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ITERATIVE REFINEMENT
OF LINEAR LEAST SQUARES SOLUTIONS I

AKE BJORCK
Abstract.

An iterative procedure is developed for reducing the rounding errors in the com-
puted least squares solution to an overdetermined system of equations Ax =b,
where A is an m xn matrix (m =n) of rank n. The method relies on computing
accurate residuals to a certain augmented system of linear equations, by using
double precision accumulation of inmer products. To determine the corrections,
two methods are given, based on a matrix decomposition of 4 obtained either by
orthogonal Householder transformations or by a modified Gram-Sehmidt ortho-
gonalization. It is shown that the rate of convergence in the iteration is independent
of the right hand side, b, and depends linearly on the condition number, #(4),
of the rectangular matrix A. The limiting accuracy achieved will be approximately
the same as that obtained by a double precision factorization.

In a second part of this paper the case when @ is subject to linear constraints
and/or A has rank less than n is covered. Here also ALGOL-programs embodying
the derived algorithms will be given.

1. Introduction.

Let Ax=0b be a given overdetermined system of linear equations
where A is an m x n matrix (m=n) and b is a vector. A vector 2 which
minimizes [|b— Ax||, is called a least squares solution to the system.

Least squares problems are often ill-conditioned. Rounding errors may:
then seriously contaminate the solution. For the linear equation case
(m=mn) Wilkinson [8] has proposed the following process of iterative
refinement for reducing the rounding errors: Compute the sequence of
vectors ¥, §=0,1,2,... defined by

2O = 0, 19 = b— Az,

Ox® = A-1®, s+ = g 4§ | (1.1)

Here the residual vector # is computed using double precision accumu-
lation of inner products. Single precision is used in all other steps. In
particular, the corrections dx9 are computed using a suitable single
precision factorization of A.
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The performance of this process in floating point arithmetic has been
analysed by Moler [7]. It has also been embodied in an ALGOL procedure
by Martin, Peters and Wilkinson [6] for the special case when 4 is
positive definite. Now assume that m >n and that 4 has rank n. Then
there exists a decomposition A= QR, where R is upper triangular and
Q70 =1, and it is well known that the least squares solution is given by

z = R1QTH ,
Thus it is natural to use the refinement procedure (1.1} with
sl = R-1QTrO (1.2)

for refining least squares solutions. This was first pointed out by Golub
[4] and used also by Bauer in [1]. However it has been shown by Golub
and Wilkinson in [5] that this process works satisfactorily only when the
overdetermined system is nearly compatible.

In part I of this paper a procedure for the iterative refinement of
least squares solutions without this restriction will be developed and
analysed. In chapter 2 we describe the procedure as a special case of
(1.1) and show, why the analysis in [7] is too general to be of any use
here. In chapter 3 we formulate the assumptions on the arithmetic
underlying our analysis. Any method for solving least squares problems
can, after modification, be used in our procedure to solve for the correc-
tions. In chapter 4 we analyse the errors which are independent of the
particular method chosen. In recent papers it has been peinted out that
methods related to an orthogonal triangularisation of the matrix A
either by Householder transformations [4] or by a modified Gram-
Schmidt procedure [2], have several advantages over the classical
method of solving the normal equations. In chapter 5 an algorithm is
derived for the Householder method and a detailed error analysis for a
single step is carried out. In chapter 6 these results are used to derive
estimates for the rate of convergence and the limiting accuracy. Finally
in chapter 7 the corresponding algorithm for the Gram—Schmidt method
is analysed.

In part II the case when @ is subject to linear constraints andfor A4
has rank less than » is eovered. Here ALGOL-programs embodying the
derived algorithms will also be given.

2. The refinement procedure.

It is well known that a least squares solution is characterized by the
property that the residual vector r=b — Az is orthogonal to the columns
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of A. Thus for the unknowns r and ® we have the system of (m+n)

equations
(4 0)(2) = (o) @

If we assume that the rank of 4 equals n, then this system is non-singular
and determines r and @ uniquely.

We now propose to use the iterative procedure (1.1) for the refinement
of the solution to the augmented system (2.1). As initial approximation
we take

¥ =0, 2@ =290,

The sth iteration consists of the three steps:
(i) Compute the residuals

i® b I A\ (r®
(g0) = (0) = (ar ) (2 #2)
Here inner products are accumulated in double precision.
(i) Solve for the corrections 6r® and 2 from

I A\ (/e i
(42 ) (300) = (o) =
Note that when s=0 we generally have g(®0. Thus, modifications to
the usual methods for solving linear least squares problems are necessary

in order to solve (2.3).
(iti) Add the corrections

r(s+D e or®
(w(s+1)) = (;B(S)) + ((ﬁw(s)) (2:4)
If we put r®@=0 for all s, then this procedure degenerates into

[ = b— Ax'9, dx® = RIQTfE |

which is precisely the scheme (1.2) proposed by Golub. This indicates
that when the overdetermined system is compatible, the final perfor-
mance of the two schemes should be the same.

Since the proposed procedure (2.2)-(2.4) is a special case of the general
scheme (1.1), the analysis in [7] applies. Because of the special structure
of the matrix

B = (;T ‘3) (2.5)

this analysis, however, does not give a true assessment of the perfor-
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mance. According to this general analysis the condition number »(B)
should play an essential role. We now make the following observation.
If we scale the matrix A so that

A= a4, « = 277 (g integer)

then the fractional parts of the floating point numbers in our algorithm
remain the same. The iterations are now, however, associated with the

matrix 74
&
B, = (AT 0)'

We will show that the condition number of B, varies considerably with «.
Let 4 be an eigenvalue of B, and (,y)” the corresponding eigenvector.

Then
cx+ Ay = Az

AT =y
and it follows that
aly+ATAy = A% .

Now y=+0 implies that y is an eigenvector and (12— «x1) is an eigenvalue
of ATA. On the other hand y=0 implies that

ATe =0, axx =Aie, £ 0.

Thus the eigenvalues of B, are

x (o® P
s+ (S4)
MB,) =12 (5 +o
o
where o2, 1=1,2,...,n are the eigenvalues of AT4 and the eigenvalue
& has multiplicity (m —n). From this it can be deduced that
- 1 1 0‘1'21184![ %
minx(B,) = §+(I+2 " ) < 2x(4), (2.6)
o min

where the minimum is attained for o =2-%¢,, . Here »(4) is the Euclidian
condition number for the rectangular matrix A4,

%(A) = max/amin z1.

Furthermore, if we take a=2-%0,,., then
#(B,) > #*A) (——1—_+—3-_~> (—~L+i
* 22 22/ \g)/2" 2)/2

This shows that a special analysis is needed.

) = x%(A) . (2.7)
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3. Preliminaries for the error analysis.

We assume in the following that normalized floating point arithmetic
with a single (double) precision mantissa of ¢, (f,) digits of base f§ is
used. By accumulating an inner product in double precision we mean
that multiplications which produce a #,-digit product from ¢,-digit num-
bers and double precision addition is used, the result finally being rounded
to single precision.

More precisely, we assume that if x and y are single precision numbers
and z a double precision number then

fl(x'op'y) = (x'op’y)(1+6,), ‘op’ = +,—,x,[, 3.1)
fh(xxy+z) = (xy+2)(1+dy) ’
where

8| S g =pH =12, 3.2)
k4 k3 k2

If the single precision machine operations are rounded rather than
chopped, then e, can usually be halved. For a detailed discussion, see
Wilkinson [8]. We furthermore assume that all quantities remain within
the permitted range of the computer.

It has been pointed out that the accumulation of inner products is
essential only in the calculation of the residuals. For convenience we
will, however, assume that this is done also when computing the decom-
position of 4, and when solving the systems (2.3). This is not an essential
restriction. If single precision inner products are used in these steps,
most derived error bounds will only increase by a factor less than m.

4. Rounding errors in the residuals.

‘We consider here the rounding errors introduced in the calculation of
the residuals (2.2). Here and in the following we distinguish computed
quantities by using a bar. To make for easier accumulation of errors we
assume that me, £0.1 and define

82’ = 1.06(1"‘81)82 . (4.1)

Following Moler [7] (p. 318) we have for the computed 7th component of
O=b—79— A7

[0 = Q4+ 0[—F O+ 1)+ (bi(1+32) =81 +15))(1 +74)]
t =Y ay®N(1+y;),
J=1

where
6] S &5, Imyl S &, 0 =1,2,3,4, |y;] £ 1.06(n—j+2)e,.
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If we denote the errors in the computed residuals by
f® = f(s)_ JiC

then combining these results
n
8D = (b;~F~ 3 ayZ )+ (1+9)
i=1

[—7my + b (1 + 7)1+ —1) —jél%j@(s)((l + )L+ ns) (149 —1)],
and thus
[079le £ &]|b—79— 4B+
1+ e)eg([ 795+ 2+ 1.06[[b ]}y + 1.06(n + 3)[| Al B]5) .
Using b=7r+ Ax and the estimate

blly < |lr]ls+ 14/l

we obtain
16/9lls = 3eylIrlla+ (n+ 5)ey[| Al aflllo + 4.2)
(e1F 2 )1 —FO||y + (81 + (n + 3)ey) | Al follaw —~Z . '

In the same way we can bound the rounding error in the computed
residual vector g@= — ATF®, We obtain

m m
8g{9 = —38 Y ayF{—(1+08) Y a,F
d=1 i=1
where
[y S 1.06(m—i+2)ey, |6 < & .

i

From this it follows that
1699y = [|All{m + L)ey/|rll+ (e + (m+ Ve )r =795} . (4.3)

5. Error analysis of Householder’s method.

In [4] Golub has described a method for solving linear least squares
problems using a sequence of elementary orthogonal transformations of
Householder type:

PO = J— 2007 |

Here w®=(0,...,0,u®,,..., 00T, r=0,1,...,n—1 is chosen so that
P~ pOPOA4 — (E)}n (5.1)
0/ym—n

where U is an upper triangular matrix.



ITERATIVE REFINEMENT OF LINEAR LEAST SQUARES SOLUTIONS I 263
We now show how to adopt this method to solve the system (2.3}
which we write, for the moment,

r+ Az = f

5.2
g (5.2)

Multiplying the first set of these equations from the left with Q=
Po-D | POPO and using (5.1) we get

Qr+(g)w - of
(U7]0)0r = g

Thus, it is easily seen that * and ® can be computed by the following
algorithm:

(5.3)

o

ne vty o= (G),

h (5.4)
r = QT (——), x = UYd,—h)
d,
Wilkinson [9] has, under the assumption that inner products are accu-
mulated with f,=2¢, digits, given an error analysis of orthogonal trans-
formations of the type used here. We state below in (5.5)—(5.8) those of
his results needed here.
Consider the computed sequence of transformed matrices

A = A0, A¢+D = fl,(POAD) ¢ = 0,1,...,n~1.

For a certain prescribed method of computation there exists a sequence
of elementary orthogonal transformations PO, PO, . . P"-D (nof the
matrices corresponding to exact computation throughout) such that

Po-b _, POPO(A+E) = A = (%I) (5.5)
where!
1Bz = nf(1+p)"H|Allz, B = 1236¢ (5.6)

and U is the computed upper triangular matrix.
If the computed transformation @ =Pw-D, POPO js applied to a
vector b,
b = bO, pr+d = fI,(PMB®), r = 0,1,...,m—1.
then
b+ = POBO+fO, [y = BB, - (5.7)

1 Here the suffix & denotes the Frobenius norm ie. [[A| E=(22a§j)§.
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From (5.7) it follows by induction that

B9, s (1+B)BeDl, < (L+B)bll,
and
dr+h = PG L fO) g = p . per-D | pOp

Since d®=0 and d™=b™ — Qb, it follows that

n~1
16— Qblly = 3 f(L+F)Nblly < nB(L+ By 1D, . (5.8)

r=0

We now derive an only slightly different result for the error when
Q7 =POP® , Pn-D is gpplied to a vector c;

¢ = €O, ¢r+) = {l,(Pn—r-Ug®), r =0,1,...,n—1.
In analogy to (5.7) we obviously have
G = Pin-r-1igt) 4 g, lg®, < BIEO, . (5.9)
Ag Pn-r-D jg orthogonal and symmetric we get

€N = po-r-D)gr+D 4 g(n)
and thus
ey £ (1—p)7 e+, < (1—p)-m-nlem)], .

By induction from (5.9)
elrtl) = p-r-lign 1 g e = ¢ — pin-n  po-l¢

where €9 =0 and e® =" — Q%¢. Hence

n—1
e~ Q%cly = Zoﬁ(l—ﬁ)““"’ﬂi‘”’l(a < nf(1—p)"[e™], (5.10)

For convenience we assume in the following that
12.5-n-¢, £ 0.01, (5.11)
which, as is easily shown, implies that
nf(1+8)71 < nf(l—B) ™ = 12.485-n-¢ . (6.12)

From (5.8), (5.10) and (5.12) it now follows that the computed quanti-
ties d and ¥, in the algorithm (5.4), satisfy

- h
d=o(f+e), = 07(7)+e (5.13)

where
fledle £ 12.5ne||f ]l llealls S 12.5nefrf, . (6.14)
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Further errors are made in the two back-substitutions
UTh =g, Ux=d,—h.

Wilkinson [8], pp. 99-104, has shown that the computed quantity k
satisfies exactly
(U+F)h =g (5.15)
where

IFalle £ (214 7e,)[|Ullg - (5.186)

A gimilar result holds for #, which satisfies

(OC+F)z =d,-h, (5.17)
where _
Iyl S (1—&)"(2e;+ne,)|Ulg - (5.18)

The slightly greater bound for F; accounts for the rounding of the
difference (d,—h). From (5.5), (5.6) and (5.12) we have

I0lz = |4+ Ellg < | A]g+]Elg < 1.01)4]g .

When £, = 2¢, we certainly have ¢, < 2¢,2. Hence if we assume 7 2 2, from
(5.16) and (5.18) we have

IF e < (1=e)"Y1+mne)L0Iney|dllg = 1,2,
or, after using (5.12) twice,

IFllz £ 1.012n¢||Allp, ¢ = 1,2. (5.19)

Now define
H,= E+Q"F, i=12 (5.20)

where E is the matrix in (5.5); then the relation

TI+F€)
0 1

Q(A+H) = ( i=1,2 (5.21)

holds exactly. From (5.6), (5.12), (5.19) and (5.20) it follows that
|12z £ 13.6ney)|Allg, ¢ = 1,2. (8.22)
‘We summarize the results obtained in this section:

Assume that the solutions r and x of the system of equations (5.2) are com-
puted by the algorithm (5.4), using a certain method of computation de-
scribed in [9]. Then, provided 12.5ne; < 0.01 and n =2, the compulted solu-
tion ¥ and & 18 the exact solution to the perturbed system
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((A+;12)T : =) (;;2) = (f;el): (5.23)

where ey, e,, H; and H, satisfies the bounds given in (5.14) and (5.22).

Perturbed systems of type (5.23) with symmetric perturbations
H,=H, have been studied by Bjorck in [2]. To obtain from (5.23), an
estimate of the errors in # and & we need a slightly more general result,
which we state in the following theorem:

TaEOREM 1. Let ¥ and & satisfy o perturbed system of equations

I |A+H)\ (P (f+d,
((A+H2)T[ 0 ) (a‘c) B (g+d2)
where A is a given m x n matrix of rank n, and let v and x denote the solu-
tions to the corresponding unperturbed system.
Asswme that there exists an orthogonal matrixz Q such that the matrices
GA+H,) i=1,2 are upper triangular, and let the perturbations satisfy
the bounds

[Hylls = nlidle. ¢ = 1,2,
ldills = 7o lidells = 7allA]lz -
Then, provided

6= (/24 )ud)y < 1,

the following estimaie holds

(nA[zZ;;”lnz) = (o ) (i) () e

#' o= (1—o)t(A4). (5.25)

where

Proor. The theorem is proved by the same technique as used in [2]
pp. 15-16, only trivial changes being necessary.

6. Convergence and limiting accuracy.
Denote by .#(x') the set of 2 x 2 non-negative matrices of the type

1
M = ( ,) {a,b) . {6.1)
%
Then, obviously, B, M,c . #(»') implies that M,+ M, c #(x') and

M, M, € M#(x'). More generally, if M € .#(x') and B is an arbitrary non-
negative 2 x 2 matrix then MB e .4 (x').
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We note that the matrix

o= (5 ) (e

in theorem 1 (5.24), belongs to .4 (x'). This set of matrices will play an
essential part in the analysis of the refinement procedure. We now
(in lemmas 1 and 2) prove some simple properties of these matrices.

Levva 1. Let M e H (%) be defined by (6.1). Then the spectral radius
of M is given by
o(M) = a+x'b.
Proor. M has by definition rank one and thus only one eigenvalue
different from zero. From the non-negativity it follows that

o(M) = trace(M) = a+x'b.

Levma 2. Let My, M, € M#(x'). Then the following multiplication rule
holds

MM, = Q(Ml)Mz . (6.2)

Proor. We have
1 1 1
MM, = (x,) (¢1,04) (%,) (@g,b3) = (ay+%'by) (x') (2g,05) = o( M) M, .

CoRrOLLARY. M? = (MM, nz1. (6.3)

The estimate (5.24), moreover, suggests that we define a pseudo-norm
in the space E%+* by

s = (H A}m;g}z), z= (g)i:emm_ (6.4)

Note that with the pseudo-distance in Bm+n

[[ry—mally

ulzy ) = (uAuznwl—wz

), %4, Ry € B
lla
Rm+n becomes. a pseudo-metric space cf. Collatz [3] (p. 40).
With the notation introduced in (6.1) and (6.4) we can write (5.24) in
the simple form

B—2ly = Myllzlla+7) - (6.5)

We will now analyse the iterative refinement procedure defined by
{2.2)~(2.4) assuming that the Householder method is used for the cal-
culation of the corrections. Let f®, g¥ and ér®, §x(® denote the exact
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residuals and corrections corresponding to the computed approximations
7o 9, Then we have

r =791 3 = T4 59,
From (5.23) it follows that the computed corrections satisfy

I ‘ A+ Hl(S) 578 92(3) [O+e 1(s) of®
((A+H2<s>)T| 0 )( 8F® )=< g® )+(6g‘s’

) (6.6)

where
fleslly < 12.5ne,[[f 9y, |leg@ly S 12.5n6,[|67, .

Let 8#6+0 and §&6+Y denote the errors in the exact sums
FEHD = P L S, F+D = F 4§79 |
Then it follows that
S7EH) = SPO — 5, fEH) = Jple) — fa® (6.7)
Using (6.7) and the identity f©=dr®+ Ax® we have

lles@lly < 12.5me, (|67l + | Allll02l; + I6f L) ,
lee@lly = 12.5mey([I6rO]l; + [[67¢+0]]5) -

From (5.22) and (the often very weak) inequality ||A||; £ nt||Al], it follows
that we can apply theorem 1 with

o = (J2+1)13.50%2,x(A) . (6.8)
Assuming n = 2 it certainly follows that
12.5n < $13.5n82

Taking (5.11) into account we obtain

( 0.99]|6#+1]|,

) < 13.5n5/2% ‘(1 )[(x' 1H+31 D]+
A fode+),) = U\ ’

i, g)} (]1J;iﬁ:l§>ﬂz) # () 0o (luz;;(ﬁ)llllj{l(li;”ﬁz) '

From this follows, using a more compact notation,

0.99]|526+D) , < 13.5n%2, M'||629] , + 1.01. M7 (6.9)
where
»+% § 1
M = "4 4)8 6.10
oty < Cewsnn oo
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and from (4.2) and. (4.3) we have

T < {el(i 2>+82' (mjl nig)}{!éz‘s)liA+82' (mgl n;) lell, . (6.11)

Assuming » =2 we have

MOG g) - C) (G +1),1) < M,

m+1 0 1 , 1 n+3 ,
(7 ) () (bt ) <
1 #n+3 * m-+1 +1

Now consider the errors made when adding the corrections. For the
error in the 7th component of #s+

(6.12)

T —r, = (14+8)F SV —r; = (1+0)F & —r)+rd,
where |8] £¢,. Hence
[P —rlly = (L+2)|FCD—wllp+eyflrll, -
Using a similar result for a4+? we get
6240 4 £ (1+2))|0ZCV|[ 4 + &2l - (6.13)

We now summarize the results obtained in (6.9)-(8.13):
Define the matrices € and D by

C=cM, D=dM, (6.14)
where
¢ = [(13.64n%/24 1.021)g, 4+ 1.021(m + 1)&," (1 + &) , (6.15)
= 1021 (m+1)ey (1 +¢,) , )
and
1 f 3 4\ b
o= () 0+,
(6.16)
M. (1 ) ( o 3 ) n+5
= Wt —),—].
2 ' m+1/ m+1
Then the errors in 26+D and 2Z(+D gatisfy the recurrence relations
|6#e+], < €=l + DlelLs (6.17)
620, = Cll6z] 4+ (D +ey )24 - .
Thus, by induction,
020y S CHROYy+(I+C .. + C(D D)ol (6.15)

1639, S CYROI,+[(C+C . ... + C-1)(D+ey) + D]zl
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Since C, D € #(x'), we can use the multiplication rule (6.2) from lemma

2. Hence, if we put
0 = o(C) = fe(x'+ %) (6.19)

and assume g <1, then, for sz 1, C¥=p*1C and

(I+C+...+C)D = (L+g+ ...+ D < (1—0)'D
(C+C24 ... +CY) = (14po+...+052)C < (1—-p)1C.

Substituting this into (6.18) and noting that 2@ =z we finally get

16294 < (e°7C+ (1 —) (D +&, )+ )2l 4

N (6.20)
16294 < (e*C+(1—g) (D +2,0))l2l4 -
If we make the reasonable assumption
(m+1)e < &
then, as a consequence of (5.11) and the assumption n 22
¢ < 1.0004(13.64+ 2-2-3/21,021)n%2¢, ,
or
¢ < 14.473%, . (6.21)

In the initial stages the term p*-1C in (6.20) dominates and we have ap-

proximately
1629 = 0*1Cll2]l4 -

This justifies calling o the initial rate of convergence. From (6.19) and
(6.21) we have the estimate

0 < 38.4n%2(y' + §)ey . (6.22)

We note that this bound for o is independent of the right hand side ond

roughly proportional fo x(A). Thus, »x*(A4) does not enter, which, remem-

bering (2.7), might have been conjectured from the general analysis.
When o<1, the term 5-1C||2||4 in (6.20) approaches zero as s —> co and

the limiting accuracy in 29 is

lim 5301, 5 (1~ D+ Okl = () 1-0K  (6.23

8=>00 “

where
K = 1.022¢, (s (m+4)|jrlly+ (n+ 5)[| Allo[llls) +

14.475/25,2( (s’ +$)|[lls + Alllell,) - {6.24)

The first term in K is proportional to &, and comes from the errors
made when computing the residuals. The second term, which is propor-
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tional to &2, comes from the errors introduced when solving the system
of equations defining the corrections. T'o get full benefit from the refine-
ment it is obviously necessary to have 5= 2t;. The first term in K will then
usually be negligible, and the limiting accuracy will approximately be
(1—p) 1, C|i2|l 4. This can be compared to the bound for the error
[B®—2|, derived from (6.18), which is C|z||,. Hence, we can expect io
gain b, figures during the refinement, and to achieve almost the same ac-
curacy as if, without any refinement, 2t; digit precision had been wused
throughout the compuiation.

Since either = or ® can be equal to zero, we obviously can not always
expect to achieve a small relative error in either ¥ or . We now
derive simple sufficient conditions for the relations

Lim I — 7|y, £ 26+ 7|5, (6.25)
S0
lim [ — x|, = 22|, (6.26)

to be satisfied. We assume that ¢ < 1 and that the second term in K can
be neglected, since the most important case in practice is ;= 2¢,. From
(6.14), (6.20) and (6.23) it follows that (6.25) holds provided

el 1+ =1
where we have put

ryt
_ gl (6.27)
IlAllalolls
Substituting for ¢ from (6.19) we obtain
1+§‘y_1 é %x,_{j.
en +3
Since ' = 1 this relation is satisfied if
y 1=} ( 29 _ 1) .
p-14
Remembering that ¢ <1 it follows that (6.25) certainly holds if
y1 < 8ol (6.28)
Similarly (6.26) holds if
2% +3%
y+Es-—~
0 %
or if
1
yS-2-f) = (6.29)
e
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We conclude that if y satisfies

16lp £y < 1,58
4
then, for sufficiently large s, both T® and ®® will have a relative accuracy
better than 2¢,. It is obvious that, for a given matrix 4, there will always
exist right hand sides for which this is not true either for ¥ or for .
However, since o<} implies 1.61p < 1.580~Y, at least one of the relations
(6.25) and (6.26) is always satisfied.

7. Error analysis of the modified Gram-Schmidt method.

This method is based on a decomposition of 4 obtained in the follow-

ing way: Let AD=A4 and AW, k=2,3,...,n+1 be defined by
7T = 4, g, TAD, dp = gl

A = AG) _ gy, T (7.1)

where q4,9s,. . .,q, is a suitable sequence of linearly independent vec-
tors. By induction it follows that

A®+) — A QR (1.2)
where RT = (r,,7,,...,7,), and for k=1,2,...,n, that
a7+ . i) = A

Thus, if we define the lower triangular matrix L by

riqj’ k ; j

L={} U= { 0 b<j (7.3)

then
LR = OTA. (7.4)

We now choose ¢q;, so that in step & the kth column of A® is annihilated,
i.e. so that
A® = (0,...,0,¢,®,...,a,®),

This is obviously achieved if we take g, =a,®. Then, by (7.2),
A= QR (1.5)

and R becomes unit upper triangular. If the calculations are performed
exactly the columns of @ will be mutually orthogonal and thus L will be
a diagonal matrix.

The method described can be interpreted as an elimination with
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weighted row combinations (Bauer [1]) or as a modification of the clas-
sical Gram—Schmidt orthogonalization method (Bjorck [2]).

We now adopt this method to solve the system (5.2). This must be
done carefully, since, as is well known, [2], the computed columns of Q
may deviate considerably from orthogonality. In the derivation we,
therefore, do not assume L to be diagonal. If we define

Y = (ylryzs o =yn)T: h = (hl’hz’- - :hn)T

by
y=Rx, h=RTg (7.6)

and use (7.5), then we can write (5.2) as

r+Qy =f
0™ =h.

Multiplying the first set of equations in (5.2) from the left by Q7 and
using (7.4) we get

97r+1y = Q7.
Thus r and y are determined by
Ly = Q"f—h, r=f-Qy. (7.7)
Now let fO=f and define f®, £=2,3,...,2+1, and y by
Ye = (@TTO =) |dp, [0 = fO—quy,, . (7.8)

By induetion it follows that

FO = f—(qy;+ ... + Q1) >
4T Q¥ - QY T UYR) = T~ T

and thus y and r=f®+D satisfy (7.7). Hence, (7.6) and (7.8) is the desired
algorithm for solving (5.2).

In the error analysis below, we again assume that (5.11) holds and
that #,> 2¢,. Let the computed factors in the decomposition (7.5) of 4
be B and O0=(q,, qy-- -, q,)- In the back-substitutions (7.6) the com-
puted quantities k and @ satisfy, cf. (5.16),

Rlﬁ = 3_” RzTii =g,
where B,=R+ G,, and
Gz £ (e1+ne)| Rz < 1.002:||R |5, ¢ = 1,2. (7.9)
Let 4 and fO,f®,. . f®+D=F denote the exact results when perform-
ing (7.8) using the computed quantities g, and k. If we put

BIT7— 18



274 ARE BIORCK
€ =;—F’ €y =g_.g,

then the following expression for the errors in 7 and & holds:

(D-wmm()e(as) o
where

|4y - I| -O\(I| 0 \/I | ©
5= (are) P (rmo) o17) (e 2)
AT |0 0| R/ \O|L1/\QT| —R, T
Note that, in order to make the errors small, B-1, which is not symmetric,
has to be a good lefi-hand inverse. It is readily verified that

sap_[ 9F | -E
N L ) .

where
F, = L'R,"(E,+QG,)*, E, =QR-A, 7.12)
F, = I-QE4374, B, = R-L2gra,
and from [2] p. 10 we have the following results:
Byl £ 1.5(n—1)ey|| Al  [[Eqllp = 3.25(n— 1)z 4|5 (7.13)

1Esllp < 1.9(n—1)ine|lAllg .

We now estimate the rounding errors made in (7.8). To simplify the
analysis, we assume that

I@eﬂz =1, k= 1,2,...,n.

Since this can be achieved by a proper scaling of the columns of A4, this
assumption will not influence the derived floating point error bounds.
Then we have

Fe - (I-F@nFo -+
If we define the error vector 7® by

o0 = (I—q,q,0) % + G Jy, +7® , (7.14)
then, subtracting,

FEO—FED = (I-G @, ") FO—F @) +1® .
Since f0=fF®=f it follows that

3
[Fo+D — fE+D), < S @Y, k= 1,2,...,m. (7.15)
e}

For the error in 7, we write
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Ti— T = Ty + @7 (FO-F®)
where ¥, is the exact multiplier corresponding to the computed vector
§®. Then

Te— el < T— v’ |+ 79— FO, (7.16)
and

| = (TPl + Byl -

Now, if we make the reasonable assumption that 2(m+ 1)e; £0.01, then
we can use results from [2] p. 7-8, duly modified, to obtain

=Yl < 2.02e,(1F®p+ By (7.17}
and

@l < (1= e0)texl[FEDlly+ e Tl + 17— | -
Consequently
(L=e)ln®lly < ellF=+0]lp+ 3028, (F P+ Byl) (7.18)
From (7.14) it follows that
(%Dl < 1FD+ o] + @]l
and using (7.18) we have
(1= 2e )|+, < (14 2.026)(FPflo + By -
The assumption (5.11) certainly implies that
(1+2.02¢,)/(1 — 26,) < 1.002V/»
and thus, for k=1,2,...,n,
7%y < 1.002(Ifla+80), 8 =§1 171 -

Using this bound for the growth of the computed vectors f® in (7.17)
and (7.18) we obtain

=o' < 4.05%e(|Iflla+ %)
@]y < 4.05e4(]|fllz+8z) -

Using Schwarz’s inequality we get

(7.19)

k k £ _ 1 : _
< 2
Elsy s (EIV ) lirlly < ng (k+ L)|h/l
and
k-1 1 -
Yot 38, < = Bl
8k+r§18 <V3 liRelly
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Henece, from (7.15), (7.16) and (7.19) we have

lleglly = [FD—Fol, < 4.05(n+ 1)eyp , (7.20)
[T — Gl < 4.05keyp ,
where

¢ = [fll+ %%Uh (7.21)

Using Schwarz’s inequality again we obtain

lealls = [y —yliz < V~4057b (n+ L)ep . (7.22)

From (5.2) we have h=R-TA4%r=Q%r, and thus
[l = lIrloa+ [ Allolllle,  Rlly = [#ls - (7.33)

Since the computed matrix @ is not exactly orthogonal, a further
strict analysis becomes very cumbersome. In [2] pp. 12-15 we have
shown, however, that

H—QT0|, £ const.d+0(5?), (7.24)
where
8 = n2ex(A).

In the following we therefore assume that 6 is o small guantity. From (7.24)
it follows

IQll; = 14+0(8), LY, = 1+0(3) .

Let A= QR where Q is normalized so that Q7Q =1. Then we also have
(21p.14)
IRz = |R]5(1+0(3)) = [|4]|z(1+0(3)) .

Using these relations, we get from (7.9) and (7.12)

By + @ Gyllg < 1.5ne,)|A5(1+0(8)),

<
B 7.25
1B, + Gylly < 1.9-n8%, ] A]5(1+0(5)) (7.25)

Neglecting powers of 6 we derive from the inequality
AR,y < il Al By, = nhe(A)(1+0(8))

$=1,2, (7.10)~(7.12) and (7.25) the estimate

7Bl 5 Lonkot e (7, i.gi‘f) F o)
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Further, from [|k],= ||R]y(1 + 0(8)), (7.21) and (7.23) it follows that

n%
v < Iy 1 +——_) 1Al + 0(5) -

V3

Hence, we obtain from (7.20) and (7.22), neglecting powers of 8

1
lleqlla Y f
(sgs) = 40+ l)sl(x %) (1 1) e
After some manipulation we have finally

%+0.9()/3+3n71) 1.27)/3(1+1.25n)
) llz]l.4 -

—Z|4 £ Lont(n+1
=2y = Loni(nt Ley (x(%+(}.9(%%+l/§)) - 1.27(nt + 1.25)

If n 2 3, which we therefore assume, we can obviously write this relation in
the form

k=%l < LonH(n+ 1)e,Mgglle] 4 +0(6%) (7.26)
where

Mg = (i) (n+0.9(n%+1/§), 1.27(nk +1.25)) € M (x) .

Using this as a starting point, the iterative refinement with the Gram—
Schmidt method can be analysed in a way similar to that used for the
Householder method. Obviously, the effects of the errors in the residuals
will, in the first approximation, be the same.

It will again be true, that if ¢,2 2¢,, we can expect to gain #, figures
during the refinement. To compare the limiting accuracy of the methods
it is therefore sufficient to look at the error bounds for the solution of the
gystem of equations (5.2).

A result corresponding to (7.26) for the Householder method follows
from (6.9), if we put s=0 and 7=0. Then, we get

le—2ly < 13.650%2e, Myliz||, + 0(5%) (7.27)

My = C:) (2+535).

Comparing (7.26) and (7.27) it is seen that when n <110 the bound
for the Gram-Schmidt method is always smaller. In particular for large
values of » and y (defined in (6.26)), the ratio is approximately 1:9.

By lemma 1 and 2 the rate of convergence for the Gram—Schmidt
method is approximately equal to

where

ol
calen

2
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0eg = 1.5n¥(n+ 1)es0(Mgg) (7.28)
where

o(Mgg) = %+0.9(n +)/3)+1.27(nt +1.25)
< L27(nt+2)(%+0.71) .

This can be compared to the corresponding expression for the House-
holder method which is

o = 13.65n%%, 8(x+ §) . (7.29)

For reasonable values of n, the Gram-Schmidt method is again seen to
be more favourable. The advantage when %> 1 and y> 1 is however less
marked.
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