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Abstract. 

This paper derives an upper bound for the speedup obtainable by any parallel branch-and-bound 
algorithm using the best-bound search strategy. We confirm that parallel branch-and-bound can 
achieve nearly linear, or even super-linear, speedup under the appropriate conditions. 
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1. Introduction 

Backtrack is a form of exhaustive search used to find an optimal solution to a 
problem. Branch-and-bound is a variant of backtrack that can take advantage 
of information about the optimality of partial solutions to avoid considering 
solutions that cannot be optimal. The enduring popularity of branch-and-bound 
algorithms is a testament to their usefulness. A sampling of the multitude of 
references in the literature indicates that branch-and-bound methods have been 
applied to computationally intensive problems in artificial intelligence [9] as 
well as in the solution of many NP-complete combinatorial optimization 
problems, including flow-shop and job-shop sequencing problems [4, 11, 12], 
traveling salesman problems [2, 7], general quadratic assignment problems [10], 
and integer programming problems [1]. The advent of VLSI technology has 
made possible the construction of large parallel computers. These computers 
can help satisfy the demands for higher performance that improvements in 
circuit speed alone cannot give. Thus, it is not surprising that work has been 
done to implement a branch-and-bound algorithm on a parallel computer. 
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Mohan [8] has paraltelized Little, Murty, Sweeney, and Karel's branch-and- 
bound algorithm [7] to solve the traveling salesman problem on the Cm* 
multiprocessor. His implementation exhibits good speedup, where speedup is 
defined to be the time required by the sequential algorithm to solve the problem 
divided by the time required by the parallel algorithm to solve the same 
problem. In fact, once architecture-dependent inefficiencies are removed, Mohan 
estimates that parallel branch-and-bound for the traveling salesman problem 
could exhibit nearly linear speedup; that is, the speedup could be nearly equal 
to the number of processors used. 

This paper derives an upper bound for the speedup obtainable by any parallel 
branch-and-bound algorithm using the best-bound search strategy. We confirm 
that parallel branch-and-bound can achieve nearly linear, or even super-linear, 
speedup under the appropriate conditions. 

Lai and Sahni [5] and Li and Wah [6] have also discussed parallel branch- 
and-bound algorithms. Our approach differs from theirs, however, in that it can 
be combined with experimental results from a problem domain to determine an 
upper bound for the expected speedup obtainable by executing a parallel form 
of the algorithm on a multiprocessor. 

2. Branch-and-Bound. 

We formally define branch-and-bound using the notation of Ibaraki [3]. Let 
P0 denote an optimization problem and f denote some objective function to be 
minimized. (Of course, branch-and-bound can also be used to maximize the 
value of some objective function.) The decomposition process applied to Po can 
be represented by a rooted tree ~ = (2,o~), where 2 ,  the set of nodes of ~,  
corresponds to the decomposed problems, and d °, the set of arcs of ~ ,  
corresponds to the decomposition process. The original problem P0 is the root 
of ~.  Given P~ and P~ ~ 2 ,  the arc (P~, Pj) ~ 8 if and only if Pj is generated from 
Pi by a decomposition. The set of terminal nodes of ~,  denoted ,Y-, are those 
partial problems which are solved without further decomposition. The level of 
P~ 6 ~,  denoted L(Pi), is the length of the path from Po to Pz in ~. Po has level 
0. Like Ibaraki, we assume that ~ is a finite tree. 

A branch-and-bound algorithm attempts to solve Po by examining a small 
number of elements in 2 .  A lower-bounding function g : 2 - - '  E w {oo} is 
calculated for each decomposed problem as it is created, where E represents the 
set of nonnegative real numbers. This lower bounding function g satisfies three 

conditions : 

(a) g(P~) <~ f(P~) 

(b) g(Pi) = f(P,) 

(c) g(Pj) >~ g(Pi) 

for P i e 2  

for PieY- 

if Pj is a child of P~ in ~. 
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At any point during the execution of a branch-and-bound algorithm there 

exists a set ~¢ of problems that have been generated but not yet examined. The 
best-bound search strategy always chooses the problem from N with the 
smallest lower bound. In the case when two or more problems have the same 
smallest lower bound g', we assume that the best-bound search chooses problem 
Pie  d such that g(Pi) = g' and for all Pj ~ d ,  g(P~) = g' =~ L(Pj) <~ L(Pi), i.e., 
from the problems with the smallest lower bound, it chooses one that is as deep 
as any other in the search tree. The first solution found is an optimal sol0tion, 
because no unexamined problems have a smaller lower bound. Hence the 
algorithm can t e r m i n a t e -  the bound on the unexamined problems precludes 
them from being searched. 

We now introduce some notation of our own. Let ~ '  ~_ ~ denote the set of 
problems actually examined by a branch-and-bound algorithm using the best- 
bound strategy. Let P~ denote the problem in 3-- whose solution terminates 
the algorithm. Clearly P o E ~ '  and P ~ ' .  Note that g(P~)=  f (Po) .  Let 
U~ = {Pj]P~6~'  and L ( P j ) =  i}, for all i~> 0. Note that ~ ' =  W~=oU i. Let 
W~ = {PjIPj~ U~ and  g(Pj) < f(Po)}, for all i ~> 0. Let W = W~=oW ~. In other 
words, W is the set of subproblems whose lower bounds are less than the cost 
of the optimal solution. Note that U~- W~ is the set of subproblems at level i of 
the state space tree whose lower bounds are equal to the cost of the optimal 

solution. Let ui = lUll and wl = ]W~I. Let t(i) denote the amount of time needed 
to examine and decompose a subproblem at level i of the search tree ~ .  

The execution time of a branch-and-bound algorithm can be expressed in 
terms of ui and t(i). The execution time of a branch-and-bound algorithm using 
the best-bound search strategy is ~°= o uit(i ). 

Theorem 1 proves that if at some level of the state space tree a best-bound 
branch-and-bound algorithm examines a number of nodes whose lower bounds 
are equal to the cost of the optimal solution, and these nodes are closer to the 
root  of the state space tree than the node representing the optimal solution, 
then one of these nodes is an ancestor of the node representing the optimal 
solution. This theorem is used when we want to determine the minimum 
number of such nodes that must be examined. 

THEOREM 1. / f  0 ~ i < L(Ps) and u i > wi, then there exists Pj e U i -  W i such 
that P j is an ancestor of  Ps in ~ .  

PROOF BY CONTRADICTION. Assume there exists an i, 0 <~ i < L(P~), such that 

ui > w i, yet there is no node Pj ~ U i -  W~ that is an aneestor of Ps. This implies 
that there exists a node Pk ~ W~ that is the ancestor of Ps, and g(Pk) < g(Pj), for  
all P~ ~ U i - W i. Since the best-bound search strategy always chooses the active 
problem with the smallest lower bound,  and favors a problem deeper in the 
search tree when two active problems have the same lower bound, the problems 
in U,-W~ cannot be examined before Ps. Thus they are never examined, which 
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contradicts the definition of Ui. Therefore, the ancestor of P~ 
in the set of problems U i -  ~ .  

at level i must be 

3. Parallel Branch-and-Bound. 

In our analysis we assume that branch-and-bound is parallelized in the 
manner described by Mohan [8]. Let p denote the number of processors 
executing a parallel branch-and-bound algorithm using the best-bound search 
strategy. The list of active problems, arranged so that the unexamined nodes of 
the state space tree are available in nondecreasing order of their lower bounds, 
is accessible to all p processors. Each processor repeatedly removes the element 
with the smallest lower bound, decomposes the problem into several 
subproblems, determines the lower bounds of these subproblems, and inserts 
them into the list in such a way that the list of active elements remains sorted. 
Each processor must have exclusive possession of the list of active elements 
while performing insertions and deletions. However, since we are determining an 
upper bound for the speedup achievable, we assume that there is no processor 
contention for access to this list. The processors continue to iterate until no 
unexamined subprobtems have lower bounds less than f(Po). 

When execution of the algorithm begins with consideration of the original 
problem, there are not enough problems in d to keep all the processors busy 
(assuming that p > 1). In this case some of the processors are idle. Even when 
there are enough active problems to keep all the processors busy, only those 
processors that examine problems in ~ '  are doing useful work. Examining, 
decomposing, and finding lower bounds for problems in ~ -  ~ '  cannot lead to a 
solution, and only serves to increase the size of s¢ needlessly. 

Unlike the sequential algorithm, in which examination of Ps leads to the 
termination of the algorithm, the execution of the parallel algorithm may have to 
continue on beyond this point. This is because taking the p best problems one 
"iteration" (admittedly a loosely-defined concept in an asynchronous algorithm) 
is not the same as taking the single best problem p iterations. It is for this 
reason that the parallel algorithm may examine problems in .~ -N ' .  Problem P~ 
may actually be examined too soon; problems with smaller lower bounds may 
not yet have been generated. Thus the parallel algorithm must continue until 
there exist no problems with lower bounds less than f(Po) = g(P,). 

The fact that one processor iterating p times may not examine the same active 
problems as p processors iterating once could cause the speedup of the parallel 
algorithm to be greater than p. Consider the sequential algorithm for a moment. 
Until the problem Ps is examined, problems with lower bounds equal to g(Ps) 
may. be examined. However, once P~ has been examined, the problems in 
with lower bounds equal to g(P~) are never examined. Instead, the algorithm 
terminates. An analogous situation arises in the execution of the parallel 
algorithm. Once P, has been examined, only those subproblems with a smaller 
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Fig. 1. Problems generated by a sequential branch-and-bound algorithm. 
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lower bound are examined. Thus if there are a large number of problems in 
U - W ,  if there is enough work involved in examining the nodes of W plus P, 
and the ancestors of Ps (Theorem 1) to keep p processors busy, and if the 
structure of the subtrees in U - W  is such that the ancestors of Ps can be 
explored without bringing elements of U - W to the front of the active list, then 
the parallel algorithm could exhibit a faster than linear speedup. 

Assume that the tree in Fig. 1 represents the set of problems generated by a 
sequential branch-and-bound algorithm. ~ '  consists of the interior nodes of this 
tree and the solution node - the heavily outlined leaf node. The interior of each 
node is marked ' < ' ,  ' = ' ,  or ' > '  to indicate whether the lower bound of the 
corresponding problem is less than, equal to, or greater than the cost of the 
solution. The first problems to be encountered are those whose lower bounds 
are less than the solution's cost. After these problems have been examined, the 
sequential algorithm has a choice between the problems associated with the 
nodes marked a and b, since they have equal depth in the search tree. In this 
example the sequential algorithm chooses node b - otherwise, b would never be 
searched, and it would be a leaf node. Choices in favor of the left subtree cause 
nodes c and d to be leaf nodes. The parallel algorithm could end up doing much 
less work than the sequential algorithm, if it happens to choose node a rather 
than node b. In this case the subtree of which b is the root may never be 
searched, if there is enough work examining a's subtree to keep all the 
processors busy until the solution is discovered. Since it is possible for each of 
p processors to do less than 1/p of the work of the sequential algorithm, 
speedup may be greater than p. 

An expression for the minimum execution time for parallel branch-and-bound 
requires the definition of a few more terms. 

min{w i+l,ui} , 
Let vi = wi + 1, 

Wi, 

for 0 ~< i < L(P~) 
for i = L(P~) 
for i > L(P,) 

(Theorem 1) 
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) ' ~ , / f p > ~ v j f o r a l l  j~>0  
Let dl = [max {il0 < j < i ~ vj = p}, otherwise 

~'0, if d 1 = 
Let dz = (min {ilj > i ~ vj = p}, otherwise 

L e t d  3 = m i n { i l j > i ~ v j = 0 }  

Let d4 = min {ilj > i ~ uj = 0] 

d2-  1 

LetR t = ~ (vi-P)t(i) 
i=dl  

d3-- I 

L e t R 2 =  ~ (P-Vi)t(i). 
i=d2 

To elaborate, v i is the minimum number of nodes that the parallel algorithm 
examines at level i. Level dl is the first level in the search tree :d in which there 
are enough problems in ~ '  to keep all the processors busy. If dl = ~ ,  then 
there will never be enough useful work (problems in ~¢ c~ ~ ' )  to keep all the 
processors busy. Similarly, d 2 - 1  is the last level in the tree that contains more 
problems in ~ '  than p. From level dl through dz - t ,  there are more problems 
from ~ '  accumulating in d than can be removed by the processors. Once the 
search continues beyond level dz, the processors begin to catch up, and the 
number of problems in ~¢ ~ ~ '  begins to decline. The parallel algorithm may 
not have to examine any problems beyond d 3. The sequential algorithm does 
not examine any problems beyond level d 4. R 1 represents the backlog of work 
that accumulates when the search is between levels d~ and d 2. Rz represents the 
amount of time available to processors to eliminate the backlog while other 
processors examine problems from levels d2 and beyond. If R 1 ~< R2, then the 
parallel algorithm may terminate in as few as d3 + 1 "iterations", representing the 
time it takes to generate and explore the peoblems deepest in ~' .  

The minimum execution time of a parallel branch-and-bound algorithm using 

the best-bound search strategy is presented below. 

CASE 1: R 1 <~ R z (Figure 2). 
d 3 -  1 • Execution time >~ ~ i=o  tO). 

CASE2: R 1 > R 2 (Figure 3). 

Vdl-l t(i)+ (~d3 vit(i))/p. Execution time >~ /,i=o i=a~ 
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Fig. 2. R 1 ~< R 2. Backlog of unexamined subproblems is eliminated by time solution node is 
examined. 

The speedup of a parallel algorithm is the ratio between the excecution time 
of the sequential algorithm and the execution time of the parallel algorithm. The 
speedup of the parallel branch-and-bound algorithm is given below. 

CASE 1" RI ~ R2 

Speedup <<. (~'=o Uit(i))/ ~ o  t(i). 
CASE 2" R 1 ~> R 2 

Speedup ~ (~.~'=oUit(i))/(~=ol t(i)+(~a, v~t(i))/P) . 

0 

dl d.. L(P,)  d~ d 4 

Depth 

Fig. 3. R 1 > R 2. Backlog of unexamined subprobtems is not eliminated by time solution node is 
examined. Algorithm requires additional iterations to clear backlog. 
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THEOREM 2. Given p processors executing a parallel branch-and-bound 
algorithm using the best-bound search strategy, the optimum speedup > p only if 

R1 <- R2 :~ ~a~=oUit(i) > P~,~o t(i) 

d 4 ~ d  1 -- 1 R1 > R2 => Ei=o (ui-vi)t(i) > ~ i=o  (P-Vi)t(i). 
PROOF. Since we have an expression for the upper bound on speedup, we 

can determine those conditions that are necessary to speedup to be greater than 

p, given p processors. 

CASE 1: R~ ~<R 2 

d4  - d 3 2,=oU,t( , ) /Z,:ot( i )  > p 

Zd%o uit(i) > P Zi=o t(i) 

CASE 2: R1 > R2 

E~4=ouit(i)/(~=-olt(i)+(Edi~d, uit(i))/P)>p 
£~"= o u,t(i) > p ~a~*=o* t(i) + ~'= a, vlt(i) 

Z~ ~= o uit(i) > ~,~=o 1 (p - vl)t(i) + ~ o v,t(i) 

=~ Z ~  o uit(i ) > Z~=o 1 (p-v,) t ( i )+ Z~=o vit(i) (Since v, = 0 for all i > d3) 

~dl- i ~ai"--O (ui-v,)t(i) > ~i=0 (P-V,)t(i): 

4. Discussion. 

Given the formulas we have presented in this paper, a person can use 
measurements taken from the execution Of a sequential best-bound branch-and- 
bound algorithm operating in a particular problem domain to determine an 
upper bound on the expected speedup of a parallel branch-and-bound algorithm 
operating in the same domain. The speedup achievable is likely to vary from 
one problem domain to another. However, some general comments can be 

made. 
For  sufficiently large problems, it is unlikely that a small number of 

decompositions will produce a subprobtem with a lower bound greater than the 
cost of a solution. Thus if the decomposition of a single problem results in an 
average of k subproblems being generated, the first i levels of N are likely to 
contain nearly k i subproblems in ~ ' .  This implies that for a reasonable number 
of processors p, no processor should have to spend more than about logk p 
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iterations idling before it can begin examining problems in N'. Hence the 
parallelization of branch-and-bound using the best-bound search strategy has a 
high potential for achieving nearly linear speedup until the Amdahl Effect 
becomes a consideration (i.e., until there is not enough work for the number of 
available processors). Theorem 2 indicates that speedup is unlikely to exceed the 
number of processors used, unless there are a large number of subproblems with 
the same lower bound as the solution cost. 

An important consideration in the design of a branch-and-bound algorithm is 
how much time should be spent determining the lower bound on the solution of 
a problem. Finding a tight lower bound requires more computation time, but 
results in the examination of fewer nodes. Settling for a looser lower bound 
enables less time to be spent evaluating each node, at the cost of examining 
more problems. This consideration has a special significance in a parallel 
processing environment, because it is important that there always be enough 
unexamined subproblems to keep all the processors busy. However, since the 
number of unexamined nodes is likely to be an exponential function of the 
depth of the search (as discussed in the previous paragraph), the parallel 
algorithm designer should be careful not to swing too far toward the second 
extreme. 
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