3.22) 
Y Y 

SO 

Jx.~rtr(Fax)tr(Far)= ~ -ZxZyJx~y, 
X, YcF+ X, YcF+ 

and, by (3.21) and (3.22), this is non-negative. Since {Zx} is arbitrary, it follows that 
J is RP. 

2) Convexity is obvious. Given J and J', both RP, we define J" by 

f r  _ ! 

Jx - Jx" Jx, for all X.  

By Schur's theorem J~ is then also RP. [] 
Remark. There are plenty of RP J's with the property that Jx+O, for subsets X 
containing an arbitrarly large number of sites. (As an excercise we recommend that 
the reader construct some explicit examples of this type.) As a largely open 
problem we propose to investigate the detailed geometric properties of the cone of 
RN interaction within one of the standard Banach spaces of interactions, [39]. 

Theorem 3.5 and Corollary 3.6 provide a rather satisfactory, general theory of 
RP Gibbs states for classical systems. See also [6]. In the quantum case no 
complete characterization of RP Gibbs states is available, yet. 

The reader can check that Theorem 3.5/Corollary 3.6 includes results in 
Proposition 3.3 and its consequences via Theorem 2.1 as a special case. In 
particular, the following should be noted. In Proposition 3.3, we assumed that H 
has the form (3.2). This form was chosen so that the Gibbs state ( ')~H is RP for all 
ft. If, instead, one starts with the apparently weaker requirement that ( ')pH is RP 
for all fl, then Theorem 3.5.3) tells us that H has to be of the form (3.2). 

Example. Consider a two-dimensional Ising model with 2, 3, and 4 body 
interactions. Let 

X = o ( o , o ) O ( o ,  1)o(1 ,1)o(1 ,o  ) , 

Y-- a(o, 0)(7(1,0)[G(1,1) Aw 0-(0, 1)] , 

Z = a(0  ' o)a(1,1)  - 
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Let - H =  ~ z [ , J X + K Y + L Z ]  where J, K, L are numbers  and % represents 
aeA 

t ranslation by a unit. H will be RN with reflection about  the plane i 1 = 1/2 if 
K 2 = J L  and J , L > 0 .  To see this, note  that in this case - H  has the form 
B + O B + ~ C i O C ~ ,  where C~a(1,0)o(1,1)-~/~a(1.0) and hence COC=~ '~X +e f lY  

i 
+ f i z z ] ,  and the sum on i is over translations in the plane i 1 = 1/2. 

4. Chessboard Estimates and Infrared Domination 

In this section, we review, systematize and extend the basic methods  of [10, 4, 14, 
9] which are based on the use of RP about  a large number  of planes. For  this 
reason, we will have to work with periodic bounda'ry conditions or directly in 
infinite volume. We begin by describing "chessboard estimates", then ment ion the 
way these can be used in connect ion with a Peierls argument,  and finally discuss 
the method  of infrared bounds. 

Theorem 4.1. (Abstract Chessboard Estimates [-9]). Let  9,10 be a real vector space, 
let r :9,Io~9.I o be a real linear map with r 2 = 1  and let F(al,  ...,a2n ) be a complex- 
valued multilinear map obeying" 

F(al, . .., a2, ) = F(a2, . .., agn , al) (4.1) 

and 
IF(aa, ..., a n, b,, ..., bl)l 2 

<F(a l , . . . ,  an, ra,, . . . ,  ral)F(bl , . . . ,  bn, rbn,..., rbl). (4.2) 

Then Ilall - IF(a ,  ra, a,. . . ,  ra)l ~/2" is a semi-norm and 

2n 

IF(aD..., a2,)J < [ I  I[aiH • (4.3) 
i=1  

Remarks. 1. In the example of 2n spins on a line, one should think of 9,10 as 

f u n c t i ° n s ° f a s p i n a t a s i n g l e s i t e ' a n d F ( a l  . . . .  'a2")=(i=-n+lFI ai+n(a~));r(a)=a(°r 

a if we take complex valued functions) so that  (4.1) is true if periodic boundary  
conditions are used and (4.2) is an expression of RP. 

2. The statement and proof  are pat terned on [9]. For  a discussion of its field 
theory forebears see [43]. For  applications to H61der's inequality for matrices, see 
[-6]. 

3. It is a worthwhile exercise to prove this directly for the case 2n =4,  see 
[-6, 43]. 

4. By (4.2) the F(a~,...,an, ran,...,ra~) are either all > 0  or all <0.  We can 
suppose the former without  loss. 

Proof  We first prove (4.3) and then it follows that  rl" II is a semi-norm, since (4.3) 
implies the triangle inequality. Let  a~, ..., azn be given and suppose that  II aill :t: 0 for 
all i. Let bp . . . ,  bz, be any 2n elements each of which is either an ai or an r(ai). Let 

9(bp ..., b 2 , ) - F ( b p . . . ,  b2n) II bill 
i 



20 J. Fr/Shlich et al. 

and let g o = m a x  Lg(bi)l as the b i run through the (4n) 2" possibilities. Among all 
choices with [g(b~)l=go, pick one with the longest string of the form a¢, r(ai), 
a~, ...,r(ai) for bl, ...,b2v Since (4.1)implies that  IIr(a~)ll = [la~H, (4.2) shows that  g 
obeys the same Schwarz inequality as F. Thus, if I9(b~, ..., b2,)l =9o, we must  have 
that  I9(b~,..., b,,, rb,,,..., rb~)] =go. I f2 / i s  not  2n in the above choice, let b'l,..., b~, be 
a cyclic permuta t ion  of bp . . . ,  b~, with % r(ai), ..., a i, r(ai) occuring as b',_~,..., b', 
w h e r e j = n -  1 if 2 l > n  and otherwisej  = 2 / -  1. But then bl, . . . ,b,,  rb , , . . . , rb  1 has a 
string of the form a i, r(ai) . . . .  of length 2j + 2. It follows that go = I9(ai, r(al),..., r(a~))] 
for some a~. But such a 9 is always 1 so 9o < 1. This implies (4.3) if each [lail[ ~=0. 

If some II aill = 0, we claim that  F(a~)= 0. For,  if not, let b~ . . . .  , b2, be a sequence 
with some bj = a~ so that  the longest string a~, r(a~),..., r(a~) occurs consistent with 
F(b~)+O. As above bp . . . , b2 ,  must be a i, r(ai),...,r(a~) so there is a 
contradiction.  [ ]  

Typical  of the explicit versions of Theorem 4.1 are the following : 

Theorem 4.2. Let A be a rectangular subset of  7/~ with sides 2n~ x ... x2n~ 
(nt, ..., n~ positive integers). Let  ( . )  be an expectation value for a classical spin 
system which is invariant under translations mod ni (periodic boundary conditions) 
and which is R P  with respect to (untwisted) reflections (modni) in all planes 
perpendicular to coordinate axes runnin 9 mid-way between neighboring points of A. 
Then for any functions { G~}~ A : 

(4.4) 

Proof. Let 9,1 o be the functions of spins {G}~A;~ = 1 and let 

2nl / 
F(al , . . . ,a2 , , )=  1~ aj({G},,=j) • 

j= l  

Using the assumed RP and Theorem 4.1, and setting a j=  I~ 
obtain ~2 ..... ~ 

G j ,  ~2, . . . ,  ~v,  we 

Repeating the argument  in the other v - 1  directions, (4.4) results. [ ]  
Now let j be an element of the dual latt ice,/] ,  to A, i.e. j is the center of a unit 

cube, Aj contained in A. Let  F be a function of the spins in A. We say that  F e ~  i if 
and only if F is only a function of spins at the corners of d~. Given such an F we set 

where F(i) is F for i= j  and for nearest neighbor cubes Ai and A~,, f(~)= 0u,[F(i)J with 
0,, untwisted reflection in the plane separating A~ and Ai,. Thus, if i - j  has all even 
components ,  then F(0 is a translate of F and if i - j  has v o odd components  F is a 
translate of F reflected in v o or thogonal  planes. The proof  of Theorem 4.2 extends 
t o '  
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Theorem 4.3. I f  A is the set in Theorem 4.2, <. > is translation invariant and RP with 
respect to planes perpendicular to the coordinate axes but through the sites then 

f o r  F i E X  i. 

There are clearly quantum variants and variants with various oblique planes. 
Except for some discussion of the face centered cubic lattice at the close of this 
section we do not make these explicit. Reflections at oblique planes have also been 
used in [41, 171. 

To explain schematically the Peierls-chessboard method, consider a classical 
spin system and break up the configuration space K into pieces K 1 • ... t2K m. (For 
example, if K is finite, each Kj could be a single point. For the anisotropic classical 
Heisenberg model, K = unit sphere, and K 1 and K 2 are the two "polar caps" of the 
sphere, and K 3 is the temperate and tropical regions.) Let P~) be the function 
which is 1 (resp. 0) if a~ is in Kj (resp. not in Kj). Let <A>~,A 
=<Ae-~nA)o/<e-~m~)o where f i>0  and H a is the Hamiltonian for the 
lattice A. Let < ")~,oo be some weak-, limit point of < ")~,a as A~TZ ~. As we will 
describe, the Peierls-chessboard method typically allows one to show that for i4=j, 
<p(0pu)\ ~ a  f i~  uniformly in A, ~, 7- Suppose that we also know that for ~ ~,,, / f l ,A v a s  oo  

i=1,2, lira <P~0)~,~o>0. Then for large fl, \~ct/P(1)p(2)\--?,/fl, -- </O(1)>fl, /p(2)\ co ooX 7 / f l ,  oo 
f l~cc  

cannot go to zero in the average, which would be required if ( . )~  oo were ergodic, 
so there are two or more phases, and <p(2)>~, ~p(1)_ <p(~)>p, ~p[~) will be a long 
range order parameter. Actually one can say more; namely if lira {P(~)>p, oo >0  for 

i=  1,.,., k there will be, for fl large, at least k phases; for, if < >A were a convex 
combination of k -  1 or fewer ergodic states, then 

aij----lim [A[ 2 Z /D(i)p(J)\  
A ~oo a,p~A 

would exist and would be a matrix of rank at most k -  1 with ~, aij = <P(f>. Under 
J 

the given supposition it has rank at least k for fl large. See also [9, 5J. 
How does one show that (p(0pu),> is small for j 4 = i? Let F be a contour in the \ - - ~ - - y  / 

elementary Peierls argument (see e.g. [39, 16]) sense. Let p~(F)=probability that 
each spin immediately inside Y is in K~ and each spin outside F is not in K v 
Suppose that p~(F)< e-c@lrl with C-~ oo as fi-~ oo. Then, by the usual argument 
for cubes A: 

<e(i)p(J)~)< 2 p,(r)+ ~ p,(r)+ F, p~(r) 
F around ct F around fl F wrapped 

around IAI 

< £ (JFl+l)Nealrle -c(~)lrl 
Irl = 2~ 

for suitable d and N independent of fl (but dependent on v). Thus to show that 
(i) (j) <P~ P~ > is small uniformly in c~, 7, and A as fi--* 0% we only need to show that 

(/) (j~) = [ I  P~ [ I  P~ ~ <e-c°@lrl (4.5) 
a i u s i d e F  aou t s ideF  / 
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for any choice of the j ] s  (all distinct from i), for then 

( m -  1)lrle - c°(~)lrl = e -c(tj)lrl . 

Finally (4.5) is proven by using chessboard estimates, either directly in the form of 
Theorem 4.2 or an extended form of Theorem 4.2 which exploits a two site basic 
element. The net result is that the left side of (4.5) is dominated by the product of 
]A] terms (or in the two site picture of 111/2 terms) most of which are 1. But 0(IF[) of 
them are of the form f - ( [ I  P(f=)~ 1/IAI w h e r e  c~k~ is a function that has to be 

\¢te A / 
worked out in each case. Typically f can be easily estimated to be small by 
energetic considerations. See [14, 9, 5, 19] and Paper II for explicit examples. 

Of course, that leaves the questions of showing that 

lim <P(1)>A:o e > 0  for several i's. 

We discuss this in detail in Paper II, but note that this often follows from 
symmetry, or by applying the chessboard estimate to obtain an upper bound on 
/k~,i P(f))a= ~ which is small, see also [9, 5, 19]. 

Thus far, Peierls-type arguments have not been applicable in cases where a 
phase transition is accompanied by a spontaneously broken continuous symmetry. 
The only tool available is that invented in [10] : in the notation of Example 1 of § 3, 
let a be a function on K, and let a~ be the function a on the ~th copy of K. For  A 
a cube, let p be in A*, the Fourier dual for A ( = i st Brillouin zone ; = dual group to 
A viewed as a torus) and define 

l ~ ip~ 
(Tp -- ~ ol~A C 0"~ 

~A(p) = ( ~ , , e _ , ) , . A .  

Suppose that one can prove that for p 4 = 0" 

aA(P) < 1/2flEp (4.6) 

for Ep a function satisfying 

(2~z) -~ ~ E ;  ld~p - C o < oo (4.7) 
Ipil<~ 

i= l , . . . , v  

and that for fl>flo 

( o - 2 ) > D > 0 .  (4.8) 

Then (following the version of the argument in [4]) for f l>max(flo, f l l  ) where 
fil = Co/2D, we will have (assuming some regularity on Ep) 

lim [IAl-~gA(p=O)] >0  (4.9) 

since 

IAl-~gA(p=-O)=lAI -~ F, 0A(P)-I/I  -~ Y, 0A(P) 
pEA* p4=O 

> (o-2)A-[Al-~ ~, 1~2flEe, (4.10) 
p4-0 



Phase Transitions and Reflection Positivity. I 23 

where the first sum is controlled by a Plancherel formula, and the second by (4.6). 
With minimal regularity assumptions on E, 

lim (4.10) = (a~)  - (2fl) -~ Co 
A~oo 

so (4.9) holds. By an argument of Griffiths (see e.g. I-4]), (4.9) implies a first order 
phase transition with ~r~ as order parameter. 

In certain quantum cases (where ~ a~ and H do not commute / and, as we 
\ affA / 

shall see below, for some other than simple, cubic lattices like the face centered 
cubic lattices, it is necessary or more convenient to rely not on (4.9) but rather on a 
direct infinite volume argument which is explained in detail in [5, 6, 4]. 

We note that sometimes (4.8) follows by a symmetry argument (e.g. in the 
classical Heisenberg model) but that in general one can try to use a chessboard 
argument to show, e.g. that Prob(a 2 < 2D)___< 1/2 for fl__>rio. 

The only known way of proving (4.6) is via a "Gaussian domination" or 
related estimate : Let K be a compact subset of 1R N and let d O be a measure on K. 
Let or(l), ..., a (N~ be the coordinate functions on K. Suppose that H has the form 

1 
H = = ~ J~7(a~- ~r~) 2 (each pair counted once) 

and define for {h~}~,~ real, 

Z(h~,) = (exp [ - 1  
2 ~.7 

where (.)o=~.rcd~(o-~) as usual. We claim that the two conditions" J~,~=J~ 
= J~_ ~ and 

Z(h~,7) < Z(O) (Gaussian domination) (4.11) 

imply (4.6) with 

1 

ot~A 

(4.12) 

Before proving this, we note that one point of the Definition (3.5) is that it makes 
Ep independent of A for pEA*. 

Since the argument to go from (4.11) to (4.6) is only a mild extension of that in 

[10], we only sketch the details. By translation invariance, ~2Z(2h~r)lx=o =0  so 

d 2 
that (4.11) implies that d~ ~ Z(2h~r)~ = o ~ 0. This is equivalent to" 

(4.13) 
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(4.13) only holds apriori for real h~v but it extends to complex h. Now take 
h~ 7 =(eip.~e~p.~)lAj-1/2 and find that (4.13) implies,(4.8) with Ep given by (4.12). 
We summarize : 

Theorem 4.4. The Gaussian domination bound Z(h~)<=Z(O) together with 
d~7 = d~- ~, o = d~- ~, o implies the infrared bound g~(p) <= (2flEp)- 1 with 

1 
- -  e ) d a o "  Ep= ~ ~ (1 ip . . . .  

aeA 

We next turn to a detailed investigation of (4.11). 

Proposition 4.5. Suppose that Ja~>O. Then it suffices to check (4.11) for h~,~ of the 
form h a -  h~. 

Proof. Since J~  >0, Z--*0 as any h ~  oo and thus Z takes its maximum at some 
finite point. But OZ/~ha~ = 0 implies that 

J~,(ha,  - < G -  ~ , > )  = 0 

for the obvious expectation. Thus, letting h , - ( G > ,  we see that ha~ = h a -  h~ for 
those a7 with J ~  @ 0. Z is independent of the other h~ so we can take h~.~ = h~ - h~ 
for such (~7) without changing Z;  i.e. Z takes its maximum value at a point 
ha~=h a-h~. [] 

Remark. The proof of Theorem 4.4 only used (4.11) for the special case h:,y = h a - h~ 
so that Proposition 4.5 is, at this stage, primarily of academic interest. Indeed, 
there are J~  not all non-negative so that (4.11) holds for h~v of the form h a -  h~, and 
thus (4.6) holds, even though for such Y's, Z ~  oo for a suitable choice of h~, not of 
the form h~-h  7. 

It is an important and interesting open question to characterize the fer- 
romagnetic interactions for which the spin 1/2 Ising model obeys Gaussian 
domination. We only have partial results on this question relying on reflection 
positivity. We begin with some examples which delimit the class and, in particular, 
demonstrate the falseness of the apriori attractive conjecture that Gaussian 
domination holds for all ferromagnets : 

Example 1. Consider two spins, one o-1, with values _+ 1 and the other, 0- 2 with 
values _+2, all values having equal apriori weight. Then (e -a(~-°~-h}'-> has its 
maximum near h=  _+1 as J--,oo. This shows that equality of the single spin 
distributions is essential for Gaussian domination in general (but see Examples 5 
and 6). 

Example 2. Let 0.1 = --- 1, 0.2 = + 1, then 

1 y h  2 Y 2 h z Z (h)=-~[e-  + e -  ( - ) ] 

has its maximum near h = 1 as J ~ 0 .  The given distribution for 0- 2 can be thought 
of as that of an Ising spin in an intense positive magnetic field. The failure of RP in 
this case shows that even equality of the magnetic fields at each point is also 
essential for Gaussian domination. 
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Example 3. (Mean field model.) This is the most involved but also the 
most significant of the examples we present. Z(h)<Z(O) implies that 

M ~ -  @h~oh# h==O is positive semi-definite. For  a spin 1/2 model with 

1 2 H = g ~,~ J~,(a,-- 6,) 

a simple calculation shows that (set J~  = O) 

Take n +  1 spins, % ... .  , % with only J0~q=0, all equal to a,. Then 

- ~, In + n + (n z - n)(aiaj> - 2n2@roCri>]. m o  0 ~ I/l°~n 2 2 

Take en = 1 / I f  n, so that H =  - %  o-~ +const  and thus, as n~oo ,  a coupling 

of a Gaussian and a spin 1/2 spin. Thus as n--+ oo 

1 1 " 2 

for finite non-zero, c and d. Thus 

Moo= - n -  1 + 2c ] ~  +]//n +0(1) 

is negative for n large and therefore M~ is not positive definite for n large. 
Our next example, while a trivial extension of RP ideas illustrates that 

Gaussian domination can hold in some cases where RP fails: 

Example 4. Let ( .  > be an expectation for a string of 6n spins with third neighbor 
ferromagnetic coupling. Then RP fails both for reflections about the midpoint of 
bonds and for reflections on sites. Since Z(h) is a product of three nearest neighbor 
2n-point Z's, Gaussian domination for that case yields it for the case at hand. 

Our final three examples show that special features of the J's and/or the single 
spin distributions can allow one to prove Gaussian domination without RP 
and/or translation invariance. We hasten to add that phase transitions will not 
occur in Examples 5-7. 

Example 5. Suppose that H = ~ J~#(a~-a#) 2 with J~# arbitrary positive numbers 
and that each single spin measures do~(a~) equals F=da= with F~ log concave and 
even, but not necessarily ~ independent. Since e-m"~-h=)l-]F ~ is a log concave 

function of {o-~, h=}, Z(h,) is log concave in h~ by a general theorem (see e.g. [1]). 
Since @Z/ah, = 0, all h~ = 0, by symmetry, log concavity implies that Z(h~)< Z(O). 
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Example 6. Suppose that H = J~a(a~- ao) 2 with J~a arbitrary positive numbers and 
that each single spin measure do~(a~) equals Ffla~ with F~ positive definite and real 
(hence even), but not necessarily e independent. Then 

Z(h~) = ~ e -m~-h~) [ l  [(.f eik~d#~(k~))da~] 

= ~ I-I d12(k~) eik~h~ ~ 1~ (da~eik~) e - n ( ~  
c~ c~ 

is positive definite in the h's since the Fourier transform of a Gaussian is a 
Gaussian. In particular, Z(h~) takes its maximum value at h~=0 (in essence, the 
above calculation is proving that the convolution of positive definite functions is 
positive definite). 

Example 7. Consider an array of n spin 1/2 Ising spins, Sl , . . . , s  a on a line with 
arbitrary positive, nearest neighbor couplings, J12, J23, ..., J~l. Let T(J, h) be the 
two by two matrix 

e_l/2Jh2 e-1/2J(2-h)2~ 

e -  1 /2J (2  +h)  2 e -  1/2Jh2 ) 

i.e. if we label matrices as , then T(J, h ) ~  = exp - a 2 - h) 2 . 
\a_ + a_ -~ 

We want to note two critical facts about these matrices: first T(J,O) is positive 
definite and T(J ,O)-I /2T(J ,h)T(J ,O)  -1/2 is a contraction in the norm [L(c~,fl)]l 
=(~2+fi2)l/2--this is proven in [10]. Secondly, the T(J,O) all commute, are 
positive definite and when diagonalized simultaneously their largest eigenvalues 

correspond to a common eigenvector--this follows by noting that ~ and 

h ( _  :)  are the eigenvectors, and the eigenvalue for the first eigenvector is always 

largest. Since Z(hl , . . .  , h,) = Tr(T(J  12, hz - hi) . . .  T(J,1, hi - h,)) we can write 

Z(h ~, .. . ,  h~) = Tr (A 1B 1... A,B,)  , 

where A i = T(J i _ 1,i, 0)1/2 T(Ji, i+ 1, 0) 1/2 (where Jo~ - J~ )  and B~ is a contraction, by 
the first fact noted above. Let /q(C),  ...,/1~(C) be the singular values of an m x m 
matrix [eigenvalues of (C* C) 1/2 ordered so that g~ >/~2 > - - > 0]. An inequality 
of Horn [21] (see Corollary II.4.1 of [15]) asserts that 

n ( q . . . q )  < 
i = 1  i = 1  

Thus, we have that 
2 

Z(h~, . . .  ,h~)<= ~ #i(A1 . . .  Bn) 
i = 1  

2 

<= ~ ~ti(A1)#i(A2) ... Izi(A~) 
i -1  

2 
= Y~ ~ , (A~  . . .  A~) = Z ( 0  . . . . .  0 ) ,  

i - 1  
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where we use the fact that pj(Bi)<l ,  since B i is a contraction, in the second 
inequality, and use the second noted fact in the equality that follows. 

To illustrate the close connection between chessboard estimates and Gaussian 
domination, we note" 

Theorem 4.6. Let  A be a 2n 1 x ... x 2n~ rectangle in ;g~. Let  J~y be a given on A so 

that the chessboard estimate (Theorem 4.1) holds for  ( . )  = Z -  1 ~. e-H("~) I ]  do(G) 
for  all do in IR n and ~A 

H =  1 Z J=7(G-a,,)2. 
2 c~4=y 

Then the Gaussian domination estimate Z(h~)< Z(O) holds for  arbitrary d~ and, in 
particular, g a(P) <= (2flEp)- 1 

Proof. By a limiting argument, we can suppose that dQ(a)= F(a)dNa with F > 0 on 
all of IR u. Then, if we define G~(cr) = F(~ + h~)/F(a) we have that 

Z(h~) = f e-H(~-h~) 1--[ dO(G) 
¢l 

where the inequality is a chessboard estimate and the last equality comes from 
H ( G - h ) = H ( G )  for constant h. [] 

Remark. Using the Dobrushin-Lanford-Ruelle equations one can prove Theorem 
4.6 directly in infinite volume for RP Gibbs states. 

The above argument has a defect : it does not obviously extend to the quantum 
case. 

Fortunately, one can use a version of the original argument given in [-10], 
based on Theorem 2.3 : Namely, in the case of 2n spins, Theorem 2.3 says that 

[Z(h_,+ 1, . . . ,  hn)[ 2 < Z(h-,,+ l . . . .  , h o, ho, h_ 1, . . . ,  h ,+ 1) 

• Z(h,, h,_ 1, .. . ,  hi, h i , - . . ,  h,) 

so that translation invariance and the argument in Theorem 4.1 show that 
maxJZ(hl) I occurs when all h's are equal. Since Z(h .. . .  ,h)=Z(0),  the maximum is 
Z(0). As of now, this is the most widely applicable proof  of Gaussian domination 
we know of. 

We remind the reader that in the quantum case there is one additional 
complication in that Gaussian domination does not lead to a bound on @ S ' - p )  
but rather on a "Duhamel two point function", (dr, d-_p). This problem and its 
resolution are discussed in [-4], for the case of nearest neighbor interactions. The 
present generalization is straight forward. 
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The argument based on Theorem 2.3 has an additional advantage, even in the 

- 1 2 , classical case. Suppose that H=~,~TJ~7(a~-a~)~ +H where ( ' ) n '  is RP and J 

/ / \ \  1 
obeys (3.3). If Z(h)=~exp-[2~J~'(a~-a'-h~+h')2+H'))o,,i ,  then, as above, 

Theorem 2.3 implies that Z(h~)< Z(O), and infrared bounds follow. We summarize 
with 

T h e o r e m  4.7. Let H have the form of Theorem 4.6 with J RP. Let H = H + H' with 
H' RX. Let Z(h~) = (exp(H(a~-  h~) + H')) o. Then Z(h~) < Z(O) and 9A(P) < (2fiEp)- 1 
with Ep depending on J~, as in Theorem 4.4. 

Finally, we want to mention a problem (and its resolution) that occurs for 
certain special models like the ones on face centered cubic lattices. The infinite 
volume lattice is reflection invariant about any plane which is the perpendic- 
ular bisector of a bond, but any finite volume cutoff will destroy many of these 
symmetries. The resolution is the following: Let ( . )  denote an infinite volume 
expectation and, given, {h~}~z~ with only finitely many non-zero h']s, let 

g(h~)=~exp(l~J~,[(a~-a,z)2-(a~-a,~-h~+h,~)2])). 

If we can show that Ig(h~)l < 1 for all h~, then by following the arguments in [10] 
one will get infinite volume infrared bounds and therefore long range order. To 
prove that Ig(h=)l < 1, one need only show that ( . )  has a kind of RP about each 
"bond" plane, i.e. that 

Ig(h~)[2 < g(h;)g~(h~) (4.14) 

where h'~ (resp h~) is obtained by taking h a on the left (resp. right) side of the plane 
and reflecting in the plane. Given (4.14) it is not hard to reduce the proof of 
[g(h~)l < 1 to showing that [g(h~)l 1/111-o 1 for a set of h'~'s constant at h o on a nice set 
A. But it is easy to see that [g(h~)[ <_-e ~l~al for such h's. (Instead one can use Theorem 
4.6 in infinite volume; see e.g. [6]). 

We can see two ways of proving (4.14). In cases where correlation inequalities 
are available, one can prove (4.14) for a given plane by taking a suitable sequence 
of " +  boundary condition states" where the given plane cuts A exactly in half. 
Since the limit is independent of the sequence, (4.14) holds for the + boundary 
condition state. When correlation inequalities are not available, one can at least 
prove there are multiple phases; for, if not, then all periodic states converge to a 
unique state which would then obey (4.14). If (a2)~, o~ has a lower bound that is 
uniform in fi one would obtain long range order: a contradiction! 

5. L o n g  R a n g e  M o d e l s  

In [3], Dyson showed that a spin 1/2 Ising model with J(n) = (1 + Inl)  - =  has a phase 
transition if 1 < c~ < 2 (~ > 1 is needed for sensible thermodynamics), and did not if 
2 < e. His method works for any classical model with correlation inequalities such 
as the plane rotor model [13]. Using similar ideas, Kunz and Pfister [26] treated 
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the two dimensional plane rotor model with J(n)=(1 +In[) -~, proving a phase 
transition if 2 < c~ < 4. 

In this section, we illustrate the general methods of this paper by recovering 
these results (many more examples are presented in [7, 8]) and extending them in 
several directions : a) cases where correlation inequalities are unknown such as the 
classical Heisenberg model can be accomodated ; b) logarithmic improvements in 
Dyson's conditions are given; c) certain quantum models are accomodated. 

We give details in the one dimensional classical case and then treat two 
dimensions and quantum models in a few remarks. When correlation inequalities 
of Griffiths type are available, improvements of our results of the following sort are 
possible • If a phase transition is known for an RP J0 which is also positive, it holds 
for any larger J even if the larger J is not RP. We suppose in all cases that 
~la(n) l  < o o  

We begin our analysis with: 

Theorem 5.1. Let K be a compact subset of IR N and let d o be a measure different 
from 6(c0, invariant under ~ - c r .  Let - f iH=f l~ ,J( i - j )~r i .0 .  J and let 

i>j  

E; = ~ J(n)(l - cos pn). I f  0 < J(n) and J is RP, and if g -= S dp/Ev < o% then there is 
n=l  

a first order phase transition with c~ as order parameter, at some sufficiently large, 
finite ft. 

Theorem 5.2. Let J ( i - j )  be RP. Then the classical isotropic Heisenber 9 model has a 
first order phase transition for fl large if and only if g--~dp/Ep < co. 

Proofs. The absence of a first order phase transition (asserted in Theorem 5.2) if 
g = oo follows from a slight extension of an argument of Mermin [29], so we 
concentrate on the existence question. Since g < ~ ,  this follows, according to the 
strategy of §4, if we show that (6pd-_p)wrioa~ c < 1~2fiE; and lim 2 ~ ([0.1)p, oo >0. J 

being RP implies that (')periodic is RP by Theorems 2.1 and 3.4. The method of §4 
then yields the infrared bounds. In the case of Theorem 5.2, (Io-I 2)  ~ = 1 while in the 
case of Theorem 5.1, choose r 0 > 0  so that ~ dQ>0 and use a chessboard 

lal>~0 
estimate to see that (( a <r0))  ~ oo~0, as f l~oo.  The right side of this chessboard 
estimate is controlled by noting that RP implies that the ground state with the 
restriction la~l __< r o has all spins equal, and then by noting that the energy when all 
a ~ = r  is strictly monotone increasing in Irl, since J(n)>O. [] 

These theorems reduce the study of the long range one dimensional case to the 
study of two questions : 1) When is J RP ? 2) When is ~ E~ ~ dp < oc. In studying the 
first question the following is useful: 

Definition. A distribution F on IW\{0} is called OS positive (for Osterwalder- 
Schrader [30]) if and only if F is continuous and 

F(x - y)g(x)O(y)dxdy > 0 (5.1) 

for all g~C~(x I >0) where g(Yl, ... ,Y~)=g(-  Ya,Y2, ,.. ,Y~). 
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Theorem 5.3. a) I f  F is an OS positive distribution on R v then J, defined on 
{(n 1 . . . .  , n~)ln 1 >0} by 

J (n)=F(nl ,  ... ,n~) ; n 1 >0 ,  

is RP. 
b) I f  J1 and dz are R P  on {n I >0} C2g ~, then so is JaJ2. 

c) I f  d(n) = ~ e-"Ydg(y), (n > 1), then J is R P  on 7Z 1. 
0 

Proof. a) In (5.1), let g approach a sum of delta functions. This shows at once that d 
is RP. 

b) Follows from the fact (Schur's theorem) that if aij and bij are positive definite 
matrices, so is ci; with cCj = a~;blj 

c) A restatement of Proposition 3.2; it also follows from a) and well-known 
structure theorems for OS positive distributions. [] 

Proposition 5.4. The following functions on Y, are R P  in the region n > 1 : 

a) J(n) = n -~ , b) J(n) = (1 + n)-~ 

for  all ~ > O. 

Proof. a) ~ e - " Y y ~ - l d y = F ( e ) n  -~ [use Theorem 5.3c]; 
0 

b) ~e-"Ye  Y y ~ - i d y = F ( ~ ) ( n + l )  -~ [use Theorem 5.3c]. [] 
0 

As for the second question, we note: 

Theorem 5.5. Let  Ep= ~ J(n)(1-cospn) with J(n)>=O. Then 
n = l  

a) f f  

b) I f  

~. n - 3 j ( n ) - l  <oo, then ~ d p E ; l  <oo. 
n = l  

lira sup (logN) - t nJ(n) < o% then ~ dpE;  1 = oo. 
N ~  [1 J 

Remarks. 1. The condition in a) is slightly weaker than the one that Dyson [3] 
needs for a phase transition. The condition in b) is slightly weaker than the one 
that Dyson [-3] needs to prove that there is no phase transition in the Ising model ; 
b) will only imply the absence of continuous symmetry breaking. This is as it must 
be if the n-2 Ising model has a phase transition (as is believed), since J(n)= n-2  
obeys the conditions of b). 

2. b) includes the case J(n)= n-2. This case can be done by explicit calculation 
of Ep (contained in the tables, e.g. (516) of [24]) or by noting that E v = f ( O ) - f ( p )  

or? 

with f ( p ) =  ~ n-2 cospn obeying f ' ( p ) =  n6(p) -1  with periodic boundary condi- 
1 L 

tions at _ n. One sees that E(p)~  IP[ in that case. 
3. If J (n )~  n -~ at infinity, we are in case (a) if c~ < 2 and in case b) if e >2. 

Actually with regard to a) one cannot improve even logs, since for J(n) 
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~ n  2(logn)... (log,,n) I +~, then E v ~ [p[(logp)... (1Ogmp) 1 +". For b), improvements 
are presumably possible: with little change (logN) 1 can be replaced by 
[(logN)(log2)(N)... 1ogre(N) ] - 1 which allows only n-  2(log2n) ... (log,,n) 1 +~. 

4. If J(n)= ~ 2 I"1 ld0, then Ev-= J(n)(1-cospn) increases when do 
1 n - - 1  

increases. 
This remark allows one to obtain results for J's which are RP but not positive 

from those in this theorem. 
oo 

Proof. a) We need a lower bound on Ev= ~ J(n)(1- cosnp). For Ix[ <~, (1-cosx)  
1 

--~z~ x2 so that > 
rc ~ 

[~/Iv]] 9 
Ep> ~ ~pZn;J(n), 

1 TC 

where Ix] = greatest integer less than x. Thus we need only show that 

f[~/Ipll l -  1 
°~==-SdP[ 2 p2nZJ(n)] <oo. 

0 k 1 J 

By the Schwarz inequality 

[rc/P] 2 = ( t ? l  1)2 

so that 

[~/p] 

0:< i dpp- 2[Tc/p] -2 Z (n2j(n)) -1 
o 1 

< n = p n 2  - - 1  

1 

since n2[n] -2 <([n] + 1)2]-n] -2 <4  for n >  1 and trip> 1 for O<p<~.  Finally we 
note that 

I t#p ]  o o  "~ln 

dp ~, (n2j(n))-i = Z (n2j(n)) -~ ~ dp 
0 1 n = l  0 

oo 
= g £ / ~ - 3 j -  1 . 

1 

b) We need an upper bound on Ep. Since (1-cosx)<[xl  we have that 

N 

Ep < Ipl ~ nJ(n) + 2 ~ J(n) 
1 N 
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J 

for any N. To estimate the second term, let K(])= ~ nJ(n) so that 
1 

M 

1 1 M 1 
= ~ K ( M ) -  ~ 2 7 K ( N -  1)+ ~ ( ~ T ) _ ~ ) K ( n -  1). 

Thus, if ~-K(M)--+O as M ~ o o ,  we have that 

,~° ~,  1 
K(n) . 

If K(n) < C log n, we see that 

Ev<C]p[logN + C N  -1 logN.  

Choosing N--  [-[p[- 1], we see that Ep < C[p[C log(]p] 1)), so that ~E; ldp = ~ .  [] 
By combining the previous results of this section we conclude that 

Theorem 5.6. I f  do#c~(p) is a measure on IR N symmetric under ~--*-~ and 
J(n) = n -~, then there is a first order phase transition for the one dimensional spin 
model when 1 < ~ < 2. 

Remark. If N = 1 (or if d o is anisotropic in a suitable sense) but d o is not even, there 
will be a phase transition in suitable external magnetic field when 1 <~ <2 ;  see 
El0] or [-7]. 

We describe the extensions in a series of remarks: 
A) In two dimensions, the functions p~- ~ have OS positive Fourier transforms 

for ~ > - 1 .  This follows from 

dm ~_ ~_~ ~ x~dx 
p 2 ~  m - P  x 2 + l  

0 0 

and the fact that (10 2 -t- m 2)-  1 has an OS positive Fourier transform (free Euclidean 
field [-30, 42]). Since x -~ ( 0 < # < 2 )  has a Fourier transform c p2-#, we see that 
[hi -~ is RP for 0 < f l < 2  by Theorem 5.3a). Then by Theorem ~.3b), we conclude 
that Inl -~ is RP for all/~>0. Calculations similar to those above show that in 2 
dimensions, ~dp/Ev<oo if ~ n-6J(n)-i<oo; a n d  for J(n)=n -4, a n  explicit 

n # 0  

calculation involving periodic Green's functions for - A  [-and the fact that 
A(r-Z)~r -4 at 00] shows that Ev~p210gp+O(p 2) at p=0 ,  so .[dp/Ev= cc in that 
case. We thus obtain" 

Theorem 5.7. I f  do+6(p) is a measure on IR N symmetric under a--*-a, and 
J(n)=n -~, then there is a first order phase transition for 2 < ~ < 4 ,  in the two- 
dimensional spin model. 
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This  resul t  is of  in te res t  on ly  in i s o t r o p i c  cases. 

B) I t  is easy to p r o v e  first o rde r  phase  t r ans i t i ons  in su i tab le  q u a n t u m  sys tems 
which  are  s i m u l t a n e o u s l y  real  by us ing  the  m e t h o d  of  [4].  In  o r d e r  for t ha t  

m e t h o d  to  be  app l i cab l e  one  m u s t  check  an  a lgeb ra i c  c o n d i t i o n ;  in p a r t i c u l a r  

s o m e  d o u b l e  c o m m u t a t o r  s h o u l d  n o t  be  large.  T h e r e  are  two  cases whe re  this 

c o n d i t i o n  is easy to  verify : in a n i s o t r o p i c  mode l s ,  such  as ~xax + ear% wi th  e < 1, 
the  d o u b l e  c o m m u t a t o r  is a lways  smal l  at  l ow  t empe ra tu r e s ,  a n d  in a classical  

l imit ,  l ike S ~ o e  in H e i s e n b e r g  mode l s ,  the  d o u b l e  c o m m u t a t o r  is small ,  for  S 

suff icient ly large,  [4].  W e  c o n c l u d e :  

T h e o r e m  5.8. Fix J(n)=n -~ for 1 <c~ < 2 .  Then the isotropic antiferromagnet with 
- H= ~ ( -  1)"-mJ([n-m[)S,,.S~ for quantum spins S, of spin S has a first order 

t l  ~= rn  

phase transition if S is sufficiently large (at some fl sufficiently large ). Moreover, for 
any e with 0 < e < l ,  the spin 1/2 model with - H = ~ J( ln-  ml)(S~,SX + eSr, S~) has a 

n ~ = m  

first order phase transition at some fl sufficiently large. 
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