
Part I

COMPUTER SCIENCE

BIT 24 (1984), 134-150

A PARALLEL SEARCH ALGORITHM FOR DIRECTED
ACYCLIC GRAPHS

RATAN K. GHOSH and G. P. BHATTACHARJEE

Mathematics Department, Indian Institute of Technology, Kharagpur 721302, INDIA

Abstract.
A parallel algorithm for depth-first searching of a directed acyclic graph (DAG) on a shared

memory model of a SIMD computer is proposed. The algorithm uses two parallel tree traversal
algorithms, one for the preorder traversal and the other for the rpostorder traversal of an ordered
tree. Each of these traversal algorithms has a time complexity of O(logn) when O(n) processors
are used, n being the number of vertices in the tree. The parallel depth-first search algorithm for a
directed acyclic graph G with n vertices has a time complexity of O((logn) 2) when O(nZ'S~/logn)
processors are used.

Keywords: Parallel algorithm, depth-first, antilexicographic, graph, search, acyclic, spanning tree,
traversal, preorder, rpostorder.

1. Introduct ion .

There are two principal ways to traverse a general tree, viz. the preorder
traversal and the postorder traversal. In the preorder traversal a vertex of the
tree is visited before visiting any of its sons and in the postorder traversal a
vertex is visited after visiting all of its sons. There are optimal sequential
algorithms to tackle these traversal problems (see e.g. [6]). Obviously every
vertex is to be visited at least once in a sequential algorithm for tree traversal,
and this is the reason that optimal sequential traversal algorithms for trees have
time complexity O(n) where n is the number of vertices in the tree. As far as
parallel algorithms are concerned, Wyllie [17] suggested O(logn) algorithms
for traversals of binary trees having n vertices when O(n) processors are used.

In this paper paral ld algorithms for traversals of a general ordered tree are
proposed. In section 3 of the paper it is shown how the binary tree
representation of a general tree with n vertices can be obtained in O(klogn)
time using O(n 1+ l/k) processors, for integer k >- 2. T h e n section 4 includes a
straightforward parallel algorithm for the preorder travers~il of a general
ordered tree assuming its binary tree representation is available, already. In

section 5 another straightforward parallel algorithm for rpostorder traversal of a

Received May 3, 1983. Revised October 3, 1983.

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS 135

general ordered tree is presented. By rpostorder traversal is meant a traversal of
the corresponding binary tree in the following way, starting with the root:

rpostorder traverse the right subtree,

visit the root vertex,

rpostorder traverse the left subtree.

Each of these traversal algorithms has a time complexity of O(logn) when O(n)
processors are available. The reason for presenting an rpostorder traversal
algorithm instead of a postorder traversal algorithm is that the parallel
algorithm for depth-first search of a DAG presented in section 6 presupposes the
rpostorder traversal algorithm.

Depth-first search of a DAG is a more general problem than the traversal
problems for trees and has wide applications [4, 11, 15, 16]. The best sequential
algorithm for this problem is given by Tarjan [15]. The time complexity of
Tarjan's algorithm is O(n+e), where n and e are respectively the number of
vertices and the number of edges in the DAG. In fact Tarjan's algorithm covers
a much broader spectrum since it is designed to tackle both undirected graphs
and directed graphs with cycles. The first attempt for parallel graph search
algorithms was done by Reghbati and Corneil [11], but they remarked that
depth-first search is not a suitable search technique for graphs, both sparse and
dense, in the context of parallel processing. Eckstein and Alton [4] later
proposed an O(n) parallel algorithm for depth-first search of graphs with n
vertices using O(e) processors. The gain in time complexity .by using so many
processors is clearly not appreciable in comparison with that of Tarjan's
algorithm. This fact seems to indicate that at least the remark of Reghbati and
Corneil is correct to the extent that for sparse graphs depth-first search is not a
good graph search technique as far as the parallel processing environment is
concerned. But in section 6 of this paper we propose an O((log n) 2) parallel
algorithm for depth-first search of a DAG with n vertices using O(n2'Sl/logn)
processors which has much better asymptotic time bound compared to Eckstein
and Alton's parallel algorithm and also compares favourably with Tarjan's
sequential algorithm.

2. The model of computation.

A shared memory model of Single Instruction-stream, Multiple Data-stream
(SIMD) computer is used as the computational model. This model has been
used by many other authors for a wide variety of problems such as evaluation
of polynomials [9], solution of recurrence relations [8], sorting and merging
[5, 10] and graph theoretic problems [4, 7, 11, 12].

In this model a master processor is capable of broadcasting instructions to

136 RATAN K. GHOSH AND G. P. BHATTACHARJEE

each one of a number of other processors known as.slave processors. The slave
processors have substantial local memory and have access to an unbounded
global memory. This structure of a shared memory model of a SIMD
computer includes the idea of synchronous computation of ILLIAC IV [2] and
also captures the etegent memory structure of Cm* [14]. The master processor
broadcasts an instruction which all the slave processors in enabled mode
execute simultaneously and synchronously over different data. While measuring
the time complexity of execution of a certain algorithm designed for this model
we assume that the cost of one such simultaneous and synchronous execution of
an instruction described above is one unit of time irrespective of the number of
slave processors that may be active.

3. The parallel binary tree representation algorithm.

The parallel tree traversal algorithms described in the later sections of this
paper accept the binary tree representation of the given input tree. However, a
tree Tfor which these traversals are sought is usually available in the form of its
adjacency lists or more frequently, since every vertex in a tree has a unique
predecessor, just the predecessor or the parent of every vertex in T is specified.
Hence as a preprocessing step the parallel algorithm given in this section
obtains the binary tree representation for a given tree specified by the vertices
and their corresponding parents. For presenting the algorithm we use Pidgin
ALGOL [1] with a few additional constructs adopted for presentation of
parallel algorithms. A parallel algorithm is indicated by the following statement:

for all processor p = 1 to n do
prl-begin prl-end;

which means that the processors with indices 1, 2 ,n work in parallel on
the algorithm between pri-begin and prl-end.

Algorithm: structure-binary.

Purpose:
Input :
Output:

To obtain the binary tree representation of a tree T.
parent (v) for each vertex v in T.
leftson (v), rightson (v) and father (v) for each vertex v in r where

(parent (v), if rightson (v) = 0
father (v) = ~ [O, otherwise

procedure structure-binary (parent, leftson, rightson, father);
begin comment The vertices of tree T are assumed to be numbered

arbitrarily from 1 through n and the root vertex r being identified by
parent (r) = 0;

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS 137

for all processor p = 1 to n do
prl-begin comment The vertices of T are first sorted so that those having

the same parent get consecutive ranks in descending order of
their respective numbers. A key is computed for each vertex,
which realizes the desired ordering when vertices are sorted after
ascending values of associated keys;

if parent (p) ~ 0 then key (p) = n × parent (p)+n-p
else key (p) := n x parent (p)

prl-end;
comment Actual sorting is accomplished through a parallel sorting
algorithm (see, e.g. [10]), It is assumed that procedure parallel-sort based
on such a parallel sorting algorithm produces an array vertex (1 :n)
representing the array of vertices of T sorted after ascending values of their
respective keys;
invoke parallel-sort (key, vertex);
for all processor p = 1 to n do

prl-begin
leftson (vertex (p)) := rightson (vertex (p)) := father (vertex (p)) := O;
if p = 1 and parent (vertex (p)) # 0 then

begin comment The vertex of T represented b.y vertex (1) is taken as
the leftson of its parent if vertex(l) itself is not the root
vertex;

leftson (parent (vertex (p))) := vertex (p)
end ;

if p < n and parent (vertex(p)) = parent (vertex (p + 1)) then
begin comment The younger brother is the rightson of its immediate

elder brother;
rightson (vertex (p)) := vertex (p + 1)

end
else i fp < n and parent (vertex (p+ 1)) # 0 then

begin comment Two neighbouring vertices having different
parents implies that the vertex occurring later in the array,
i.e. vertex(p+ 1), is the leftson of its parent;

leftson (parent (vertex(p+ 1))) := vertex(p+ 1)
end;

if rightson (vertex (p)) = 0 then
begin comment The father relations are set up;

father (vertex (p)) := parent (vertex (p))
end

prl-end
end . structure-binary;

138 RATAN K. GHOSH AND G. P. BHATTACHARJEE

The algorithm is a straightforward parallel implementation of the sequential
method for obtaining the binary tree representation of an ordered tree and finds
leftson, rightson relations for every vertex v of an ordered tree T. The only
exception from the corresponding sequential method is in setting of father
relations. The vertices which have a rightson have their respective father
relations showing null. In fact algorithm structure-binary obtains the binary
tree-like representation of the ordered tree in fig. 1 as shown in fig. 2. The null
relations in fig. 2 are not shown. Considering time complexity of structure-

Fig. 1. The input tree with vertices being numbered arbitrarily.

. _ r _ _ ~ -

t / \ f E \ f

"N , I./ \ f l \ ' \ f
l . . / f _ , / _ _ " : , _

Fig. 2. The binary tree-like representation of the tree of fig. 1. The leftson, the rightson and the

father relations are shown by labeled arrows 1 _ _ _ 2 - , t , , and ~ respectively.

binary we see that except for the steps where parallel-sort is used all other steps
contribute only te~ms of 0(1) when O(n) processors are available. The parallel
sorting algorithm due to Preparata [10] has a time complexity of O(klogn)
when 0(nt+1/~), for integer k ~_ 2, processors are available. Thus the time
complexity of structure-binary is O(klogn) when O(n ~+t/k) processors are
employed.

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS 139

4. The parallel preorder traversal algorithm.

Once the given ordered tree T is obtained in its binary tree-like
representation the task of obtaining the preorder traversal list of the vertices of
T is made fairly simple. The idea is that the leftson of a vertex v, if it exists,
should appear as the immediate next vertex to v in the preorder list. Else, the rightson
of v, if it exists, appears as the immediate next vertex to v. In case v has neither
a leftson nor a rightson the vertex to appear as the immediate next vertex to v is
located by first locating the youngest ancestor of v in T having a rightson. Then
this rightson of the ancestor vertex of v is made the immediate next vertex of v.
So far as a vertex has either a leftson or a rightson the task is quite trivial. But
when it has neither, the locating of the youngest ancestor with a non-null
rightson is not simple. This task is achieved by applying folding on father
relations. The folding updates non-null father relations of the vertices to their
penultimate depths. Here the depth k "of a relation R on an argument x imp!ies
that Rk(x)=0 but Rk-l(x)~0. The detailed preorder traversal algorithm
described below is a straightforward parallel implementation of the idea above.

Algorithm: preorder-traversal.

Purpose:

Input:

Output:

To obtain the preorder traversal list and the rank of each vertex

in the list.
The binary tree-like representation of the given general ordered

tree T.
The preorder traversal list and the ranks as desired.

procedure preorder-traversal (vertex, leftson, rightso n, father, pre);
begin comment Each vertex vertex(v) in T contains another field viz. next

(vertex (v)) which is initially set to 0. But at the termination of the
algorithm the vertices of T are linked around by "next" fields to produce
the singly linked list defining the preorder traversal list of T;

for all processor p = 1 to n do
prl-begin

next (vertex (p)) := 0;
for [log n] iterations to

begin comment The folding on father relations of every vertex is
accomplished by this loop;

if father (vertex (p.)) ~ 0
and father (father (vertex(p))) ~ 0 then
father (vertex (p)) : = father (father (vertex (p)))

end;
comment The vertices of T are now linked around by setting next
(vertex (v)) for each vertex vertex (v);
if leftson (vertex (p)) ~ 0 then

140

end

RATAN K. GHOSH AND G. P. BHATTACHARJEE

next (vertex (p)) := leftson (vertex (p))
else if rightson (vertex (p)) # 0 then

next (vertex (p)) := rightson (vertex (p))
else if father (vertex (p)) # 0 then

next (vertex (p)) := rightson (father (vertex (p)));
comment To obtain the preorder ranks a technique similar to that for
computing the positions of elements of a singly linked list as given in
[17] is used;
pie (vertex (p)) := 1; far (vertex (p)) := 0;
if next (vertex (p)) # 0 then

far (next (vertex (p))) := vertex (p);
for [log n] iterations do

if far (vertex (p)) ¢: 0 then
begin comment pre (vertex (v)) is updated to give the preorder rank

of vertex (v) in T;
pre (vertex (p)) : -- pre (vertex (p)) + pre (far (vertex (p)));
far (vertex (p)) := far (far (vertex (p)))

end
prl-end
preorder-traversal ;

Except for the for loop of the preorder-traversal procedure all steps contribute
terms of O(1) to time complexity when O(n) processors are used. Hence the
time complexity of the parallel preorder traversat algorithm is O(logn) when
O(n) processors are used. Figs. 3 and 4 illustrate the working of preorder-
traversal procedure assuming that input tree is given in fig. 1.

~ '--.--~...._. ~ .

...... .\\

/ ".,,\., g i~ ,\
.

Fig. 3. The result of the folding on the father relations of the binary tree-like representation
given in fig. 2.

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS |41

i r/.

Fig. 4. The preorder traversal list of the tree of fig. 1 with preorder ranks of vertices shown
alongside within parentheses.

5. The parallel rpostorder traversal algorithm.

The parallel rpostorder traversal algorithm described in this section also
assumes that the binary tree-like representation of a given order tree is available
as input. However, the folding in this case is applied on non-null leftson relations
of the vertices of T. The detailed algorithm is given below in Pidgin ALGOL.

Algorithm: rpostorder-traversal.

Purpose:

Input:
Output:

To obtain the rpostorder traversal list of vertices of a general
ordered tree T and the rank of each vertex in this list.
The binary tree-like representation T.
The singly linked list of vertices of T defining the rpostorder
traversal and ranks of vertices as desired.

procedure rpostorder-traversal (vertex, leftson, rightson, father, rp);
begin

for all processor p = 1 to n do
pd-begin

next (vertex (p)) := 0;
for [log n] iterations do

begin comment Folding is applied on leftsons;
if leftson (vertex (p)) ~ 0

and leftson (leftson (vertex (/7))) ~ 0 then
leftson (vertex (/9)) := leftson (leftson (vertex (p)))

end;
comment The vertices of T are now linked by setting next (vertex (v))
for each vertex vertex (v) to produce the rpostorder traversal list;

142

end

RATAN K. GHOSH AND G. P. BHATTACHARJEE

if father (vertex (p)) ~ 0 then
next (father (vertex (p))) :-- vertex (p)

else if rightson (vertex (/9)) # 0 and
leftson (rightson (vertex (p))) # 0 then

next (leftson (rightson (vertex (/9)))) := vertex (p)
else if rightson (vertex (p)) ~ 0 then

next (rightson (vertex (p))) : = vertex (p);
comment The rpostorder ranks of a vertex is computed by finding the
position of this vertex in the rpostorder traversal list of T;
rp (vertex (p)) := 1; far (vertex (p)) := 0;
if next (vertex (p)) ~ 0 then far (next (vertex (p))) := vertex (p);
for [log n] iterations do

if far (vertex (p)) =~ 0 then
begin comment rp (vertex (v)) is updated to give rpostorder rank

of vertex (v) in T;
rp (vertex (p)) : = rp (vertex (p)) + rp (far (vertex (p)));
far (vertex (/7)) := far (far (vertex (p)))

end
pri-end
rpostorder-traversal ;

For rpostorder-traversal folding is applied on leftson relations of the vertices of
T. So if we consider a mirror image of the process involved in this algorithm it
becomes identical to preorder-traversal with teftson and father relations having
their roles interchanged. Hence the correctness of this algorithm follows directly
from preorder-traversat. From the presentation of the algorithm it is evident that
it has a time complexity of O(logn) when O(n) processors are used. Time
complexity of the algorithm is attributed to the folding carried by the for loop.
The folding can require at most O(log n) time because the depth of the leftson
relation can be at most n - 1 as there are n vertices in T.

6. The parallel depth-first search algorithm for a DAG.

In this section a parallel algorithm for finding a depth-first search (dfs)
spanning tree of a DAG with a roo t vertex is presented. The algorithm also
obtains tlie corresponding dfs ordering of the vertices.

It is assumed that the vertices of the input DAG are arbitrarily numbered
from 1 through n. The DAG is available in the form of its adjacency matrix
A(1 :n, 1 :n). The underlying idea is that a spanning tree of the given DAG is
obtained by specifying for every vertex v of the DAG another vertex w,
belonging to the set of predecessors of v, as its parent in the spanning tree. It
may be noted that the root vertex r is identified by the fact that the parent of r

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS 143

is null. After initially obtaining any spanning tree, To, of the DAG it is converted
to a dfs spanning tree T of the DAG. Transformation 'of T O to T requires that the
vertices be first ordered in some sort of a left to right order with respect to T o.
Then for each vertex v considering all its predecessors in the DAG a unique
predecessor is chosen as the parent of v in T so that T admits no edge in the
DAG directed from left to right with respect to itself. The selection of the

unique predecessor for each vertex v is achieved with the help of the Reaching
Relations (RR) of the vertices in the DAG and the rpostordering with respect to
T o. Incidentally the rpostordering of the vertices with respect to T O also
enforces a left to right ordering of the vertices. The process of selection of a
unique predecessor for each vertex v in order to obtain T can be explained
briefly as follows. Assuming that the vertices are now referred to by their
rpostorder numbers with respect to T O the RR in the DAG for every vertex v is
obtained in the form of an array of O's and l's. The presence of a 1 in position w
of the array indicates that the vertex w can reach v in the DAG. Then for every v
considering all its predecessors we select the predecessor w whose RR is
antilexicographically largest compared to those of other predecessors, where the
antilexicographic order of the RR is equivalent to the lexcicographic order of
the RR taken in the reverse order.

Next if the RR of w is also antilexicographically greater compared to an array
of n elements consisting of O's in all positions except the position corresponding
to v itself, which is here referred to as the Local Reaching Relation (LRR), w is
set as parent (v) in T. Otherwise we let parent(v) = parento(v), parento(v) being
the parent of v in T o. This selection process ensures that the tree path in T from
the root to v is to the left of the tree path in T from the root to any of the other
predecessors of v in that DAG when the successors of every vertex in T are
arranged in their descending orders. It may be observed that for deciding which
of the RR is antilexicographically largest, we can compute the binary integers
represented by the reverse of each RR and find the maximum among them.

The basic steps of the algorithm are given below with appropriate
explanations. However, an elaborate Pidgin ALGOL representation, as was
done for algorithms of the previous sections, is omitted.

Algorithm: dfs-DAG.

Purpose:

Input:
Output:

To obtain a dfs spanning tree of the input DAG and find the
corresponding dfs ordering of the vertices.
The adjacency matrix A(1 :n, 1 :n) of DAG.
A dfs spanning tree T and dfs(v) for each vertex v E DAG giving its
dfs ordering corresponding to T.

Step 1. Extract an arbitrary spanning tree T O of the input DAG.

144 R A T A N K. G H O S H A N D G . P. B H A T T A C H A R J E E

The algorithm outlined below may be used to obtain To:
(i) Obtain the transpose At(1 :n, 1 :n) of A(1 :n, 1 :n).
(ii) Compute the cumulative sums CS(u, 1 :n) of each row At(v, 1 :n) for

v = 1,2, . . . ,n.
(iii) Set CS(v, u) = 0 if At(v, u) = 0, for v = 1, 2 n and for u = 1, 2 n.
(iv) For v = 1, 2 n form arrays IP(v, 1 :CS(v, n)) such that

IP(v, CS(v,u)) = u if CS(v,u) --/= O.
(v) Set parento(v) = IP(v, 1).

It is easy to see that except for step (ii) all other steps take O(1) time and
require at most O(n 2) processors. A technique similar to the one given in [17]
for computing the positions of the elements in a singly linked list can easily be
adopted to compute the cumulative sums of an array of n numbers in time of
O(logn) using O(n) processors. Hence step (ii) which simultaneously computes
the cumulative sums of n arrays with each array consisting of n numbers, has a
time complexity of O(logn) when O(n 2) processors are used. Thus the
complexity of Step 1 is O(log n) when O(n 2) processors are available.

Step 2. Find the rpostorder rank rpo(V) for each vertex v with respect to T o.

First the binary tree-like representation of T O is obtained using procedure
structure-binary of section 3. Then using the binary tree-like representation of T O
as input the rpostorder rank of each vertex is obtained through the procedure
rpostorder-traversal of section 5. Thus this step has time complexity O(klogn)
when O(n 1÷ Ilk) processors are used, k being an integer > 2.

Step 3. Find a new adjacency matrix of the DAG in such a way that the
vertices could be referred to by their rpo labels from here onwards.

For an implementation of this step a temporary matrix M(1 :n, 1 :n) is built
from A(1 :n, 1 :n) such that M(rpo(v), rpo(W)) = A(v, w) for each pair v, w, where
1 < v, w < n. Then later A(1 :n, 1 :n) is changed with the help of M(1 :n, 1 :n) so
that A(v, w) = M(v, w) for every pair v, w, where 1 ~ v, w < n. A straightforward
parallel method for accomplishing the task of this step has only O(1) time
complexity when O(n 2) processors are available.

Step 4. Obtain REACHING(v, 1 :n) for each vertex v as a set of l's and O's
such that REACHING(v, w) = 1 implies that vertex w can reach v in
the DAG.

For computing REACHING(v, 1 :n) with the property as indicated we can use a
parallel matrix multiplication algorithm due to Chandra [3] and compute the
transitive closure of the adjacency matrix A(1 :n, 1 :n). Then the row v of the

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS 145

transpose of the transitive closure matrix yields REACHING(v, 1 :n). Chandra's
parallel algorithm has time complexity O(logn) when O(n2"SX/logn) processors
are used. The computation of the transpose of the transitive closure matrix of
the adjacency matrix includes [log n] matrix multiplications. Therefore this step
has time complexity O((log n) 2) when O(n2"81/log n) processors are employed. It
may be noted here that Chandra utilized Strassen's [13] sequential matrix
multiplication algorithm which has time complexity O(n2'S~).

Step 5. For each vertex v compute bin(v) = ~ REACHING(v, w)- 2 w- ~.
w = l

The computation of bin(v) for each v in this step is done by using a parallel
algorithm for the evaluation of polynomials of degree n due to Maruyama [9].
The time complexity of Maruyama's algorithm is O(log n) when O(n) processors
are used. Since for each of the n vertices we need to evaluate a polynomial of
degree n, using O(n 2) processors bin(v) for each v is computed in O(logn) time.

Step 6. For each vertex v select the immediate predecessor w of v in DAG
such that bin(w) is the maximum. If b in(w)> 2 v-1 then let
parent(v) = w, else let parent(v) = parento(V).

To obtain a w among the set of immediate predecessors, IPRED(v), of each
vertex v in DAG such that

bin(w) = max {bin(u)lu e IPRED(v)},

we proceed as follows. First an array N(v, 1 :n) is set up for each v, where

fbin(u), if h(u,v) = 1
N(v, u) = (0, otherwise.

Then for each v obtain the vertex w such that

(1) N(v, w) = max{N(v, u)ll < u < n}.

It may be observed that the array N(v,l:n) for each v can be set up
simultaneously in time O(1) when O(n 2) processors are available. Since it takes
O(logn) time to find the maximum of an array of n numbers using O(n)
processors, an immediate predecessor w for each vertex v which satisfies (1)
can be found simultaneously in time O(logn) when O(n 2) processors are used.
The rest of the job in this step viz. deciding whether w is to be made parent (v)
is trivial and takes 0(1) time when O(n) processors are available. Thus the
overall time complexity of this step is O(log n) when O(n 2) processors are used.

146

Step 7.

RATAN K. GHOSH AND G. P. BHATTACHARJEE

Find the preorder rank pre(v) for each vertex v with respect to T and
let dfs(v) = pre(v).

This step is similar to Step 2; instead of procedure rpostorder-traversal
procedure preorder-traversal is to be used to compute the preorder rank pre(v)
for each vertex v. Thus the time and processor complexities of this step and
those of Step 2 are the same.

The correctness-of the algorithm is shown below by Theorem 1. The
complexity analysis, however, has already been done separately for each step
and is therefore just summed up in a statement given in Theorem 2. The entire
algorithm is illustrated with the help of an example in figs. 5, 6, 7 and Table 1.

Fig. 5. The DAG containing T o. The edges of T O are shown by solid lines.

(101 (9) (8) (7) (61 (51 (41 (31 (2)

Fig. 6. The binary tree-like representation of T o and rPo labels of the vertices shown alongside
within parentheses.

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS 147

r

.l~J (4) (7)

t fs)
Fig. 7. The binary tree-like representation of dfs tree T of DAG obtained at Step 6 of procedure

dfs-DAG. The numbers shown alongside the vertices within parentheses are their dfs numbers.

Table 1. The results of computations involved in various steps of procedure
dfs-DAG

Vertex Immediate rPo(V) REACHING (bin(rpo(v))) 2rpo(r)- t Parent dfs
v predecessors in hexadecimal of v

o f v i n D A G in T

8 (~ 1 200 1 1 ~p 1
10 8 10 201 513 512 8 2
9 8, 10 9 203 769 256 10 3
7 6, 8 8 20D 705 128 i 6 7
6 8, 10 7 209 577 64 10 6
5 2, 3, 6, 8 6 3FB 895 32 3 5
4 1, 8 5 320 19 16 8 8
3 8, 9 4 243 777 8 9 4
2 4, 8 3 3A0 23 4 4 9
1 8 2 300 3 2 8 10

THEOREM 1 : Alyorithm dfs-DAG is correct.

PROOF. The correctness of algorithm dfs-DAG depends on the choice of the
parent for each vertex in T. Hence Step 6 is crucial for proving the correctness.
After Step 2 the vertices are referred to by their rpostorder ranks with respect

148 RATAN K. GHOSH AND G. P. BHATTACHARJEE

to To. For the convenience of the presentation of proof, the vertices are referred
to by their rpostorder ranks with respect to To and the result of a comparison
among the RRs or the LRRs is simply referred to as greater or less while
actually it is antilexicographically greater or less.

Let u and v be any two sons of w in T with u > v. From Step 6, which
determines the parent of each vertex in T, it follows that either

(i) the RR of w is greater than both the L R R of v and the RR of any other
predecessor of v, or

(ii) w = parent0(v) and no predecessor of v has the RR greater than the
LRR of v.

Since w ~ REACHING(u , 1 :n) the RR of u is greater than the RR of w. There-
fore the condition (i) implies u ~ R~EACHING(v, 1 :n). As u > v the L R R of u
is greater then the L R R of v. So under condition (i) the RR of u is greater than
that of v. Next consider the condition (ii). As the L R R of u is greater than
the LRR of v, u ¢ REACHING(v, 1 :n) and the RR of u is greater than the R R
of v.

Let s be a son of v in T. Once again because of Step 6 in dfs-DAG either
a) the RR of v is greater than both the L R R of s and the RR of any

other predecessor of s, or
b) v = parento(S) and no predecessor of s has the RR greater than the L R R

of s.

It has already been shown that the RR of u is greater than the RR of v.
So condition (a) implies u ¢ REACHING(s , 1 :n) and RR of u is greater than the
RR of s. As u ¢ REACHING(v, 1 :n) vertices u and v are in the different tree
paths in To. So from the properties of rpostorder ranks (s~e [16]) u > v and
parent0(s) = v of condition (b) imply u > s. Hence the L R R of u is greater
than the LRR of s under condition (b). Also rio predecessor of s has the RR

greater than the L R R of s in (b). Therefore as the L R R of u is greater than the
L R R of s, under condition (b) once again u ¢ REACHING(s , 1 :n) and the R R

of u is greater than the RR of s.
Extending the arguments given above, if x is a descendant of v in T, we have

u ¢ REACHING(x , 1 :n) and the R R of u is greater than the R R of x. I f y is a
descendant of u in T, the RR of y is greater than the RR of u. Therefore
y ¢ REACHING(x , 1 :n), where y is a descendant of u and x is a descendant
of v.

Now let T(x) and REACHABLE(x) denote respectively the subtree of T
rooted at x and the set of vertices reachable through x in the DAG. So a
restatement of the fact proved in the preceding paragraph using these notations
is

(2) T(v) ~_ {y ~ REACHABLE(v) N T (w) - T(u)}.

A PARALLEL SEARCH ALGORITHM FOR DIRECTED ACYCLIC GRAPHS 149

v are just any two arbi t rary sons of w in T with u > v. Therefore if a

vertex x has k sons x i, 1 < i < k, in T the relation (2) tells that

(3) T(x,) = {y e REACHABLE(xi) N T(x)- U T(xj)}.
Xj > X i

At Step 7 of dfs-DAG while obta ining the binary tree-like representat ion by

algori thm structure-binary adjacency relations in T are sorted so that the

vertices with the same parent appear in descending order (cf. Section 3).
Therefore from relation (3) we conclude that T admits no edge of DAG

directed from left to right with respect to T. This proves the fact that T is a
depth-first search spanning tree of the DAG. So the preorder ranks of the

vertices in T define their corresponding dfs numbers. •

THEOREM 2 : Algorithm dfs-D AG has time complexity O((log n) 2) when O(n 2'81~log n)
processors are used.

PROOF. The complexity analysis for each step of a lgori thm dfs-DAG proves
the theorem. •

Acknowledgement.

The authors are thankful to the referee for his critical comments and helpful
suggestions. They also acknowledge the valuable comments of Professor

S. K u n d u of University of Florida on an earlier version of this paper. The work
of the first au thor (R. K. Ghosh) was supported by Depar tment of Atomic

Energy under grant 22/101/82-G dated 8.1.83.

REFERENCES

1. A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading MA, (1974).

2. G. H. Barnes, M. Richard, M. Kato, D. Kuck, D. Slotnik and R. Stokes, The ILLIAC IV
Computer, IEEE Trans. Comp., vol. C-17; 8, (1968), pp. 746-757.

3. A. K. Chandra, Maximal parellelism in matrix multiplication, RC-6193, IBM TJW Res.
Centre, (1976).

4. D. M. Eckstein and D. Alton, Parallel graph processing using depth-first search, Proc. Symp.
Theo. Comp. Sci., (1977).

5. F. Gavril, Merging with parallel processors, CACM, vol. 18, (1975), pp. 588-591.
6. E. Horowitz and S. Sahni, Fundamentals of Data Structures, Comp. Sci. Press Inc., Potomac,

MD, (1977).
7. J. Ja' Ja' and J. Simon, Parallel algorithms in graph theory: Planarity testing, SlAM J. Comput.,

vol. 11; 2, (1982), pp. 314-328.
8. P. Kogge, Parallel solution of recurrence problems, IBM J. Res. and Dev., vol. 18, (1974),

pp. 138-148.
9. K. Marnyama, On the parallel evaluation of polynomials, IEEE Trans. Comp., vol. C-22; 1,

(1973), pp. 2-5.

150 RATAN K. GHOSH AND G. P. BHATTACHARJEE

10. F. P. Preparata, New parallel sortino schemes, IEEE Trans, Comp., vol. C-27; 7, (1978),
pp. 669~673.

11. E. Reghbati and D. G. Corneil, Parallel computations in oraph theory, SIAM J. Comput., vol.
7; 2, (1978), pp. 230-237.

12. C. Savage and J. Ja' Ja', Fast, efficient parallel aloorithms for some oraph problems, SIAM
J. Cornput., vol. 10; 4, (1981), pp. 682-691.

13. V. Strassen, Gaussian elimination is not optimal, Num. Math., vol. 13; 4, (1969), pp. 354-356.
14. R. J. Swan, S. Fuller and D. Siewiorek, Cm* a modular multi-microprocessor, Proc. AFIPS

National, Comp. Confl, vol. 46, (1977), pp. 637-644.
15. R. E. Tarjan, Depth-first search and linear oraph aloorithms, SIAM J. Comput., vol. 1; 2,

(1972), pp. 146-166.
16. R. E. Tarjan, Findin 9 dominators in a directed oraph, SIAM J. Cornput., vol. 3; 1, (1974),

pp. 62-89.
17. J. Wyllie, The complexity of parallel computations, Ph.D. Thesis, Tech. Rep. 79-387, Cornell

University, Ithaca, NY, (1979).

