
Part II

NUMERICAL MATHEMATICS

BIT24(1984), 206--224

S O L V I N G T H E M I N I M A L L E A S T S Q U A R E S P R O B L E M

S U B J E C T T O B O U N D S O N T H E V A R I A B L E S

PER LOTSTEDT 1)

Department of Numerical Analysis and Computing Science, The Royal Institute oJ]Technology,
S-100 44 Stockholm, Sweden

Abstract .

A computational procedure is developed for determining the solution of minimal length to a linear least
squares problem subject to bounds on the variables. In the first stage, a solution to the least squares
problem is computed and then in the second stage, the solution of minimal length is determined. The
objective function in each step is minimized by an active set method adapted to the special structure of the
problem.

The systems of linear equations satisfied by the descent direction and the Lagrange multipliers in the
minimization algorithm are solved by direct methods based on QR decompositions or iterative
preconditioned conjugate gradient methods. The direct and the iterative methods are compared in
numerical experiments, where the solutions are sought to a sequence of related, minimal least squares
problems subject to bounds on the variables. The application of the iterative methods to large, sparse
problems is discussed briefly.

1. Introduction.

It is wel l -known tha t the so lu t ion to the l inear least squares p r o b l e m subject

to bounds on the var iables

(1. l a) min Ilax + blh,

(1.1b) c i < x i < d i , i = 1,2 ,k ,

xi > ci, i = k + l 1,

A e R '~ ×", b e R m, x e R", 1 < n, is unique if A has full co lumn rank, see e .g .p . 79

in [7]. If the co lumns of A are l inear ly dependent , i.e. r = r ank (A) < n, then

there is in general a, mani fo ld M of so lu t ions to (1.1). In o r d e r to de te rmine a

unique solut ion x to (1.1) even if A is rank-deficient , the value of x of min ima l

length in M satisfying

(1.2) min llxl.]2,

x ~ M = {y]y solves (1.1)},

Received May 1983. Revised November 1983.
t) Present address: TKLUB2, Aerospace Division, SAAB-Scania, S-581 88 Link6ping, Sweden.
This work was supported by The National Swedish Board for Technical Development under contract

dnr 80-3341.

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . . 207

is chosen here. In a problem (1.1) without constraints, l = 0, the solution x to
(1.1) and (1.2) is the Moore-Penrose pseudoinverse solution to the least squares
problem (1.1) [1]. In this paper we shall develop numerical methods for solving
(1.1) and (1.2), particularly suitable when a sequence of problems with a slowly
changing matrix A ~, j = 1, 2 is to be solved or for large, sparse problems.
The first type of problem appears e.g. in the time-dependent simulation of
contact problems for mechanical systems [16].

The problem (1.1) is a special case of the constrained least squares problem
for which several algorithms have been proposed [6, 13, 15, 17, 19, 20]. We
intend to exploit the structure of the constraints in (1.1) and do not need the
full generality of these methods. The solution of (1.1) is also the solution of a
quadratic programming (QP) problem with the objective function

(1.3) ½xrGx + xrh,

where G = ArA and h = Arb, with the constraints (1.1b). Methods for the QP
problem defined by (1.3) and (l . lb) are described in [7] and [10]. Iterative
procedures for solving systems of linear equations have been adapted to the
minimization of (1.3) over (1.1b) with a symmetric, positive definite G in [4]
and [5] (the successive over-relaxation method) and in [18] (a preconditioned
conjugate gradient (cg) method). See also the recent books by Fletcher [7] and
Gill, Murray and Wright [12]. In most of the above mentioned papers the
assumption is that A in (1.1a) has full column rank or that G in (1.3) is
nonsingular. Here we allow r = rank (A) to satisfy r < n and determine the
solution of minimal length.

This paper is organized as follows. In the next section the two algorithms for
solving (1.1) and (1.2) are described. The systems of linear equations satisfied by
the descent directions and the Lagrange multipliers are solved by direct
methods or by the cg methods developed by Bj6rckand Elfving [1]. A particular
choice of preconditioning matrices for a sequence of related, dense problems
(1.1) and (1.2) is jugtified in section 3. The numerical results are presented in the
final section. The iterative methods are compared with the direct methods and
conclusions are drawn from the experiments.

In the sequel I1" II denotes the Euclidean vector norm or the subordinate
spectral matrix norm. I is the identity matrix of appropriate dimension. The
notation for the range and the nullspace of a matrix B is R(B) and N(B),
respectively. The orthogonal projector on the space Y is denoted by Pr- For
simplicity, we assume that c i < d~, i = 1, 2 k.

2. The minimization algorithms.

The solution to (1.1) and (1.2) is computed in two separate stages, First, a
solution to (1.1) is determined. Second, the minimum value of x in (1.2) is

208 PER LOTSTEDT

calculated. The second stage is not necessary if rank (A) = n. The active set
strategy by Gill and Murray [11] for linearly constrained QP problems is
modified for efficient handling of the least squares problem (1.1) and the least
distance problem (1.2) taking their special properties into account. In a problem
without constraints, ! = 0, our method to solve (1.1) and (1.2) is identical with
algorithm 6.2 in [1].

2.1. The least squares problem.
Assume that x is feasible, i.e. x fulfils (1.1b). Let the indices of x belong to one

of the sets F, P or X. I f j ~ X then x j i s f i x e d on its lower or upper bound, cj or
d~. The constraint xj => c~ or x~ < dj is active. If j e F then x~ is a f ree variable.
The remaining variables x~, j E P = {1, 2 n}l{F w X}, are termed passive. Let
n r be the number of free variables and let E F E R n × ,r be such that the vector
x r = E r x contains all the free variables. Av consists of the columns a t of A such
that j e F, i.e. A v = A E r. In the optimization algorithm we attempt to minimize

IIAvxp+b'll, b' = b + ~. ajxj,
j ~ X u P

while maintaining the feasibility of x. The free set is altered until certain
optimality conditions are met. The algorithm for solving (1.1) is:

Algorithm 1.

Initialization.
1. Let x be feasible, let X = O and choose the initial F and A v.
2. Compute the residual r = A x + b.

Main iteration loop.

3. If F 4:f3 then compute a new descent direction p by solving

(2.1) A r A v p + A r r = O.

Otherwise go to 7.
4. Let Op, 0 >= O, be the maximal step possible in the direction p in the space

of free variables without violating any constraints and let 0 = min (0, 1). The
step length 0 satisfies

(2.2)

T 7 = (c , - x3/p~, i ~ F_ = {JlJ < 1, j ~ F, Pi < 0},

z+ = (d , -x i) /p , , i e F + = {JiJ ~- k , j ~ F , PjI> 0}.

0 = min (rain zT, min ~+, 1).
i c E - IGF+

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . .

Note that pi is not necessarily the ith component of the vector p.
5. Update x and r

209

x i := xi + Opi , i E F,
(2.3) r := r+OArp.

6. If z 7 > 1, i t F _ , and z~+ > 1, i t F + , in step 4 then go to 7. For each xj
attaining its lower or upper bound in step 5, transfer j from F to X and remove
the corresponding column in At. Go to 3.

7. Compute the gradient d of the objective function

(2.4) A = ATr = "ATAx+ATb.

8. Let

Ai ' Xi = d i

¢~i = _ A i , Xi = Ci
i t X .

Find 7 defined by

= max (max fii, max Mill
i eX ieP

and a j such that 7 = fij, J t X, or 7 = IAjl, J t P. If ~, > e, a non-negative error
tolerance, then the objective function can be decreased further if x~ becomes a
free variable. Transfer j from X or P to F and add the corresponding column to
A F. Go to 3. If 7 -< e, then an approximate op t imumhas been found.

9. End of algorithm.
We shall outline a proof of convergence of the algorithm after a finite number

of steps to an optimal solution of (1.1). Assume that e = 0. The main iteration
loop consists of two loops, an inner loop: steps 3-6, and an outer loop: steps 3-
8. To reach step 7 we have F = O or 0 = 1. I f 0 = 1 then the actual step taken
in the space of free variables satisfies (2.1). Hence, by (2.3) and (2.4) ErA = 0
and after termination of the algorithm the following relations are valid fo r x~

and Ai:

(2.5)
f i t F : A i = 0, if i < l then xi satisfies the constraints in (1.1b),

i t X : i f x i = c ~ t h e n A ~ > 0 ,
if xi = di then Ai =< 0,

i t P : A i = O, x~ has not been changed by the algorithm.

These are the necessary and sufficient Kuhn-Tucker conditions for a minimum
of (1.1), see p. 159 in [15]. The finiteness of a similar algorithm is proved on pp.

2 ! 0 PER LOTSTEDT

160-164 in [15]. The termination of the inner and outer loops in algorithm 1
after a finite number of iterations can be proved along the same lines. At step 7
we have Air = 0. If we return from step 8 to step 3 then the column a i added to
A r at step 8 is linearly independent of the previous columns in A v since
A~ = a~r 4= 0. Thus, if F is selected such that A r has full column rank initially,
then this property is preserved.

The system of linear equations (2.1) can be solved either by a direct method
based on Householder transformations [2] or by the preconditioned conjugate
gradient method CGPCNE devised by Bj6rck and Elfving [1]. In the direct
solution procedure suitable for an isolated, dense problem (1.1), a QR
decomposition of A F, Ae = QvR r, is updated when F is changed and the descent
direction p in (2.1) satisfies

(2.6) Rvp + Q[r = O,

see pp. 180-181 in [12]. Methods for modifying the QR decomposition of a
matrix when columns are added to or removed from the matrix are described in
[9]. In step 1, F is chosen such that rank (A)= rank (At). The criterion for
determining the rank of A is based on [14].

A preconditioning matrix CF is introduced in [1] to improve the convergence
rate when applying the cg method to

(2.7) CF T A~AFCF lV + CF T A~r = O.

If we take p = C i l v we have a solution to (2.1). The reason why we wish to
solve (2.1) by a preconditioned cg method is that when a sequence of problems
(1.1) is to be solved, where the variation of A is small from problem to problem,
the same preconditioning matrix can be used for several consecutive problems.
Numerical results are presented in section 4 with the direct method and with
the iterative method and a preconditioning matrix C r discussed in section 3.1.
The results indicate that the iterative method is more economical than the direct
method for a sequence of problems.

Fletcher and Jackson [8] have proposed a more efficient criterion for
reintroducing a fixed variable into the set of free variables in step 8. Since the
gains reported in [8] with their improved strategies are small in comparison
with the simple criterion in step 8 for the QP problem with a positive definite G
in (1.3), we have not attempted to include their ideas in algorithm 1. The
algorithm by O'Leary [18] is designed for a symmetric, positive definite G in
(1.3) and differs from algorithm 1 in the strategy for releasing variables from
their bounds and in that the cg method is directly involved in the search for a
new feasible point.

S O L V I N G THE MINIMAL LEAST SQUARES P R O B L E M . . . 211

2.2. A least distance problem.

Split the solution x of (1.1) into two parts, x = x R + XN, XR ~ R(Ar), xN ~ N (A).

According to prop. 3 in [16] XR is uniquely determined, but any XN such that x
remains feasible is admissible. Since llxll 2 = IIxRll 2 +llXNll 2, the problem (1.2)is
equivalent to

f min ItXNIt, x N e N (A) ,

(2.8) ci < xRi + xm < di' i = 1, 2 k,
xRi + x m >= c i i = k + l I.

Let (U R, U) be the orthogonal matrix in the QR decomposition of At,.

(2.9) A r = (UR, U)S.

N (A) is spanned by U e ~ "xt"-'~ and R(A T) by UR~I~ "X'. Then there is a
z = U r x ~ R ~-" such that x N = Uz. The problem (2.8) can be rewritten as

min Ilzll,
(2.10) ci < uiz+x~i = d~, i = 1,2 k,

uiz+xRi ~ c i, i = k + l l,

where u~ is the ith row of U. This is a least distance problem, see [7]. The
algorithm for solving (2.10) is based on the QP algorithm by Gill and Murray
[11]. A different procedure for least distance programming is given in [18].

Introduce the notation T for the active set of constraints,

T = { i l x i = c i or x i = d i } .

The set of free variables is F, cf. algorithm 1. The input x to this algorithm is
the output of algorithm 1.

Algorithm 2.

Initialization.
1. Choose F and let T = {1, 2 n}lF.

Compute z = Urx and x N=PN~a)x and let q = n - r - t , where t is the
number of elements in T.

Main iteration loop.

2. If q > 0, then compute a new descent direction p = UZrs , where Z r and s
satisfy

(2.11) Z r e R t"-')Xq, Z ~ Z r = I , u i Z r = O , i ~ T , s = - Z ~ z .

Otherwise go to 6.

212 PER L6TSTEDT

3. Let 0p, 0 _-> 0, be the maximal step possible in the direction p without
violating any constraints and let 0 = min (~, 1). The step length 0 satisfies

(2,12)

~7 = (ci-xi) /Pi , i ~ F _ = {JlJ < l, j 6 F , pj < 0},

T[= (di-x~)/p ~, iEF+ = {JlJ < k , j ~ F , pj > 0},

0 = min (min ~/-, min ¢i +, 1).
i ~ F - i~F+

4. Update z, x N and x

(2.13)
z : = z + O Z r s ,

xN : = x N + Op,

x := x+Op.

5. IfT 7 > 1, i e F _ , and ~+ > 1, i e F + , in step 3 then go to 6. If an xj attains
its lower or upper bound in step 4, transfer j from F to T and update q,
q := q - 1 . Go to 2.

6. Compute the Lagrange multipliers 2~ in

(2.14)
f H = r r

(Ul,U2 uT),

HA = z, 2 e R ~,

2i = 0 , i~{1 ,2 l}lT.

7. Let T_ = {JlJ e T, xj = cj} and 7"+ =: {JlJ ~ T, xj = dr}.
Find ~, defined by

= max (- min 2i, max 2i)
i ~ T - leT+

and a j such that 7 = - 2j, j ~ 7"_, or y = 2~, j E T÷. If ~, > e, a non-negative error

tolerance, then IIx~ll = Ilzll ~can be decreased.further if x~ becomes a free variable.
Transfer j from T to F and increase q, q : = q + 1. Go tO 2. If T < e, then an
approximate optimum has been found.

8. End of algorithm,

A full step in the descent direction p, 0 = 1, minimizes ½zrz subject to the
constraints uiz+xgi = O, i t T. The relations in (2.14) and

{2~ > O, i • T_,
(2.15) 2i < 0, i t T+,

are the necessary and sut~cient Kuhn-Tucker conditions for the optimal
solution of (2.10). These conditions are fulfilled in step 7 if 7 < 0. If onl~j one
new constraint j is included in T at step 5, then u~ is linearly independent of the

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . . 213

previously active constraint vectors u i, i t Tol d, since Pi = u~ZTs ~ 0 but
Pi = uiZrs = O, i t Totd, cf. p. 201 in 1-12]. Let H r consist of the columns u r,
i t 7". If T in step 1 is such that H r has linearly independent columns initially
then HT has full column rank throughout the iteration. If q = 0 in step 2," then
there is no descent direction and Z r is null. In algorithm 1, we have assumed
that c~ < di and at any point x the binding constraints cannot be linearly
dependent. Contrary to the case in algorithm 1, the constraints in algorithm 2
satisfied as equalities may be linearly dependent. According to p. 201 in [12]
there is a risk of cycling, i.e. we return to the same set F repeatedly without
decreasing tlzl[. However, this phenomenon has not been observed in the
numerical experiments in section 4.

The question now arises how to compute the descent direction in step 2 and
the Lagrange multipliers in step 6. We shall discuss two possibilities: one direct
method and one iterative method.

In the direct method, the QR decomposition of A r is first determined by
Householder transformations [2]. The first I rows of U in (2.9) define the
constraints in (2.10) and PNta) = UUr. The decomposition of H r is

(2.16) H r = v (R) = v 1 R , V = (V I , V2) , VrHr = 0,

where V is orthogonal and R upper triangular and nonsingular. Since V 2 spans
N(H~) we choose Z r = I/2 in (2.11). The vector of components of 2 in (2.t4)
corresponding to the columns of H T is denoted by 2 r. By (2.16) 2 r satisfies

(2.17) 2 r = R - I V r z .

The factorization (2.16) is updated by the methods fn [9] when a constraint is
added to T in step 5 or dropped from T in step 7. Initially, we take T = 0.

The iterative method is based on the algorithm C G P C M N by Bj6rck and
Elfving [1]. C G P C M N is a preconditioned cg algorithm for solution of the
consistent system

(2.18) Bu = BBTv = f, f t R(B).

With a proper choice of preconditioning matrix D, the convergence rate of the
cg iterations is faster when

(2.19) D - T B B r D - l w = D - r f v = D- lw,

is solved instead of (2.18).
In the algorithm we search for a minimum in the subspace N(AF). The

214

resulting p in step 3 is

P E R L O T S T E D T

(2.20) p = - UZTZTTUTx.

The matrix W = U Z r is orthogonal and W W r is an orthogonal projector.
Define U r = E~'U and PF = ErP • By (2.11) W r = U e Z r is also orthogonal and
A r W r = A W = 0. The dimension of N(AF) is equal to the number of degrees of
freedom of z, which is q according to (2.11). Thus, W r spans N(Ar) . Use
C G P C M N to solve (2.18) with B = A F, f = 0 and the initial approximation

bl ~ - - X F ,

(2.21) Aru = O.

It follows from p. 158 in [1] that after termination the solution is
u = --PNIAFIXp. We draw the conclusion from (2.20) that u = - W r W r x r = Pr.

The descent direction p in step 2 is easily constructed from Pr and the fact that

p i = O , i ~ T .

After a full step in the descent direction, 0 = 1, we infer from (2.13) and (2.11)
that

(2.22) PR¢zT)Z = Z T Z r Z = O.

Augment 2 by the components 2 i = 0, i = I + 1 n, s o t h a t 2 e W . Then by
(2.14), z and 2 satisfy

(2.23) Ur2 = z

at step 6.
It follows from (2.11) that

(2.24)
0, i~ T,

PR(zT)Ur = ZTZ~UT, i e F .

Combine (2.22), (2.23) and (2.24) and let 2 r = E~2 to obtain the identity

0 = PR(zr)Z = ZrWrr2e.

Since the columns of Z r are linearly independent we have

(2.25) PN(A~r2F = 0

at step 6. A 2 satisfying (2.23) can be written

(2.26) 3. = Uz + A r y = xN+ Ary ,

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . . 215

where y is arbitrary. According to (2.14) we have 2 r = 0 in step 6. Taking (2.25)
into account, an additional condition on the components in 2 r is PRIAD2F = 0
which is equivalent to AF2 r = 0. Therefore, by (2.26) y solves

(2.27) AFA~y + ArxNv = O, XNr = E~'XN.

This equation (2.27) is solved by CGPCMN with B = A r and f = -A.A.A.A.~XNF in
(2.18). The resulting value of y is inserted into (2.26) to obtain 2i, i t T, used in
the tests in step 7. The dimension q of N(Ae) is reduced by one when a column
aj is removed in step 5 and is increased by one when A r is augmented by a
column aj in step 7. Hence, the rank of A F is constant and there is an hj such
that a i = Arh ~, j~ T. Suppose that Yl and Y2 satisfy (2.27), AFAr(y1 -) '2) = 0.
Since N(ArA~) = N(A~), we find A~(yt -Y2) = 0. For j ~ T the same result is
valid, at(y1-Y2) = hrAr(y l -Y2) = 0, and consequently, At(y1-Y2) = 0. The
computed 2 in (2.26) is unique. The computation of z in the steps 1 and 4 is not
necessary in the iterative method. For a certain application, a preconditioning
matrix Dr for (2.21) and (2.27) is proposed in section 3.2. Numerical test runs
are reported in section 4.

The sequence of approximations to the optimal value of x is the same in both
the direct and the iterative method. The advantage of the iterative method is
that we do not have to determine U in (2.9) and 1/2 in (2:16) explicitly.

The value of A in (2.4) is not altered by algorithm 2. The Kuhn-Tucker
conditions (2.5) are fulfilled also at step 8 of algorithm 2. If Ai @ 0 in the end of
algorithm 1, then we conclude that xi = c~ or x~ = d~ for all steps of algorithm 2
and one would expect that X c T. Unfortunately, the columns of H in (2.t4)
may be linearly dependent if we take T = X and we do not know which
constraints are binding in problem (2.10) with Lagrange multipliers satisfying
(2.14) and (2.15). Consider the following illustrative example.

min (- 1 1] \x2] + (-21) i

(2.28) 0 < xl < 1,

x~ _~0.

The solution is (i ,0) and d r = (-1 ,1) . It is easily shown that the problem
corresponding to (1.2) and (2.10) is

(2.29)

min z 2,

0 _-__ z / , / 2 + 0 . 5 ~ 1,
z1.,/2-0.5 _-__ o.

The binding constraints from (2.28) are xl = 1 and x2 = 0. Let T = X in (2.29).

216 PER LOTSTEDT

Then H r = (1, 1)/x/2. The columns of H r are linearly dependent and 2 in (2.14)
is not uniquely determined. The correct solution is 2 r = (0, 1).

We conclude this section by a few comments on the solution of a problem
with a sparse matrix A. An equation of the form (2.1) is solved in [1] by the cg
method in order to take advantage of the sparsity of A v. Note that if A is sparse
then this property is normally inherited by A r. Algorithm 1 in combination with
CGPCNE and a preconditioning matrix CF in (2.7), which is simple to update
when F is changed, is a possible alternative for sparse problems (1.1). Similarly,
by solving the two systems (2.21) and (2.27) in the algorithm for the least
distance problem (2.10) with CGPCMN we can utilize the sparsity in order to
reduce the storage requirements. The preconditioning matrix D in (2.19) should
also be chosen such that it is updated conveniently when F and A r are altered.

3. The preconditioning matrices.

In this section transformations of the systems of linear equations (211), (2.21)
and (2.27) are suggested to improve the convergence rate of the conjugate
gradient method. The preconditioning in [1] is well suited for sparse problems.
We focus here on preconditioning matrices with the purpose of increasing the
efficiency when solving a sequence of related problems (1.1) and (1.2) defined by
(A~,bi, c~,dJ), j = 1,2 with dense matrices A j. An application from
engineering physics, where such a sequence of problems is to be solved, is the
simulation of time-dependent contact and friction problems in rigid body
mechanics. Approximations of the positions and velocities of the bodies are
computed at discrete time points tt, t z The contact and friction forces in the
system of bodies at tj are the solution of a time-dependent least squares
problem. If tj = tj-1 +h, then IIAJ-AJ-I[I = O(h). The columns of A j are often
linearly dependent in this application. For further details see [16].

3.1. The least squares problem.
The normal equations for the restricted least squares problem, min [[A~p+rll,

are solved in step 3 of algorithm 1. A possible choice of C r in (2.7) is to let
Cv = Rv, where R F is upper triangular and Qv is orthogonal in an approximate
QR decomposition QrRF of A~. Let F be a maximal set of linearly independent
columns in A 1 at step 1 for j = 1. Compute the decomposition A~ = QFRv.
Taking Rr from the exact QR decomposition of A~ as preconditioning matrix
CF, the cg method CGPCNE [1] converges immediately in the first iteration. As
the free set F in step 1 for j = N + I , F~ +1, take F in step 9 for j = N, F~. The
initial preconditioning matrix for j = N + 1 is the same as the last matrix for
j = N. A fresh QR decomposition of AN +1 is determined at step 1 only if the
rate of convergence was too slow for j = N. When A~ is altered in step 6, the
corresponding column is removed from RF using the formulas in [9]. If a
column a~ is added to A~ in step 8, then R F is updated with a,-t.

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . . 2 1 7

If the difference in the data (AJ, bi, d , d j) is small between j = N and
j = N + 1, then the differences in the solutions x j and the sets X j and F j at x j,

j = N, N + 1, are usually small.
The rank of A~ +a at step 1 defined by F9 s may be less than rank(Rj,). The cg

process will still converge to a solution of (2.1) and (2.7), see [1]. It is possible
to extend the convergence proof of algorithm 1 to the case where the columns
of A F are linearly dependent by slightly modifying the ideas in sect. 2.1 and ch.
23 in [15].

3.2. Computation o f the minimal solution.

Two systems of the form (2.18) are solved in the iterative version of algorithm
2. The solution to (2.21) defines the descent direction in step 2. The Lagrange
multipliers in step 6 are determined by the solution to (2.27). We transform the
two systems (2.21) and (2.27) by the same preconditioning matrix D = D~ in
(2.19).

After permutation of the rows, every B in (2.!8) can be written as

(3.1) B r = (B r, B~Bz),

where BI has full row rank and rank (B) = rank (Bx). Since f e R(B) there is a 9
with the property f = Bg. By the definition (3.1), the solutions ui and v~ to

BIUl = BIB~v l = Bag = fl

are also solutions to (2.18) with u = ua and v = (vr,0) r. Let A:eRr×"F , where
r = rank (Av) and n F = r + q, denote a submatrix of A v corresponding to B1 in
(3.1). The solution u of

(3.2) A:u = 0

satisfies (2.2t) and y = (y~r, 0)r, where Yl solves

(3.3) AfA~y 1 + AfXNF = O,

satisfies (2.27). Compute the QR decomposition of A ff by Householder
transformations

(3.4) \01 0 : '

and determine the rank of Ar simultaneously, see [14]. R y e R" x, is nonsingular
t R r 0 m r and and upper triangular and Q v e Rn~×nF is orthogonal. Let A f = ~ f , P~F

apply C G P C M N in [1] to (3.2) and (3.3) with the preconditioning matrix

218 PER LOTSTEDT

D F = Ry. The factorization (3.4) is updated when rows are added to and deleted
from AF r by the methods on p. 529 in [9] and p. 227 in [15].

When we wish to solve a series of problems,.we proceed as in the least
squares problem. In the first problem of the sequence, j = 1, we take T = O
and compute the factorization (3.4) to obtain the preconditioning matrix Ry.
When the number of columns of AJF is changed then Ry is updated. A new
decomposition of A t is determined only if motivated by efficiency. Usually, we
choose the set F~ +l identical to F9 N as in section 3.1, but if there is ajeFU9 such
that the result x s from algorithm 1 is strictly inside the feasible region, then j is
included in F~ +1 and A v and Ry are modified accordingly. Since we need the
projection x N = PN~A~X initially in step 1 and later in (2.13) and (2.27), the QR
decomposition of (A1) r is saved for use in future computations of xu by
CGPCMN, cf. (2.2t). The rows of Ar ~+1 to be included in A.~ +~ are determined
by Ry from the previous problem. In exceptional cases, we may have
rank (A~ +1) < rank (Ry). The algorithm C G P C M N still converges to a solution
of (3.2) or (3.3) according to [1]. A more serious event is when rank(At)
increases between j = N and j = N + 1. Then there is a row a . of Av u+ 1, linearly
independent of the rows in A~ +~ defined by Rf, such that ((A~ + ~)r, a . r) is the
matrix corresponding to B~ in (3.1). Hence, (2.21) and (2.27) will in general not
be satisfied by the solutions to (3.2) and (3.3). A remedy is to compute the
residual of (2.21) or (2.27) the first time they are solved in algorithm 2. If this
residual is not sufficiently small, then we need a new factorization (3.4).

4. Numerical results and discussion.

Numerical experiments with an implementation of the preconditioned cg
method for solution of (1.1) and (1.2) developed in sections 2 and 3 are reported
in this section. The direct methods are compared with the iterative methods
applied to sequences of problems with dense matrices A j and small differences
between the data (A s, b j, d, d s) for consecutive problems.

We generate A s and b j, j = 1, 2 in the following way:

(4.1)

A s = K I K 2 , s ~ K { 6 R " ×R, K s e R R×", 0 < R =<min(m,'n),

K~pq = uniform [- 2 , 2] , a uniformly distributed random number in
[- 2 , 2] ,

K~pq = uniform [- 2 , 2],

b 1 = uniform I - n , n],
Kj+ 1 ipq = Klp~ + uniform [-0 .02 , 0.02], i = 1, 2,

b j+ 1 = b~+uniform [-0 .02, 0.02].
P

The lower and upper bounds in (1.1b) are c i = - 1 and d~ = 1 for i _-< k and
c i = 0 for k < i _-< l, i.e. c j = c, d J = d, for all j. The very first x in each sequence

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . . 2 1 9

of problems is also generated by random numbers consistent with the
constraints.

The direct algorithm for solving (1.1) is implemented according to section 2.1
in the routine QR1. The routine CG1 is coded following the description in
sections 2.1 and 3.1 of the iterative method for (1.1) with one exception. When
an exact QR decomposition of A~ is available, then (2.6) is solved instead of
(2.7). Hence, QR1 and CG1 are identical for the first problem in a sequence.

We interrupt the cg procedure when IlA~Arp,+Arrll < e/l[R~ll] and accept
p , as solution to (2.1). It is shown in [16] that the error 3p in p , satisfies
IIAr3pll < e. An estimate of IIRn7 111 is obtained by the method in [3].

The routine, where the direct method in section 2.2 for solving (1.2) is
implemented, is denoted by QR2. The routine for the iterative method in
sections 2.2 and 3.2 is written in two versions, CG2a and CG2b. We take
T = O in step 1 of algorithm 2 in CG2a and save only the QR decomposition
of A T for the next problem in the sequence. In exact arithmetic, the routines
QR2 and CG2a follow the same path x o, xl, x2 in their search for an optimal
x. The routine CG2b is an implementation of the iterative method precisely as
described in sections 2.2 and 3.2. The cg iterations are terminated in both CG2a
and CG2b when the residual r of (3.2) or (3.3) fulfils Ilrll < e. If convergence is
not achieved in 20 iterations, a new factorization (3.4) is determined.

In the examples, the performance of the routines is measured by the number
of flops required for convergence to an optimal value. A flop is here defined as
one addition or subtraction and one multiplication or division in floating point
arithmetic. We use the same sequence of random numbers t/0, Ul,U2,... to
generate the data for each set of test examples. Moreover, A j is a square matrix,
m = n in (4.1). By constructing A ~ as in (4.1) we have r = rank (A j) _-< R and
almost always r = R. The error tolerance e is 10 -4. The programs were run in
single precision on a DEC-10 computer with a machine unit of 0.7- 10 -8. A
routine in one of the two groups QR1, CG1 and QR2, CG2a, CG2b is
initialized with the same x as the other member(s) of the same group. Let the
difference between the results produced by two members of a group be 3. Then
3 satisfies 11311 < 10-5 in almost all examples below.

In the first sequence of problems m = n = 20 and R = 10 in (4.1) and k = 7
and l = 14 in (1.1b). Table 1 displays the number of flops required when QR1
or CG1 solves (1.1) and QR2, CG2a or CG2b solves (1.2) with the data
(A j, M, c, d), j = 1, 2 10. The number of variables on a bound on termination
of algorithm 2 is denoted by nvb. The average number of flops per problem is
also shown. The graphs of the quotients

QI = (CG1 flops)/(QR1 flops),

(4.2) Qn = (CG2a flops)/(QR2 flops),

Qm = (CG2b flops)/(QR2 flops),

220 PER LOTSTEDT

Table 1. The number of flops required b y the routines Q R1, CG1, and Q R2, CG 2a, CG 2b
for solving a sequence of problems (1.1) and (1.2).

j QRI CG1 QR2 CG2a CG2b nvb

1 29108 29108 15018 28335 29125 4
2 17816 11495 13921 22075 7753 4
3 14141 4514 13921 25374 9382 4
4 11922 4514 13920 25378 9382 4
5 18131 4513 13340 21166 21903 3
6 18401 5084 13919 25890 14365 4
7 16077 5084 13920 28162 10496 4
8 14418 5085 13919 28674 11009 4
9 18089 5085 13920 27557 9893 4

10 16483 5085 13921 26938 10409 4

average 17459 7957 13972 25955 13372 4

Q

2.0

1,5

1.0

0,5"

0,0

II

III

I

1 2 5 4 5 6 7 8 9 .10 j

Fig. 1. A sequence of minimal least squares problems is solve~t,j = 1, 2 10, m = n ffi 20, R = 10. The
quotients (4.2) arc plotted for each value ofj .

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . . 221

0
3,0

2.5

2.0

1.5

1.0

0,5

x

II

III

0 , 0 1 t I : ' ' : ' ' :

3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 n

Fig. 2. The number of variables in the least squares problem is n, rn = n. The performance of the methods is
compared for a sequence of three consecutive problems for each n.

are drawn in fig. 1. Evidently, CGI is superior to QRI for a sequence of related
problems. The performance of CG2b is more irregular in comparison with QR2.
In the fifth problem the number of binding constraints in the solution is
changed, which increases the amount of computation in CG2b. The routine
CG2a is always slower than QR2.

In the second set of examples, we take R = [.(n + 1)/2/, k = n/3 and l --" 2k.
The quotients in (4.2) for the sums of flops over a sequence of three problems,
j = 1, 2, 3 for each n, are shown in fig. 2. The routine CG1 is better than QR1,
Q~ < 1, for all n. Recall from table 1 and fig. 1 that this advantage is often more
pronounced for longer sequences of problems. The trend in Qm is that its value
decreases and approaches 1 as n grows. For larger problems and longer
sequences, CG2b may be the best choice. The nvb-vector consisting of the
average number of variables on their bounds is (1, 1,4,6,5,7, 1,2,11,8) for
n = 3, 6 30. The value of Qm for n = 27 is marked by a cross. An extra QR

2 2 2 PER LOTSTEDT

0 I

2.0-

1.5-

1,0"

0,5-

'A \ \ \

II

0 , 0 ~ I I i I I t I I -'

0 2 4 6 8 10 12 14 16 18 20 p

Fig. 3. The n u m b e r o f uncons t r a ined var iab les is p and m = n = 20, R = 10. The quo t i en t s (4.2) are
d i sp layed for each p for a sequence o f three p rob lems .

decomposition of A r was necessary in CG2b for n = 27 due to slow
convergence in the cg process. With a different random number sequence for
n = 27 we obtained Ql = 0.705, Q, = 1.39, Qm = 1.08 and the average nvb was
3. The performance of CG2a is worse than that of QR2 for all n.

The number of bounds on the variables is varied in fig. 3 and m = n = 20
and R = 10. Let p be the number of unconstrained variables, i.e. l = 2 0 - p , and
let k = 1/2. Like the previous figure, fig. 3 displays the quotients in (4.2) for a
sequence of three problems. Also in this case CG1 is better than Q R I and
CG2b is as efficient as QR2. The improvement in the performance of CG2a is
significant as p grows. For p = 2, Q, = 4.06 because of slow convergence and
an extra factorization (3.4). When p = 20 we actually compute the Moore-
Penrose pseudoinverse solution to an unconstrained least squares problem. The
nvb-vector is (8, t3, 4, 4, 8, 4, 3, 2, 2, 1, 0).

In the last set of examples, m = n = 20, k = 7 and l = 14. The graphs of the
quotients in (4.2) for sequences of three problems with different values of R are
shown in fig. 4. We find that CG1 is more efficient than QR1. For small values
of R, QR2 is inferior to CG2b and even CG2a. The broken lines in fig. 4
indicate that values of Q have been omitted in the plots. Qm for R = 12 is
marked by a cross and Qn = 7.55 for R = 14. These large values are caused by

SOLVING THE MINIMAL LEAST SQUARES PROBLEM . . .

Oi
3,0-

2,5-

2,0-

1,5-

1.0-

0.5-
/

0,0 i

2

"" "" ~ II

J lll
/

/
/

/

223

I I i l : .' : ;

4 6 8 10 12 14 16 18 R
Fig. 4. The rank of the matrix in the objective function is varied for m = n = 20. The performance of the
methods is measured by computing the quotients (4.2) for a sequence of three problems for each R.

slow convergence of the cg method and extra QR decompositions. The nvb-
vector is (6, 2, 5, 5, 4, 7, 8, 5, 7).

A conclusion we can draw from our investigation is t~aat CG1 is more
effective than QR1 in solving sequences of relatively small, dense, least squares
problems (1.1). The situation is less clear for the problem (1.2). For moderately
long sequences, we can expect CG2b to be better on the average than QR2, see
table 1 and fig. 1. However, the behavior of CG2b seems to be less predictable
than that of QR2. For an isolated problem or a short sequence, the high initial
cost of CG2b makes it less attractive and for long sequences, the efficiency of
the original preconditioning matrix deteriorates gradually. An iterative method
seems to be the best choice if rank (A) is low, see fig. 4. This is the only case
where the performance of CG2a is better than of QR2 for constrained problems.
The value of Qm is probably lower than in fig. 3 for longer sequences with j > 3.

The initial cost of determining the QR decomposition of A r in (2.9) in QR2 is

224 PER LOTSTEDT

high, but the cost per iteration in a lgori thm 2 is low. Conversely, there is no

such initial cost in C G 2 b for j > 1 but a high cost per i terat ion: solving (2.21)
and (2.27) by the cg method and the updat ing of the decomposi t ion (3.4).

Therefore, if the number of variables on their bounds in the solution is almost

constant so that the number of iterations in a lgor i thm 2 is small, then C G 2 b is

more competit ive in compar ison with QR2.
In [16] we have decided to use CG1 in combina t ion with QR2, mainly

because QR2 appears to be more robust and exhibits more regular behavior

than CG2b. N o experiments have been performed with the iterative methods
and other precondit ioning matrices applied to large and sparse problems.

REFERENCES

1..~.. Bj6rck and T. Elfving, Accelerated projection methods for computing pseudoinverse solutions of
systems of linear equations. BIT 19 (1979), 145-163.

2. P. Businger and G. H. Golub, Linear least squares solutions by Householder transformations. Num.
Math. 7 (1965), 269-276.

3. A.K. Cline, C. B. Moler, G. W. Stewart and J. H. Wilkinson, An estimate for the condition number of a
matrix. SIAM J. Numer. Anal. 16 (1979), 368-375.

4. C. Cryer, The solution of a quadratic programming problem using systematic overrelaxation. SIAMJ.
Control 9 (1971), 385-392.

5. U. Eckhardt, Quadratic programming by successive overrelaxation. Report JiiI-1064-MA,
Kernforschungsanlage, J~atich (1974).

6. L. EId6n, Numerical analysis of regularization and constrained least squares methods. Ph.D. thesis,
Dept. of Mathematics, LinkOping University, Link6ping (1977).

7. R. F•etcher• Practical Meth•ds •f •ptimizati•n• v•l. 2• C•nstrained •ptimizati•n. Wi•ey• Chi•hester-
New York (1981).

8. R. Fletcher and M. P. Jackson, Minimization of a quadratic function of many variables subject only to
lower and upper bounds. J. Inst. Maths Applies 14 (1974), 15%174.

9. P. E. Gi••• G. H. G••ub• •. Murray and M. A. Saunders• Meth•ds f•r m•difyin• matrix fact•rizati•ns.
Math. Comp. 28 (1974), 505-535.

10. P. E. Gill and W. Murray, Minimization subject to bounds on the variables. NPL report NAC 72,
National Physical Laboratory, Teddington (1976).

11. P. E. Gill and W. Murray, Numerically stable methods for quadraticprogrammino. Math. Prog. 14
(1978), 349-372.

12. P. E. Gi••• •. Murray and M. H. • right• Pra•tica• •ptimizati•n.Academi• Press' L•nd•n-New Y •rk
(1981).

13. K. H. Haskell, and R. J. Hanson, An algorithm for linear least squares problems with equality and
nonneoativity constraints. Math. Prog. 21 (1981), 98-118.

14. •. Karasa••• A •riteri•n f•r truncati•n •f the QR•dee•mp•siti•n a•g•r•thm f•r the sinqu•ar •inear •east
squares problem. BIT 14 (1974), 156-166.

15. C.LLaws•nandR•J•Hans•n•S••vin•LeastSquaresPr•b•ems.Prentice•Ha•••Eng1ew••dC•i•s•NJ
(1974).

16. P. L6tstextt, Numerical simulation of time-dependent contact and friction problems in rioid body
mechanics. Report TRITA-NA-8214, Dept. of Num. Anal. and Comp. Science, Royal Institute of
Technology, Stockholm (1982) (to appear in SIAM J. Sci. Stat. Comput 5 (1984)).

17. R. Mifflin, A stable method for solving certain constrained least squares problems. Math. Prog. 16
(1979), 141-158.

18. D.P. O'Leary, A generalized conjugate gradient algorithm for solving a class of quadratic programming
problems. Lin. Alg. Appl. 34 (1980), 371-399.

19. K. Sehittkowski and J. Stoer. A factorization method for the solution of constrained linear least
squares problems allowing subsequent data changes. Num. Math. 31 (1979), 431-463.

20. J. Stoer, On the numerical solution of constrained least-squares problems. SIAM J. Num. Anal. 8
(1971), 382-411.

