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ITERATIVE REFINEMENT 

OF LINEAR LEAST SQUARES SOLUTIONS I 

~] :E  BJORCK 

Abst rac t .  

An iterative procednre is developed for reducing the rounding errors in the com- 
puted least squares solution to an overdetermined system of equations A x  =b ,  
where A is an m xn matrix (m~n) of rank n. The method relies on computing 
accurate residuals to a certain augmented system of linear equations, by using 
double precision accumulation of inner products. To determine the corrections, 
two methods are given, based on a matrix decomposition of A obtained either by 
orthogonat Householder transformations or by a modified Gram-Schmidt ortho- 
gonalization. I t  is shown that the rate of convergence in the iteration is independent 
of the right hand side, b, and depends linearly on the condition number, ~¢(A), 
of the rectangular matrix A. The limiting accuracy achieved will be approximately 
the same as that obtained by a double precision factorization. 

In a second part of this paper the case when x is subject to linear constraints 
and/or A has rank less than n is covered. Here also ALGOL-programs embodying 
the derived algorithms will be given. 

1.  I n t r o d u c t i o n .  

Let  A x = b  be a given overde te rmined  sys tem of linear equat ions 

where A is an  m x n mat r ix  ( r e > n )  and  b is a vector.  A vec tor  x which 

minimizes l i b - A x l l  2 is called a least squares solution to  the system. 

Leas t  squares problems are often ill-conditioned. Round ing  errors may¢ 

then  seriously con tamina te  the  solution. For  the  linear equat ion  case 

( r e = n )  Wilkinson [8] has proposed the following process of i terat ive 

ref inement  for reducing the rounding errors:  Compute  the sequence of 
vectors  x (s), s = 0,1,2 . . . .  defined by  

x (°) = O, r (s) = b - - A x ( s )  , 
• ( 1 . 1 )  

Ox(S) = A-iv(s), x(s+l) = x(S) + (~x(S) . 

Here  the  residual vec tor  r (8) is computed  using double precision accumu-  

lat ion of inner  products .  Single precision is used in all o ther  steps. I n  
part icular ,  the  corrections (ix(~) are computed  using a suitable single 
precision factor izat ion of A. 

This  w o r k  was  sponsored  b y  t he  Swedish  N a t u r a l  Science R e s e a r c h  Counci l .  
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The performance of this process in floating point arithmetic has been 
analysed by Moler [7]. I t  has also been embodied in an ALGOL procedure 
by Martin, Peters and Wilkinson [6] for the special ease when A is 
positive definite. Now assume that, m > n and that  A has rank n. Then 
there exists a decomposition A = Q,/t, where R is upper triangular and 
f ~ ' Q ,  = I ,  and it is well known that  the least squares solution is given by 

X ---- R - I ~ O T b  . 

Thus it is natural  to use the refinement procedure (1.1) with 

~ds) = R-1QTr(s) (1.2) 

for refining least squares solutions. This was first pointed out by  Golub 
[4] and used Mso by Bauer in [1]. However it has been shown by Golub 
and Wilkinson in [5] that  this process works satisfactorily only when the 
overdetermined system is nearly compatible. 

In  part  I of this paper a procedure for the iterative refinement of 
least squares solutions without this restriction will be developed and 
analysed. In  chapter 2 we describe the procedure as a special case of 
(1.1) and show, why the analysis in [7] is too general to be of any use 
here. In  chapter 3 we formulate the assumptions on the arithmetic 
underlying our analysis. Any method for solving least squares problems 
can, after modification, be used in our procedure to solve for the correc- 
tions. In  chapter 4 we anMyse the errors which are independent of the 
particular method chosen. In  recent papers it has been pointed out that  
methods related to an orthogonal triangularisation of the matrix A 
either by Householder transformations [4] or by a modified Gram- 
Sehmidt procedure [2], have several advantages over the classical 
method of solving the normal equations. In  chapter 5 an algorithm is 
derived for the Householder method and a detailed error analysis for a 
single step is carried out. In  chapter 6 these results are used to derive 
estimates for the rate of convergence and the limiting accuracy. Finally 
in chapter 7 the corresponding algorithm for the Gram-Schmidt  method 
is analysed. 

In  part  I I  the case when x is subject to linear constraints and/or A 
has rank less than n is covered. Here ALGOL-programs embodying the 
derived algorithms will also be given. 

2. The refinement procedure. 

I t  is well known tha t  a least squares solution is characterized by the 
property that  the residual vector r = b - A x  is orthogonal to the columns 
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of A. Thus for the unknowns r and x we have the system of (m + n) 
equations 

If we assume that  the rank of A equals n, then this system is non-singular 
and determines r and x uniquely. 

We now propose to use the iterative procedure (1.1) for the refinement 
of the solution to the a u g m e n t e d  s y s t e m  (2.1). As initial approximation 
we take 

~.(o) = O, x (°) = O .  

The sth iteration consists of the three steps: 
(i) Compute the residuals 

(:)- (IT :) 
Here inner products are accumulated in double precision. 

(it) Solve for the corrections ~r@) and c$x (~) from 

t ,~x(~)/ = \g (~) /  

(2.2) 

(2.3) 

Note tha t  when s 4= 0 we generally have g@)4 0. Thus, modifications to 
the usual methods for solving linear least squares problems are necessary 
in order %o solve (2.3). 

(ifi) Add the corrections 

x ( s + i ) ]  i-- t x(s) ] 2 r- t (~3~(S) ] 

If we put  v(8) = 0 for all s, then this procedure degenerates i n ~  

1(s) = b - A x ( s )  ¢$x(s) = R - 1 Q T I ( s )  , 

which is precisely the scheme (1.2) proposed by  Gotub. This indicates 
that  when the overdetermined system is compatible, the final perfor- 
mance of the two schemes should be the same. 

Since the proposed procedure (2.2)-(2.4) is a special case of the general 
scheme (1.1), the analysis in [7] applies. Because of the special structure 
of the matrix (' 

B =  AT 

this analysis, however, does not  give a true assessment of the perfor- 



2 6 0  AKE BJORCK 

manee. According to this general analysis the condition number z(B) 
should play an essential role. We now make the following observation. 
If we scale the matrix A so that  

A :=  a - I A ,  ~ = 2-q (q integer) 

then the fractional parts of the floating point numbers in our algorithm 
remain the same. The iterations are now, however, associated with the 
matrix 

We will show that the condition number of B~, varies considerably with o¢. 

Let 2 be an eigenvalue of B~ and (x, y)~ the corresponding eigenvector. 
Then 

c¢x + A y  = 2x  

A T x  = 2y  

and it follows that  
a 2 y +  A T A y  = 22y .  

Now y # 0 implies that  y is an eigenveetor and (2~-c¢2) is an eigenvalue 
of A T A .  On the other hand y = 0 implies that  

A T x  = O, ~ x  = kx ,  x 4= O. 

Thus the eigenvalues of Be, are 

- -  - 4 -  + 

where at 2, i =  1 ,2 , . . .  ,n are the eigenvalues of A T A  and the eigenvalue 
~ has multiplicity ( m -  n). From this it can be deduced that  

( m i n ~ ( B ~ , )  = ½ +  ¼ 2 = , 
a (3"min ] 

where the minimum is attained for c~ = 2 - ½ a m i  n .  Here ~(A) is the Euclidian 
condition number for the rectangular matr ix A, 

u(A) = amax/aml n ~ 1 .  

Furthermore, if we take ~ = 2-½O'max, then 

( 1_~+ 3 ) I I 

This shows that  a special analysis is needed. 
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3. Preliminaries for the  error analysis .  

We assume in the following tha t  normalized floating point arithmetic 
with a single (double) precision mantissa of t 1 (t~) digits of base/~ is 
used. By accumulating an inner product in double precision we mean 
that  multiplications which produce a t~-digit product from t,-digit num- 
bers and double precision addition is used, the result finally being rounded 
to single precision. 

More precisely, we assume that  if x and y are single precision numbers 
and z a double precision number then 

f l (x 'op'  y) = (x'op' y)(1 +~,), 'op' = +, - ,  x,/ , 
(3.1) 

fl2(x x y + z )  = (x x y+z)(1 + ~)  
where 

iOtl < Q, Q = /~,-t~, i = 1 , 2 .  (3.2) 

precision machine operations are rounded rather than 
e, can usually be halved. For a detailed discussion, see 

If the single 
chopped, then 
Wilkinson [8]. We furthermore assume tha t  all quantities remain within 
the permitted range of the computer. 

I t  has been pointed out that  the accumulation of inner products is 
essential only in the calculation of the residuals. For convenience we 
will, however, assume tha t  this is done also when computing the decom- 
position of A, and when solving the systems (2.3). This is not  an essential 
restriction. If single precision inner products are used in these steps, 
most derived error bounds will only increase by a factor less than m. 

4. Rounding errors  in the res iduals .  

We consider here the rounding errors introduced in the calculation of 
the residuals (2.2). Here and in the following we distinguish computed 
quantities by using a bar. To make for easier accumulation of errors we 
assume that  me~ < 0.1 and define 

e2' -- 1.06(1+ el)e~ • (4.1) 

Following Moler [7] (p. 318) we have for the computed i th  component of 
I (~) ---- b -~(s)_ A~(s) 

~(s) = (1 + 6)[--  ~l(s)(1 + ~],)+ (bi(1 +72)  - t ( 1  +~a))(1 ÷74)]  
n 

t = Z 
j = l  

where 
l~l < el, }~t[ < ~, i = 1,2,3,4, IF1[ < 1 . °6(n-J+2)e2 .  
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If  we denote the errors in the computed residuals by  

~p> = p > - p ) ,  

t hen  combining these results 

n 

j=l  

[ -  ~%1 + b~((] + ~ ) ( t  + @ - 1) - ~ ~s~/~)((1 + rj)(1 + ~) (1  + ~ )  - 1)],  

and thus  

[[~jf(s)[i~ < sl]] b _~(s) _ A~(s)]ls + 

(1 + ~)~(t[~(% + 2. ].0611bll~ + 1.06(n + 3)IIAII~Ii~+II~). 

Using b = v + A x  and  the  est imate 

HbII~ < I[vl[~ + [IAlI~llxl[~ 
we obta in  

llq+i[: ~ 3es'l]r[] 2 + (n + 5)~2'iIAll:Hx[I = ÷ 
(4.2) 

(~ + ~;)[Ir-  ~(% + (~  + (n + 3)~')[IA[l~tlx - ~ ( % .  

In  the same way we can bound the rounding error in the computed  
residual vector y~8)= _ ATe(s) We obtain 

m 

i= i  /=I 
where 

IT~I < 1 . 0 6 ( m - - i  + 2)s~, I(~I < s~ .  

From this it  follows t h a t  

[[Dg(~)llu =< I IA l I2[ (m+l )~ 'Hr l lu+(~x+(m+l )~u ' ) l [ r - v (~ ) i ]~] .  (4.3) 

5. E r ro r  analysis  of Householder 's  method,  

In  [4] Golub has described a method  for solving linear least squares 
problems using a sequence of e lementary  orthogonal t ransformat ions  of 
Householder  type :  

p(r) = I - 2 w ( r ) w  (r)T . 

Here w ( o = ( O , . . . , O , w ( ~ l  . . . .  ,w~)) T, r = O ,  1, . . . .  n - 1  is chosen so t ha t  

"'" \ o ] } m - n  (5.1) 

where U is an upper t r iangular  matr ix.  
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We now show how to adopt  this method to solve the systvm (2.3) 
which we write, for ~he moment, 

r +  A x  = I (5.2) 
ATr = f] 

Multiplying the first set of these equations from the left with Q =  
p( , -1) . . ,  p(~)p(0) and using (5.1) we get 

Q r +  -ff 0~ = 9 I  (5.3) 

( u r l o ) Q r  = g 

Thus, it is easily seen that  r and x can be computed by  the following 
algorithm: 

(dl~}n 

(5.4) 

r =  O~T(~) ,  x =  U-l(dl--h) 

Wilkinson [9] has, under the assumption that  inner products are accu- 
mulated with t2 = 2t I digits, given an error analysis of orthogonal trans- 
formations of the type  used here. We state below in (5.5)-(5.8) those of 
his results needed here. 

Consider the computed sequence of transformed matrices 

A -- ](0), ](r+l) = fl~(~(r)~(r)), r -- 0, 1 , . . . , n -  1 . 

For a certain prescribed method of computation there exists a sequence 
of elementary orthogonal transformations p(o),p(~) . . . .  ,P(~-I) (not ~he 
matrices corresponding to exact computation throughout) such that  

p(n-1).., p(~lp(O)(A + E) = ~(n) = _~ (5.5) 

where x 
ltElIE ~ nfl(l+fl)~-lHAtiE, fl = 12.36 ~1 (5.6) 

and U is the computed upper triangular matrix. 
If  the computed transformation Q =p(~-l)...p(1)~(o) is applied to a 

vector b, 
b = ~(o), ~(r+l) = fl~(~(~)~(r)), r = 0,1 . . . . .  n - - 1 .  

then 

~(~+1) = ~ ) ~ ( r ) + l ( r )  ' ll/(r)ll~ __</~ll~(~)ii2. (5.7) 

x Here  the  suffix E denotes  the  Frobenius  n o r m  i.e. IlAlIz=(~a~j)½. 
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F r o m  (5.7) i t  follows b y  induct ion tha t  

and 
d(r+l)  = p(r)d(r)  +/(r), d(r) =/~(r) - p( r -1) . . ,  p(o) b . 

Since d(°)- - 0 and d(~)= ~(n)_ •b,  it follows tha t  

n--1 

i l b ( n ) - g b l l ~  <_- Zfl(l+fl)ri]bN9 < n t~ (1 - i - f l ) n - l t [b l t  2 . (5.8) 
r = 0  

We now derive an only slightly different result  for the  error when 
~)T=~(o)~(,) . . .  ~(~-1) is applied to a vector  c;  

c = ~(o), ~(r+1) = fl~(~(n-r-1)~(r)), r = 0,1 . . . . .  n -  1 . 

In  analogy to (5.7) we obviously  have 

~(r+l) = p (n - r -~ )~ ( r ) . i . g ( r ) ,  it9(r)iig. <= fl l l~r)l iU. (5.9) 

As p(n-r-1) is orthogonM and symmetr ic  we get  

and thus  

tl~<~>lI ~ < (1-3)-xl,~(r+~)ih < (1-/~)-~-r)l[~<~>ll, o 

By  induct ion from (5.9) 

e(r+l) = p (n - r - 1 ) e ( r )  + g(r), e(r) = -~(r) _ ~ n - , ' )  . . . p ( n - 1 )  e , 

where e(°)=0 and  e ( n ) = ~ ( n ) - - ~ T e .  Hence  

re-1 

l[~(~)-QTclI~ < ~ 3(1-3)-<~-~)II~(~)l[~ < n ~ ( 1 - 3 ) - ' l l ~ ) l h  (5.10) 

For  convenience we assume in the  following tha t  

12.5.n.ex __< 0 .01 ,  (5.11) 

which, as is easily shown, implies tha t  

n f l ( l + f l )  n - 1  < n/3(1-fl)  -n < 12.485.n .e  1 . (5.12) 

F rom (5.8), (5.10) and (5.12) it now follows tha t  the  computed  quanti-  
ties a and  ~, in the  algori thm (5.4), sat isfy 

where 
IIe~tl2 < 12.5nell]J~H~, IleuI12 < 12.5n,~[I~]I, .  (5.14) 
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Further  errors are made in the two back-substitutions 

Wilkinson [8], pp. 99-104, has shown that  the computed quanti ty 
satisfies exactly 

( ~ + F ~ ) r h  = g (5.15) 
where 

I i~2HE < (el-~ n~2) ll UHE" (5.16)  

A similar result holds for ~, which satisfies 

where 

(D+ F~)£ = j ~ -  ~, 

[[Fxl[= _< (I -- ~1)-1(2~1 + ~ ) l l V l [ ~  • 

(5.17) 

(5.18) 

The slightly greater bound for F 1 accounts for the rounding of the 
difference ( d l - h ) .  From (5.5), (5.6) and (5.12) we have 

I[UtlE = IIA + EItE ~ IIAIIE+I[EII~ ~ 1.01[IAI]=. 

When t~ _>- 2t I we certainly have ~a < 2el ~. Hence if we assume n ~ 2, from 
(5.16) and (5.18) we have 

[IFili= <-_ (1 - e l ) - l ( l  +nel)l.Oln~iNAlIE, i = 1,2 ,  

or, after using (5.12) twice, 

Now define 
liFt]l= < 1.O12ne~[[A[[E, i = 1 , 2 .  (5.19) 

XIi = = +  QrFi,  i = 1,2 (5.20) 

where E is the matrix in (5.5); then the relation 

holds exactly. From (5.6), (5.12), (5.19) and (5.20) it follows that  

(5.21) 

HHll[= =< 13.5n=lIlA[[ =, i - 1 ,2 .  

We summarize the results obtained in this section: 

(5.22) 

Assume that the solutions r and x of the system of equations (5.2) are com- 
puted by the algorithm (5.4), using a certain method of computation de- 
scribed in [9]. Then, provided 12.5ne 1 _-< O.01 and n > 2, the computed solu- 
tion ~ and ~ is the exact solution to the perturbed system 
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where el, e~, H 1 and H a satisfies the bounds given in (5.14) and (5.22). 

Perturbed systems of type (5.23) ~dth symmetric perturbations 
/ /1= H a have been studied by ]~j(~rck in [2J. To obtain from (5.23), an 
estimate of the errors in ~ and ~ we need a slightly more general result, 
which we state in the following theorem: 

THEOREM 1. Let ~ and • satisfy a perturbed system of equations 

I ((A_~.2)T I A+'I (~+dl~ 1o  
where A is a given m x n matrix of ran~ n, and let. r and x denote the solu- 
tions to the corresponding unperturbed system. 

Assume that there exists an orthogonal matrix (2 such that the matrices 
Q(A + H~) i - -1 ,2  are upper triangular, and let the perturbations satisfy 
the bounds 

iIH~I]~ =< vlIAI[~, i = 1 , 2 ,  

HdlH2 5 V u, Ild2N2 < ~xlIAlI~. 
Then, provided 

the following estimate holds 

iiAil~il~_x]12 / = (~,)~ 
where 

~' = ( 1 -  ~ ) - ~ . ( A ) .  (5.25) 

PROOF. The theorem is proved by the same technique as used in [2] 
pp. 15-16, only trivial changes being necessary. 

6. Convergence and l imit ing accuracy. 

Denote by ~ ( z ' )  the set of 2 x 2 non-negative matrices of the type 

Then, obviously, ~lrl,21/~ s ,~(~') implies that  5/1 + 21/2 e ,~(~') and 
/'tI1JV/~ e ,~(~'). 5Iore generally, if 2t/e J¢'(~') and B is an arbitrary non- 
negative 2 x 2 matrix then 2~B s ..d"(~'). 
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We note that  the matrix 

M0 = (~,)2 ~, ~, (~', 1) 

in theorem t (5.24), belongs to ~ '(~ ') .  This set of mat.rices will play an 
essential par t  in the analysis of the refinement procedure. We now 
(in lemmas 1 and 2) prove some simple properties o~ these matrices. 

L~MMA 1. Let i~1e Jg(u')  be defined by (6.1). Then the spectral radius 
of M is given by 

e( M)  = a + ~'b . 

P~ooF. M has b y  defilfition rank one and thus only one eigenvalue 
different from zero. From the non-negativity it follows that  

~(M) = trace(M) = a + u ' b .  

LEMM.A 2. Let M 1 , M  ~ ~ ~ ( ~ ' ) .  Then the following multiplication rule 
holds 

M~M~ = O(WI1)M~. (6.2) 

PROOF. We have 

(:) (') M 1 M  2 = (al, bz) (a~,b~) = (al + ~'bl) (a2,b~) = e(M1)M2 . t ~ t  

COROLLARY. M n = ~(M)n-IM, n > 1. (6.3) 

The estimate (5.24), moreover, suggests that  we de,hie a pseudo-norm 
in the s p a c e / ~ + ~  by  

It tf  = ( IrrIl  = (r }m (6.4) 
\NAN~IIxlI~/' \-/e/}n e . 

Note that  with the pseudo-distance in R m+n 

dAzx,  Z~) = { I I r l -  r21i~ \]1Ali~iixx_x~ll2/, zx, z~ e R m+~, 

R m+n becomes a pseudo-metric space cf. Collatz [3] (p. 40). 
With the notation introduced in (6.1) and (6.4) we can write (5.24) in 

the simple form 

115-zlh < Mo(vl l z lh+v) .  (6.5) 

We will now analyse the iterative refinement procedure defined by  
(2.2)-(2.4) assuming that  the Householder method is used for the cal- 
culation of the corrections. Let  [(s), g(S) and ~r(8), dx (8) denote the exact 
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residuals and corrections corresponding to the computed approximations 
~(s), £(8). Then we have 

r = V s)+ ~v(8) x = £(8)+ ~x(8). 

From (5,23) it follows that  the computed corrections satisfy 

I I A + //1(~) 
] \ (~(s) ] = \ g(s) ] + \ ~ s ) ]  (6.6) ((A + XX~(8))r I o 

where 
Jiel(% =< 12.5n~11ii(%, ti¢~(% =< 12.5~H~<%. 

Let ~(s+l) and ~(8+1) denote the errors in the exact sums 

Then it follows that  

(5~(s+1) = ~(s)_ ~r(S) ~&(s+~) = (~(s)_ ~x(s). (6.7) 

Using (6.7) and the identity [(s)= ~r(S)+ A(~x(S) we have 

lie1(% =< 12.sn~x(il~r(% + liAiSIi~x(% + li~l(%), 
He2(s)[[~. =< 12.5nel(H~r(s)N~ + iI~r<~+i)[iz) . 

From (5,22) and (the often very weak) inequality [IA[]E < n½NA[I ~ it follows 
that  we can apply theorem 1 with 

= ([/-2+ 1)13.5na/~tiu(A). (6.8) 

Assuming n > 2 it certainly follows that  

12.5n < ~13.5n a/z . 

Taking (5.11) into account we obtain 

( 1( 1 ) 0"99IIDr(z+x)[[z~ < 13.5nS/2~1 [(s' 1)+a~(1 1)]+ 

} ( :  : ) 1 (  H~r(s)][2 ~ + ( / 1  (u, ,1)/  l'O1H~[(s)'[2 
\]]AH~[ID~(%/ \~ ' /  \IIDY(%/IIAI[J" 

From this follows, using a more compact notation, 

0.99[j~s+z)tl A =< 13,5na/UtxM'H~z(~)llzt + 1.OlMoV (6.9) 
where 

M'-- \ ,~ ' ( ,~ '+i /  ,~'~ < ,~ ((,~'+~/,~) (6.10) 
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and  f rom (4.2) an4  (4.3) we have  

{ ( 1o) (o+1 
v <= e 1 + e2' 1 

Assuming n > 2 we have  

M0(l  
 o(O;1 

lo) 
n + 5  NzI[A" (6.11) 

< M '  

1 )  ( (~ '+1) ,1 )  < M ' ,  

(6.12) 

]Now consider the  errors made  when adding the  corrections. ])'or the  
error in the  i th  component  of ~(s+1) 

~i (s+1) - r i = (1 + 8) ~i(s+1) _ ri = (1 + (~)(~i (s+x) - rt) + rt6 , 

where I(~l < ~x- Hence  

N ~(s+1)_ rN 2 =< (1 + ~I)H~( s+1)- rll ~ + exlIr]]2 . 

Using a similar result  for x (s+1) we get  

[[Sz(s+i)[I A =< (I + ~I)H~(s+I)I[A + ~Nzlh • (6.13) 

W e  now summarize  the  results  ob ta ined  in (6.9)-(6.13): 
Define the  matr ices  C and  D b y  

C = cM1, D = dM~ (6.14) 
where 

c = [(13.64na/2+ 1.021)~1+ 1.021(m+ 1)e~'](1 + e l ) ,  
(6.15) 

d = 1.021(m+ 1)e~'(1+~1), 
and 

(:) M 1  = , ((~ '+~),~) ,  

(6 .16~  

Then the errors in ~(s+1) and ~s+x) satisfy the  recurrence relations 

N~Z(S+I)iI A ~-< CI[~Z(s)I} A -}- DNZHA 
(6.17) 

tI~z(~+~)th =< ctl~z(~)th + (D + ~l) l iz ih • 

Thus,  b y  induction, 

[[~z(~)]l~ < C~][z(°)[I ~ + ( I +  C + . . .  + C~-x)(D + elI)llz[lA 
(6.18) 

II~,~)ilA =< Wl[z<O)lh + [ ( c  + c2 + . . .  + C~-~)(D + ~ I )  + DJl[z][ A . 
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Since C, D E ~#(~'), we can use the multiplication rule (6.2) from lemma 
2. Hence, if we put  

= ~ ( c )  = -~c(~'+½) (6.1~) 

and assume ~< 1, then, for s >  1, Cs=os-IC and 

( I +  C + . . .  + C s - 1 ) D  = (1 + 0 + - ' -  + 08-~) D < (1 - O ) - I D  

( C + C 2 + . . . + C  8-~) = ( I + ~ + . . . + ~ s - 2 ) C  < ( 1 - ~ ) - 1 C .  

Substituting this into (6.18) and noting that  z(°)=z we finally get 

H~Z(S)NA < (~s-IC+(1--Q)-I(D+elC)WeII)]Izl]A (6.20) 
I I ~ ) t l  ~ < ( e . - ~ c  + (1 - e ) - ~ ( D  + ~ e ) ) l l z l l ~  • 

If we make the reasonable assumption 

(m + 1)e~' < el 

then, as a consequence of (5.11) and the assumption n >  2 

c < 1.0004(13.64+2.2-a/21.021)na/~e I , 
o r  

e < 14.4n3/2el .  (6 .21 )  

In  the initial stages the term @*-1C in (6.20) dominates and we have ap- 
proximately 

II~z(~)ih =< e * - I C I I Z H A  . 

This justifies calling ~ the initial rate of convergence. From (6.19) and 
(6.21) we have the estimate 

Q < 38.4na/u(u ' + ~-)e  1 . (6 .22 )  

We note that this bound for Q is independent of the right hand side and 
roughly Irroportionat to z(A). Thus, u~(A) does not enter, which, remem- 
bering (2.7), might have been conjectured from the general analysis. 

When ~< 1, the term ~s-lC[]zl]A in (6.20) approaches zero as s--> oo and 
the limiting accuracy in r~8) is 

l i m  I[~s)llA =< ( X - - 0 ) - I ( D + e l V ) I I z l l A  - -  (1-~)-1K (6.23) 

where 
K = 1.022~2'(~'(m + 4)tlrll 2 + (n + 5)HAll~llxil~) + 

1 4 . ~ n 3 ~ * ~ ( ( ~  ' + ~)llr]l~ + ~!lA]l~Ilx]t~) • 
(6.24) 

The first term in K is proportional to e~ and comes from the errors 
made when computing the residuals. The second term, which is propor- 
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tional to el ~, comes from the errors introduced when solving the system 
of equations defining the corrections. To get full benefit from the refine- 
ment it is obviously necessary to have t~ > 2t r The first term in K will then 
usually be negligible, and the limiting accuracy will approximately be 
(i-o)-l~xCl[zll~. This can be compared to the bound for the error 
llS(1)-zllA derived from (6.18), which is CIIzlI~. Hence, we can expect to 
gain t~ figures during the refinement, and to achieve almost the same ac- 
curacy as if, without any refinement, 2t 1 digit precision had been used 
throughout the computation. 

Since either r or x can be equal to zero, we obviously can not always 
expect to achieve a small relative error in either ~(s) or ~(s). We new 
derive simple sufficient conditions for the relations 

lira II~ (s)- r][2 < 2s 1. Ilrll2, (6.25) 
8---~OQ 

lira H~ ('~)- xH~ < 2e~. Iixil2 (6.26) 
8--->~ 

to be satisfied. We assume that  ~ < ¼ and that  the second term in K can 
be neglected, since the most important  case in practice is t~ > 2t 1. From 
(6.14), (6.20) and (6.23) it follows that  (6.25) holds provided 

where we have put  

}C(Z'+})(l+}y -1) < 1 

(~'+~)llrlh (6.27) 

Substituting for c from (6.19) we obtain 

2 ~ ' + ~  
1 + ~ - I  < - - - - - .  ~ ' + ~  

Since ~' _>_ 1 this relation is satisfied if 

2 .9  1~ 
7-1 = ~ k e ' 1 4 -  ]" 

Remembering that  ~ < } i$ follows that  (6.25) certainly holds if 

Similarly (6.26) holds if 

or ff 

~-1 ~ 1~0~-1. (6.28) 

2 ~ ' + }  
~+~ = < _ _ _  

~o ~' 

1 
y < - ( 2 - ~ )  = _ ~ - 1 .  (6.29) 

Q 
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We conclude that i f  ~, satisfies 
1 

1.61Q =< 7 =< 1.58-  

then, for sufficiently large s, both ~(s) and ~(s) will have a relative accuracy 
better than 2e r I t  is obvious tha t ,  for a given matr ix  A, there will a lways 
exist r ight  hand  sides for which this is no t  t rue  either for ~(s) or for ~s). 
However,  since Q < { implies 1.61~ < 1.58~ -1, at least one of the relations 
(6.25) and (6.26) is always satisfied. 

7. Error analysis of the modified Gram-Schmidt method. 

This me thod  is based on a decomposit ion of A obtained in the  follow- 
ing way:  Let  A(1)= A and  A (k~, k = 2 , 3  . . . .  , n +  1 be defined by  

rkZ "= dn-lqn TA(k), dn = []q~l[~, 
(7.1) 

A(n+l) = A(n)_ qnrn T 

where ql, q~ . . . . .  q~ is a suitable sequence of l inearly independent  vec- 
tors. B y  induct ion i t  follows t h a t  

A (n+1) = A -  QR (7.2) 

where R T = (rl, r 2 , . . . ,  rn) , and for k = 1,2 . . . .  ,n,  t h a t  

qk~(qlrlT + T . . .  + q~lrk-1 + qkr~ ~) = qkYeA . 

Thus, if we define the lower t r iangular  mat r ix  L by  

{ q J q p  k >= j (7.3) 
L = { I n j } ,  0 , k < j '  

then  
Lxt = Q r A .  (7.4) 

We now choose qn so t ha t  in step k the kth  column of A (n) is annihilated,  
i.e. so Omt 

A (n) = (0 . . . .  ,0, an (n) . . . .  , a~ (k)) . 

This is obviously achieved if we take  qn = ak (n). Then, by  (7.2), 

A = QR (7.5) 

and 1~ becomes uni t  upper tr iangular .  I f  the calculations are performed 
exactly the columns of 0 will be mutua l ly  orthogonal  and  thus  L will be 
a diagonal matr ix .  

The method  described can be interpreted as an  el imination with 
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weighted row combinations (Bauer [I]) or as a modification of the clas- 
sical Gram-Sehmidt  orthogonalization method (Bj~rck [2]). 

We now adopt this method to solve the system (5.2). This must  be 
done carefully, since, as is well known, [2], the computed columns of Q 
may deviate considerably from orthogonality. In  the derivation we, 
therefore, do not  assume L to be diagonal. If we define 

Y = (Yl, Y2 . . . .  ,Y~)~, h = (hl, h 2 . . . . .  h~) ~ 

by 
y = R x ,  h = R - T g  (7.6) 

and use (7.5), then we can write (5.2) as 

r + Q y  = [ 

~ T r  = h .  

Multiplying the first set of equations in (5.2) from the left by ~ and 
using (7.4) we get 

Q T r  + L y  = Q T [ .  

Thus r and y are determined by  

L y  = Q T f - - h ,  r ---- [ - - Q y .  (7.7) 

Now let [(1)=[ and define f k ) ,  k=2,3 ,  . . . .  n +  1, and y by 

y~ = (q  T[(k)_ hk)/dk ' f(k+l) = [ (k )_  qkYk" (7.8) 

By induction it follows that  

[ (~) = 1 -  ( q l Y l + .  • • + q k - l Y k - 1 ) ,  

q S ( q l Y l  + • • • + q k - l Y k - I  + qkYk) = qkT~ f -  hk , 

and thus y and r = f  n+l) satisfy (7.7). Hence, (7.6) and (7.8) is the desired 
algorithm for solving (5.2). 

In  the error analysis below, we again assume that  (5.11) holds and 
t, hat  t 2 > 2t 1. Let the computed factors in the decomposition (7.5) of A 
be t~ and ~)= (~t, q2,--- ,  qn)- In  the back-substitutions (7.6) the com- 
puted quantities h and x satisfy, cf. (5.16), 

RI'~ = y ,  R 2 T h  -~ g ,  

where Tt i = R + Gt,  and 

IIG~I[E < (s~+ne2)][RJE < 1.O02eillR'J~, i ---- 1,2.  (7.9) 

Let ~ and/(~),/(2) . . . . .  ](~+~) =~ denote the exact results when perform- 
ing (7.8) using the computed  quantities qk and hk. If we put 

BIT 7 - -  18 
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e I = r - - r ,  e~ = y - - y ,  

then the following expression for the errors in ~ and ~ holds: 

where 

B--- 

r - ~  e~ 
( x _ . ~ )  = ( l - .B-1B)  ( ; )  + (~t_le2)  (7.10) 

 'xl o x o 

Note that,  in order to make the errors small, ~-1, which is not symmetric, 
has to be a good left-hand inverse. I t  is readily verified that  

I _ ~ - I B  (7.11) 
k - ~ i - l r l  I ~ l - l~ -E~  e l i /  

where 
F 1 = L-1R2-~(EI+~)e2)r ,  E 1 = Q R - A ,  
E2 = ( I - -QL- I~T)  A, E3 = ~ _ L _ l ~ ) r A ,  (7.12) 

and from [2] p. I0 we have the following results: 

[]EI[]E =< 1.5(n--1)ciliA[]E, ][E~][v ~ 3.25(n--1)el]JAIl E 
I]Ea[[E _-< 1.9(n-- 1)½nsliIA[I E . (7.13) 

We now estimate the rounding errors made in (7.8). To simplify the 
analysis, we assume that  

li~kIT~ = 1, ~ = 1 , 2 , . . . , n .  

Since this can be achieved by  a proper scaling of the columns of A, this 
assumption will not  influence the derived floating point error bounds. 
Then we have 

If we define the error vector ~(~) by  

](k+l) = (I-- ~,~a~")? (k) + ~khk + V (k) , (7.14) 

then, subtracting, 

Since ~1)=/(1) =1 it follows that  

b 
HI (~+1)- ](k+l)N2 < Z ii~(')liu, k = 1,2 . . . . .  n .  (7.15) 

For the error in Yk we write 
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~ k -  ~ = Y~-  yk' + ~kT(i Ck)- 1(~)) 

where Yk' is the exact multiplier corresponding to the computed vee$or 
?(k). Then 

l ~ - ~ l  < l ~ - y ~ ' l  + I I I (~)-I (% (7.1~) 
and 

Now, if we make the reasonable assumption tha t  2(m + 1)e~ =< 0.01, then 
we can use results from [2] p. 7-8, duly modified, to obtain 

and 
I~k--Yk'I < 2,02el(lli(k)II~+ l~kl) 

II~(k)ll~ < ( 1 -  ~a)-%llT(k+a)15 + ~11~1 + 19k- Y k ' l  • 

(7.17) 

Consequently 

~From (7.14) it follows tha t  

117<~÷1)1i~ < 117<k)il. + IEl + II~<k>lt~ 

(7 .18 )  

and using (7.18) we have 

(1 - 2~1)I1](~+x)II2 < (1 + 2.02~0(iiF(% + I~i) • 

The assumption (5.11) certainly implies tha t  

(1 + 2.02s0/(1 - 2Q) < 1.002 I/~ 

and thus, for k =  1,2 . . . . .  n, 
k 

11i(k+t)II~ < 1.002(il lIT~+sk),  8k = ~ I ~ i -  
j= l  

Using this bound for the growth of the computed vectors f(k) in (7.17) 
and (7.18) we obtain 

}Yk- Yk'l < 4-05½zx(ltlll2 + %),  
(7.19) 

[l~(k)ll~ < 4.05~(lllll~+sk) • 

Using Sehwarz's inequality we get 

and 
k-1 1 

½sk+ ~ : s ,  < k~J~lihil ~ . 
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Hence, from (7.15), (7.16) and (7.19) we have 

lfelfI2 = III ' (~+'- ] (~+'N2 < 4 .05(n+ 1)~1~, (7.20) 

]ffk--ffk[ < 4'05ke1~9 , 
where 

1 
= HIJJ~ + ~  n~i]hi12 • (7.21) 

Using Schwarz's inequality again we obtain 

1 
Ile~ll2 = I',~-0[t~ < ~-~ 4.05n~(n+ 1)e1~o . (7.22) 

From (5.2) we have h = R - Z A r r  = Q T r ,  and thus 

ItIlI~ --< llr[12+llA[l~I]x[l~, Ilhll~ < [lv[12. (7.33) 

Since the computed matrix Q is not exactly orthogonal, a further 
strict analysis becomes very cumbersome. In  [2] pp. 12-15 we have 
shown, however, that, 

]]I-QTQII2 < const.6+o(o~) , (7.24) 
where 

5 = n~.epc(A) . 

I n  the following we therefore assume that ~ is a small quantity. From (7.24) 
it follows 

IlC)II2 = 1 + 0 ( ~ ) ,  11~-1]l ~ = 1 + o @ .  

Let A = QR where Q is normalized so that  QTQ = I. Then we also have 
([2] p. 14) 

ItRII~ = ItnIIE(l+ o @ )  = flAIls(l+ o @ ) .  

Using these relations, we get from (7.9) and (7.12) 

IIE~+C)G~I[~ =< 1 .Sn~l l lAIIdl+0@),  
(7.25) 

IlEa + GxII~ <= 1.9"na/2ellIAIIE( 1 + 0(O)) 

Neglecting powers of d we derive from the inequality 

IIAIIEI',~-alI2 =< n~llAIImlll~-Xllm = n½~(A)(1 + 0(~)) 

i =  1,2, (7.10)-(7.12) and (7.25) the estimate 

1.27V3 ( 
= \u  ~ x" 1.27 .n½/llzl[a+ \~[[ezllJ" 
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Further,  from I[hll2 = llhII2(1 + 0(~)), (7.21) and (7.23) it follows that  

--< IIriI~ I + + IiAIl~IIxiI2 + 0(~). 

Hence, we obtain from (7.20) and (7.22)~ neglecting powers of @ 

kglle2t]2/( ]]exl[uh =< 4.05(n+l)ex ~ n½ 1+~-~, 1 NzI]~. 

After some manipulation we have finMly 

~ ( . + 0 . 9 ( ~ + ~ ) )  ~-1.27(~o+ 1.25) / 

I f  n > 3, which we therefore assume, we can obviously write this relation in  
the form 

Nz-~I[A < 1.Sn~(n+ 1)siMasI[ZIIA+O((52 ) (7.26) 
where 

Using this as a starting point, the iterative refinement with the Gram-  
Schmidt method can be analysed in a way similar to that  used for tim 
Householder method. Obviously, the effects of the errors in the residuals 
will, in the first approximation, be the same. 

I t  will again be true, that  if t2 > 2tl, we can expect to gain tl figures 
during %he refinement. To compare the limiting accuracy of the methods 
it is therefore sufficient to look at the error bounds for the solution of the 
system of equations (5.2). 

A result corresponding to (7.26) for the Householder method follows 
from (6.9), ff we put s = 0 and z = 0. Then, we get 

]Iz- zli~. <= la.Unn3~2~M.llZllA + 0(~ 2) (7.27) 
where 

Comparing (7.26) and (7.27) it is seen that when n < ii0 the bound 

for the Gram-Schmidt  method is always smaller. In  particular for large 
values of u and 7 (defined in (6.26)), the ratio is approximately 1:9. 

By lemma 1 and 2 the rate of convergence for the Gram-Schmidt  
method is approximately equal to 
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~aS = 1.5n½(n+ 1)e:~(Mas ) (7.28) 
where  

~(Mas) --- u + 0.9(n½ +V ~) ÷ 1.27(n~ + 1.25) 

< 1.27(n½+ 2) (~÷  0.71) .  

This  can  be c o m p a r e d  to  the  corresponding expression for  the  House -  
holder  m e t h o d  which is 

e ~  = 13.65n3/~1~(~- ½). (7.29) 

F o r  reasonable  values  of n, the  G r a m - S c h m i d t  m e t h o d  is aga in  seen to  
be more  favourab le .  The  a d v a n t a g e  when  z>~ 1 and  ~>~ I is however  less 
marked .  
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