
BIT 26 (t986), 35~-3

A N U P P E R B O U N D F O R T H E

S P E E D U P O F P A R A L L E L B E S T - B O U N D

B R A N C H - A N D - B O U N D A L G O R I T H M S t

MICHAEL J. QUINN and NARSINGH DEO

Department of Computer Science Computer Seienee Department
University of New Hampshire Washington State University
Durham, New Hampshire 03824 USA Pullman, Washington 99164 USA

Abstract.

This paper derives an upper bound for the speedup obtainable by any parallel branch-and-bound
algorithm using the best-bound search strategy. We confirm that parallel branch-and-bound can
achieve nearly linear, or even super-linear, speedup under the appropriate conditions.

CR Cate#ories: F.2.2 Nonnumericat Algorithms and Problems, G.2.2 Graph Theory.
Keywords and Phrases: branch-and-bound, parallel algorithm, traveling salesman problem.

1. Introduction

Backtrack is a form of exhaustive search used to find an optimal solution to a
problem. Branch-and-bound is a variant of backtrack that can take advantage
of information about the optimality of partial solutions to avoid considering
solutions that cannot be optimal. The enduring popularity of branch-and-bound
algorithms is a testament to their usefulness. A sampling of the multitude of
references in the literature indicates that branch-and-bound methods have been
applied to computationally intensive problems in artificial intelligence [9] as
well as in the solution of many NP-complete combinatorial optimization
problems, including flow-shop and job-shop sequencing problems [4, 11, 12],
traveling salesman problems [2, 7], general quadratic assignment problems [10],
and integer programming problems [1]. The advent of VLSI technology has
made possible the construction of large parallel computers. These computers
can help satisfy the demands for higher performance that improvements in
circuit speed alone cannot give. Thus, it is not surprising that work has been
done to implement a branch-and-bound algorithm on a parallel computer.

Received February 1985. Revised August 1985.
t This work was supported by U.S. Army Research Office grant DAAG29-82-K-0107.

36 MICHAEL J. QUINN AND NARSINGH DEO

Mohan [8] has paraltelized Little, Murty, Sweeney, and Karel's branch-and-
bound algorithm [7] to solve the traveling salesman problem on the Cm*
multiprocessor. His implementation exhibits good speedup, where speedup is
defined to be the time required by the sequential algorithm to solve the problem
divided by the time required by the parallel algorithm to solve the same
problem. In fact, once architecture-dependent inefficiencies are removed, Mohan
estimates that parallel branch-and-bound for the traveling salesman problem
could exhibit nearly linear speedup; that is, the speedup could be nearly equal
to the number of processors used.

This paper derives an upper bound for the speedup obtainable by any parallel
branch-and-bound algorithm using the best-bound search strategy. We confirm
that parallel branch-and-bound can achieve nearly linear, or even super-linear,
speedup under the appropriate conditions.

Lai and Sahni [5] and Li and Wah [6] have also discussed parallel branch-
and-bound algorithms. Our approach differs from theirs, however, in that it can
be combined with experimental results from a problem domain to determine an
upper bound for the expected speedup obtainable by executing a parallel form
of the algorithm on a multiprocessor.

2. Branch-and-Bound.

We formally define branch-and-bound using the notation of Ibaraki [3]. Let
P0 denote an optimization problem and f denote some objective function to be
minimized. (Of course, branch-and-bound can also be used to maximize the
value of some objective function.) The decomposition process applied to Po can
be represented by a rooted tree ~ = (2,o~), where 2 , the set of nodes of ~,
corresponds to the decomposed problems, and d °, the set of arcs of ~ ,
corresponds to the decomposition process. The original problem P0 is the root
of ~. Given P~ and P~ ~ 2 , the arc (P~, Pj) ~ 8 if and only if Pj is generated from
Pi by a decomposition. The set of terminal nodes of ~, denoted ,Y-, are those
partial problems which are solved without further decomposition. The level of
P~ 6 ~, denoted L(Pi), is the length of the path from Po to Pz in ~. Po has level
0. Like Ibaraki, we assume that ~ is a finite tree.

A branch-and-bound algorithm attempts to solve Po by examining a small
number of elements in 2 . A lower-bounding function g : 2 - - ' E w {oo} is
calculated for each decomposed problem as it is created, where E represents the
set of nonnegative real numbers. This lower bounding function g satisfies three

conditions :

(a) g(P~) <~ f(P~)

(b) g(Pi) = f(P,)

(c) g(Pj) >~ g(Pi)

for P i e 2

for PieY-

if Pj is a child of P~ in ~.

AN UPPER BOUND FOR THE. . . 37

At any point during the execution of a branch-and-bound algorithm there

exists a set ~¢ of problems that have been generated but not yet examined. The
best-bound search strategy always chooses the problem from N with the
smallest lower bound. In the case when two or more problems have the same
smallest lower bound g', we assume that the best-bound search chooses problem
Pie d such that g(Pi) = g' and for all Pj ~ d , g(P~) = g' =~ L(Pj) <~ L(Pi), i.e.,
from the problems with the smallest lower bound, it chooses one that is as deep
as any other in the search tree. The first solution found is an optimal sol0tion,
because no unexamined problems have a smaller lower bound. Hence the
algorithm can t e r m i n a t e - the bound on the unexamined problems precludes
them from being searched.

We now introduce some notation of our own. Let ~ ' ~_ ~ denote the set of
problems actually examined by a branch-and-bound algorithm using the best-
bound strategy. Let P~ denote the problem in 3-- whose solution terminates
the algorithm. Clearly P o E ~ ' and P ~ ' . Note that g(P~)= f (Po) . Let
U~ = {Pj]P~6~' and L (P j) = i}, for all i~> 0. Note that ~ ' = W~=oU i. Let
W~ = {PjIPj~ U~ and g(Pj) < f(Po)}, for all i ~> 0. Let W = W~=oW ~. In other
words, W is the set of subproblems whose lower bounds are less than the cost
of the optimal solution. Note that U~- W~ is the set of subproblems at level i of
the state space tree whose lower bounds are equal to the cost of the optimal

solution. Let ui = lUll and wl =]W~I. Let t(i) denote the amount of time needed
to examine and decompose a subproblem at level i of the search tree ~ .

The execution time of a branch-and-bound algorithm can be expressed in
terms of ui and t(i). The execution time of a branch-and-bound algorithm using
the best-bound search strategy is ~°= o uit(i).

Theorem 1 proves that if at some level of the state space tree a best-bound
branch-and-bound algorithm examines a number of nodes whose lower bounds
are equal to the cost of the optimal solution, and these nodes are closer to the
root of the state space tree than the node representing the optimal solution,
then one of these nodes is an ancestor of the node representing the optimal
solution. This theorem is used when we want to determine the minimum
number of such nodes that must be examined.

THEOREM 1. / f 0 ~ i < L(Ps) and u i > wi, then there exists Pj e U i - W i such
that P j is an ancestor of Ps in ~ .

PROOF BY CONTRADICTION. Assume there exists an i, 0 <~ i < L(P~), such that

ui > w i, yet there is no node Pj ~ U i - W~ that is an aneestor of Ps. This implies
that there exists a node Pk ~ W~ that is the ancestor of Ps, and g(Pk) < g(Pj), for
all P~ ~ U i - W i. Since the best-bound search strategy always chooses the active
problem with the smallest lower bound, and favors a problem deeper in the
search tree when two active problems have the same lower bound, the problems
in U,-W~ cannot be examined before Ps. Thus they are never examined, which

38 MICHAEL J. QUINN AND NAR•INGH DEO

contradicts the definition of Ui. Therefore, the ancestor of P~
in the set of problems U i - ~ .

at level i must be

3. Parallel Branch-and-Bound.

In our analysis we assume that branch-and-bound is parallelized in the
manner described by Mohan [8]. Let p denote the number of processors
executing a parallel branch-and-bound algorithm using the best-bound search
strategy. The list of active problems, arranged so that the unexamined nodes of
the state space tree are available in nondecreasing order of their lower bounds,
is accessible to all p processors. Each processor repeatedly removes the element
with the smallest lower bound, decomposes the problem into several
subproblems, determines the lower bounds of these subproblems, and inserts
them into the list in such a way that the list of active elements remains sorted.
Each processor must have exclusive possession of the list of active elements
while performing insertions and deletions. However, since we are determining an
upper bound for the speedup achievable, we assume that there is no processor
contention for access to this list. The processors continue to iterate until no
unexamined subprobtems have lower bounds less than f(Po).

When execution of the algorithm begins with consideration of the original
problem, there are not enough problems in d to keep all the processors busy
(assuming that p > 1). In this case some of the processors are idle. Even when
there are enough active problems to keep all the processors busy, only those
processors that examine problems in ~ ' are doing useful work. Examining,
decomposing, and finding lower bounds for problems in ~ - ~ ' cannot lead to a
solution, and only serves to increase the size of s¢ needlessly.

Unlike the sequential algorithm, in which examination of Ps leads to the
termination of the algorithm, the execution of the parallel algorithm may have to
continue on beyond this point. This is because taking the p best problems one
"iteration" (admittedly a loosely-defined concept in an asynchronous algorithm)
is not the same as taking the single best problem p iterations. It is for this
reason that the parallel algorithm may examine problems in .~ -N ' . Problem P~
may actually be examined too soon; problems with smaller lower bounds may
not yet have been generated. Thus the parallel algorithm must continue until
there exist no problems with lower bounds less than f(Po) = g(P,).

The fact that one processor iterating p times may not examine the same active
problems as p processors iterating once could cause the speedup of the parallel
algorithm to be greater than p. Consider the sequential algorithm for a moment.
Until the problem Ps is examined, problems with lower bounds equal to g(Ps)
may. be examined. However, once P~ has been examined, the problems in
with lower bounds equal to g(P~) are never examined. Instead, the algorithm
terminates. An analogous situation arises in the execution of the parallel
algorithm. Once P, has been examined, only those subproblems with a smaller

AN UPPER BOUND FOR THE...

da

d4

Fig. 1. Problems generated by a sequential branch-and-bound algorithm.

39

lower bound are examined. Thus if there are a large number of problems in
U - W , if there is enough work involved in examining the nodes of W plus P,
and the ancestors of Ps (Theorem 1) to keep p processors busy, and if the
structure of the subtrees in U - W is such that the ancestors of Ps can be
explored without bringing elements of U - W to the front of the active list, then
the parallel algorithm could exhibit a faster than linear speedup.

Assume that the tree in Fig. 1 represents the set of problems generated by a
sequential branch-and-bound algorithm. ~ ' consists of the interior nodes of this
tree and the solution node - the heavily outlined leaf node. The interior of each
node is marked ' < ' , ' = ' , or ' > ' to indicate whether the lower bound of the
corresponding problem is less than, equal to, or greater than the cost of the
solution. The first problems to be encountered are those whose lower bounds
are less than the solution's cost. After these problems have been examined, the
sequential algorithm has a choice between the problems associated with the
nodes marked a and b, since they have equal depth in the search tree. In this
example the sequential algorithm chooses node b - otherwise, b would never be
searched, and it would be a leaf node. Choices in favor of the left subtree cause
nodes c and d to be leaf nodes. The parallel algorithm could end up doing much
less work than the sequential algorithm, if it happens to choose node a rather
than node b. In this case the subtree of which b is the root may never be
searched, if there is enough work examining a's subtree to keep all the
processors busy until the solution is discovered. Since it is possible for each of
p processors to do less than 1/p of the work of the sequential algorithm,
speedup may be greater than p.

An expression for the minimum execution time for parallel branch-and-bound
requires the definition of a few more terms.

min{w i+l,ui} ,
Let vi = wi + 1,

Wi,

for 0 ~< i < L(P~)
for i = L(P~)
for i > L(P,)

(Theorem 1)

40 MICHAEL J. Q U I N N A N D N A R S I N G H DEO

) ' ~ , / f p > ~ v j f o r a l l j~>0
Let dl = [max {il0 < j < i ~ vj = p}, otherwise

~'0, if d 1 =
Let dz = (min {ilj > i ~ vj = p}, otherwise

L e t d 3 = m i n { i l j > i ~ v j = 0 }

Let d4 = min {ilj > i ~ uj = 0]

d2- 1

LetR t = ~ (vi-P)t(i)
i=dl

d3-- I

L e t R 2 = ~ (P-Vi)t(i).
i=d2

To elaborate, v i is the minimum number of nodes that the parallel algorithm
examines at level i. Level dl is the first level in the search tree :d in which there
are enough problems in ~ ' to keep all the processors busy. If dl = ~ , then
there will never be enough useful work (problems in ~¢ c~ ~ ') to keep all the
processors busy. Similarly, d 2 - 1 is the last level in the tree that contains more
problems in ~ ' than p. From level dl through dz - t , there are more problems
from ~ ' accumulating in d than can be removed by the processors. Once the
search continues beyond level dz, the processors begin to catch up, and the
number of problems in ~¢ ~ ~ ' begins to decline. The parallel algorithm may
not have to examine any problems beyond d 3. The sequential algorithm does
not examine any problems beyond level d 4. R 1 represents the backlog of work
that accumulates when the search is between levels d~ and d 2. Rz represents the
amount of time available to processors to eliminate the backlog while other
processors examine problems from levels d2 and beyond. If R 1 ~< R2, then the
parallel algorithm may terminate in as few as d3 + 1 "iterations", representing the
time it takes to generate and explore the peoblems deepest in ~' .

The minimum execution time of a parallel branch-and-bound algorithm using

the best-bound search strategy is presented below.

CASE 1: R 1 <~ R z (Figure 2).
d 3 - 1 • Execution time >~ ~ i=o tO).

CASE2: R 1 > R 2 (Figure 3).

Vdl-l t(i)+ (~d3 vit(i))/p. Execution time >~ /,i=o i=a~

AN UPPER BOUND FOR THE. . . 41

P

al d~_ L(P,} d3 d4

Depth

Fig. 2. R 1 ~< R 2. Backlog of unexamined subproblems is eliminated by time solution node is
examined.

The speedup of a parallel algorithm is the ratio between the excecution time
of the sequential algorithm and the execution time of the parallel algorithm. The
speedup of the parallel branch-and-bound algorithm is given below.

CASE 1" RI ~ R2

Speedup <<. (~'=o Uit(i))/ ~ o t(i).
CASE 2" R 1 ~> R 2

Speedup ~ (~.~'=oUit(i))/(~=ol t(i)+(~a, v~t(i))/P) .

0

dl d.. L(P,) d~ d 4

Depth

Fig. 3. R 1 > R 2. Backlog of unexamined subprobtems is not eliminated by time solution node is
examined. Algorithm requires additional iterations to clear backlog.

42 MICHAEL J. QUINN AND NARSINGH DEO

THEOREM 2. Given p processors executing a parallel branch-and-bound
algorithm using the best-bound search strategy, the optimum speedup > p only if

R1 <- R2 :~ ~a~=oUit(i) > P~,~o t(i)

d 4 ~ d 1 -- 1 R1 > R2 => Ei=o (ui-vi)t(i) > ~ i=o (P-Vi)t(i).
PROOF. Since we have an expression for the upper bound on speedup, we

can determine those conditions that are necessary to speedup to be greater than

p, given p processors.

CASE 1: R~ ~<R 2

d4 - d 3 2,=oU,t(,) /Z,:ot(i) > p

Zd%o uit(i) > P Zi=o t(i)

CASE 2: R1 > R2

E~4=ouit(i)/(~=-olt(i)+(Edi~d, uit(i))/P)>p
£~"= o u,t(i) > p ~a~*=o* t(i) + ~'= a, vlt(i)

Z~ ~= o uit(i) > ~,~=o 1 (p - vl)t(i) + ~ o v,t(i)

=~ Z ~ o uit(i) > Z~=o 1 (p-v,) t (i)+ Z~=o vit(i) (Since v, = 0 for all i > d3)

~dl- i ~ai"--O (ui-v,)t(i) > ~i=0 (P-V,)t(i):

4. Discussion.

Given the formulas we have presented in this paper, a person can use
measurements taken from the execution Of a sequential best-bound branch-and-
bound algorithm operating in a particular problem domain to determine an
upper bound on the expected speedup of a parallel branch-and-bound algorithm
operating in the same domain. The speedup achievable is likely to vary from
one problem domain to another. However, some general comments can be

made.
For sufficiently large problems, it is unlikely that a small number of

decompositions will produce a subprobtem with a lower bound greater than the
cost of a solution. Thus if the decomposition of a single problem results in an
average of k subproblems being generated, the first i levels of N are likely to
contain nearly k i subproblems in ~ ' . This implies that for a reasonable number
of processors p, no processor should have to spend more than about logk p

AN UPPER BOUND FOR THE.. . 43

iterations idling before it can begin examining problems in N'. Hence the
parallelization of branch-and-bound using the best-bound search strategy has a
high potential for achieving nearly linear speedup until the Amdahl Effect
becomes a consideration (i.e., until there is not enough work for the number of
available processors). Theorem 2 indicates that speedup is unlikely to exceed the
number of processors used, unless there are a large number of subproblems with
the same lower bound as the solution cost.

An important consideration in the design of a branch-and-bound algorithm is
how much time should be spent determining the lower bound on the solution of
a problem. Finding a tight lower bound requires more computation time, but
results in the examination of fewer nodes. Settling for a looser lower bound
enables less time to be spent evaluating each node, at the cost of examining
more problems. This consideration has a special significance in a parallel
processing environment, because it is important that there always be enough
unexamined subproblems to keep all the processors busy. However, since the
number of unexamined nodes is likely to be an exponential function of the
depth of the search (as discussed in the previous paragraph), the parallel
algorithm designer should be careful not to swing too far toward the second
extreme.

Acknowledgements.

We thank the referees for their helpful suggestions.

R E F E R E N C E S

t. A. M. Geoffrion and R. E, Marsten, Integer programming algorithms: afi-amework and stateof
the art survey, Management Science, 18, 9 (May 1972), 465-491.

2. M. Held and R. Karp, The traveling salesman problem and minimum spanning trees: Part II,
Mathematical Programming, 1, 1 (October 1971), 6-25.

3. T. Ibaraki, Theoretical comparisons of search strategies in branch-and-bound algorithms,
Internat. Journal of Computer and Intbrmation Sciences, 5, 4 (1976), 315-344.

4. E. Ignall and L. Schrage, Application of branch and bound technique to some flow-shop
scheduling problems, Operations Research, 13, 3 (May-June 1965), 400-412.

5. T.-H. Lai and S. Sahni, Anomalies in parallel branch-and-bound algorithms, Proc. 1983 Inteirnat.
Conf. on Parallel Processing, 183-190.

6. G.-J. Li and B. W. Wah, Computational efficiency of parallel approximate branch-and-bound
algorithms, Proc. 1984 Internat. Conf. on Parallel Processing, 473-480.

7. J. D. C. Little, K. G. Murty, D. W. Sweeney, and C. Karel, An algorithm for the traveling
salesman problem, Operations Research 11,6 (November-December 1963), 972-989.

8. J. Mohan, Experience with two parallel programs solving the traveling salesman problem, Proc.
1983 Internat. Conf. on Parallel Processing, 191-193.

9. N. J. Nilsson, Principles of Artificial Intelligence, Tioga Publishing Co., Palo Alto, CA, t980,
Section 2.4.

10. J. F. Pierce and W. B. Crowston, Tree-search algorithms for quadratic assignment problems,
Naval Research Logistics Quarterly, 18, 1 (March 1971), 1-36.

1 t. L Sehrage, Solving resource-constrained network problems by implicit enumeration-nonpreemptive
case, Operations Research, 18, 2 (March-April 1970), 263-278.

12. L. Schrage, Solving resource-constrained network problems by implicit enumeration-preemptive
case, Operations Research, 20, 3 (May-June 1972), 668-677.

