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Abstract.

This paper deals with the systems of algebraic equations arising in the application of B-stable
Runge-Kutta methods. It is shown that under natural assumptions such systems do not always
have a solution. In addition, general sufficient conditions are presented under which such systems
do have unique solutions.

1. Introduction.

We shall deal with the initial-value problem
d
(1.1) FJO=/0U00) (20, UQ)=u,

where u, is a given vector in the s-dimensional complex vector space C* and
f:RxC* - C*is a given continuous function such that

(12)  Re(f(t,H~fEWE-E SO  (foraliteRand & feC).
Here {-,-) stands for an arbitrary inner-product on C*. The corresponding norm will
be denoted by |-|.

We consider Runge-Kutta methods for the numerical solution of (1.1), written in
the form

(13a) ty = gy +h Y b S 0y )
j=1

(1.3b) V= un—l+hkz:lajkf(t sitahy)  (1SjsSm),
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where bj, a; are real parameters defining the method, ¢; = a;; +a;;+ ... +djm
nz1,h>0,t,=nhandu, ~ Uft,)
We define the m x m matrix Q by

Q = BA+ATB—BEB

where A = (a,), B = diag (b,,b,,...,b,) and E is the m x m matrix all of whose
entries equal 1. In [1, 2] the condition

(L4) b;>0 (1 £j £ m), @ is positive semi-definite

was proved to imply that |i,—u,| < ld,_, —u4,..,| (n = 1) for any two sequences
{@i,}, {u,} computed by the Runge-Kutta method (this property was called B-
stability or BN-stability).

For some time it has been conjectured that the assumptions (1.2), (1.4) also imply
that the system of algebraic equations (1.3b) has a unique solution
Y = (¥1,V2, - - » Ym)" € C™ In section 2 we shall show that this conjecture is false.

In section 3 we shall prove a theorem stating that (1.3b) has a unigue solution
under a slightly modified version of condition (1.4), namely the condition that

(1.5) there exists a diagonal matrix D such that D and DA+ ATD are positive
definite

In addition, we prove in section 3 a theorem implying that (1.3b) has a unique
solution under assumption (1.4) provided f satisfies a condition which is slightly
stronger than (1.2). Uniqueness will be proved under the assumption that

(16) Re{f(t,O)—f(t,6),E- <0 (forallteRand & # £€C?),

and existence under the assumption

(L7 lim Re{(f(t,&+n),E = —0 (forallte Rand neC®).
Ki»w

2. Construction of a counterexample.

Let d,,d,,d; be column vectors in R* with d7d, =0 (1 £ j <k £3),djd; =1
(12j<£3)d;= (1/\/5)(1, 1,1)7, andlet o # 0, p = 3 be given real numbers. We
define the real 3 x 3 matrix § = (s;) by

Sdl = o'dz, Sd2 = "‘"O'dl, Sd3 = pd3.

We note that

(2.1a) vTSv = p[v7d;]*  (for all ve R?),



86 M. CROUZEIX, W. H. HUNDSDORFER AND M. N. SPUKER

(2.1b) I—i(c™1)S is singular,
(2.1¢c) S is regular,

(2.1d) there exist numbers b; (1 < j £ 3) satisfyingb; >0 (1 £j £ 3),
3 3 3
Ybj=1land Y s;pb, # Y s,b, (1Lj<k=3)
j=1 n=1 n=1

The statements (2.1a)-(2.1c) follow from an easy calculation. Using (2.1¢) it can be
seen that (2.1d) holds; wecantake b; = (1 +t+12)" '/~ (1 < j < 3) wheretissuch
that ¢ >0 and Y2_, (s;,—si)t" ' # 0 (1 £j < k < 3). Let B = diag (b;, by, b3)
where the parameters b; are chosen according to (2.1d). We define the matrix
A = (ay) by

2.2) A =SB.

From (2.1a), (2.1d), (2.2) it follows that the Runge-Kutta method (1.3) (with
m = 3 and ay, b; as indicated) satisfies (1.4), and

2.3) ¢ #c  (1Sj<ks)d)

In view of (2.1b), (2.1c) and (2.2), there exists a vector z = (z,, 2,, z;)T € C3 such that
the equation

(2.4) (I—iA(cB) ')y = Az

has no solution y € C3.
Wechooses = 1,n=1,u,=0,h =1, and

f@,8) =igo(t)s+g,(t)  (forteR,{eC).
Here g,: R — R and g, : R — C are continuous functions satisfying
go(cj) = (O'bj)_ ! gl(cj) =Z; 1=5js3)

(note that such g,, g, exist by (2.3)).
With the definitions above, (1.3b) reduces to (2.4). Consequently the equation
(1.3b) has no solution y = (y,, ¥,, ¥3)T € C3, whereas (1.2) and (1.4) are fulfilled.

ExampLE. By choosing

dl = _}—2-(1, "'la 0)T5 d2 = (1’ 1’ —2)T7 p= %’ 0= 2\/5’

1
V2 NG
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we obtain by this construction a fourth order Runge-Kutta method with

I S VO 2 N
A=|4+3/6 % -4/6 |.
SENCE S VO

This method thus fulfils condition (1.4) whereas for some continuous function f
satisfying (1.2) the corresponding system of equations (1.3b) has no solution.

B e

Qo=
-

3. Sufficient conditions for existence and uniqueness of solutions.

THEOREM 1. Let f: R xC* — C* be continuous and satisfy (1.2). Let D be a diagonal
matrix such that D and DA + A™D are positive definite. Then the system (1.3b) has a
unique solution y = (y;, Y3, .. Ym)® € C™

Proor. Letn = 1,h > 0andu,., € C* be given. In the subsequent we shall deal
with the inner product [-,-] and norm ||- || on C*" defined (as in [S, pp. 12-13]) by

[x,y] =Y di(xpyp, Il = [x,x]* (for x,ye C™),
j=1

where D = diag (dy,dy, .., d,), d;>0,x = (x4, X2, .., X)) ADA Y = (V15 Y2y -2 V)-
We define 4 = 4 @ I, where I, is the s x s identity matrix and ® stands for the
Kronecker product. Further we define the function F: C™ — C*™ by

F(x) = h(f(tn-l+C1hax1+un—l)’f(tn‘—l+62h5x2 +un—1),---,
f(tn*l +cmh’xm+un—l))T

(for x = (x,, X5,..., X,,)7 €C™).

Writing y; = x;+u,_, (1 £j £ m), we transform the system (1.3b) into the equiva-
lent equation

(3.1) x—AF(x)=0.

" Uniqueness. From lemma (2.2) in [4], it is found that
Re[Aw,w] >0  (for all we C*™ with w # 0).
This implies 4 is regular and there exists a constant > 0 such that

(3.2) Re[A™'w,w] 2 BlwlI® (for all we C*™),
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Assuming
0 = X—AF(%) = x— AF(x),
we obtain {from (3.2), (1.2))
BlI£—x|I*> £ Re[4™}(X—x),X—x] = Re[F(%)—F(x),f—x] £ 0.
Hence X = x.
Existence. We define
Go(x) = A”'x—~F(x) (for x e C™).
We have from (3.2)

Re [Go(x)—Go(0), x] 2 Bilx|?  (for all xe C*™),

and therefore Re [Go(x), x] = [Ix[I(BlIx|| — [IGo(O)ll). This implies Re [Gy(x), x] = 0
for all x with |jx]| = |IG,(0)}i/B. By a classical result (see e.g. [8, p. 163] or [ 7, p. 74])it

follows that there exists an
x € C*™ with |ix}} < [|G4(0)]}/B such that G,{x) = 0.

Clearly x is a solution to (3.1). [ ]

We now give a theorem with a weaker requirement on A and a slightly stronger

requirement on f.

TueorReM 2. Let D be a positive definite diagonal matrix such that DA+ A™D is

" positive semi-definite. Let f: R x C* — C* be continuous. Then the condition

Re(f(t,8)—f(t,8),E—& <0 (forallteRand & # £eC)
implies that the system (1.3b) has at most one solution, and
lim Re{f(t,(+n), &) = — 0 (forallteR, nel®
g

implies the existence of a solution to (1.3b).

Proor.
Uniqueness. With the same notations as in the proof of theorem 1, we have
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(3.3) Re[Aw,w] =0 (for all w e C*™),
and (in view of (1.6))

Re[F(%)—-F(x),¥—x] <0 (for all X, x e C*™ with X # x).
Assuming that %, x are two different solutions to (3.1) we obtain

0 =RX—AFX) = x—AF{(x),
and
0 S Re[A(F(X)—F(x)), FX)-F(xJ] <O0.

We thus have a contradiction.
Existence. We definefor r > 0
o(r) = max {Re [F(x),x]: x e C*™ and ||x|| = r}.
Using (1.7) it can be proved that lim, , , ¢(r) = — c0.
For 7 > 0 we define
G (x) = (A+1tI) *x—F(x) (for x e C*™)

where I stands for the sm x sm identity matrix. We note that, in view of (3.3), (4 +<I)
is regular. It follows that

Re[Gi(x),x] 2 —Re[F(x),x] =2 —e(ixI)).

Choosing r > 0 so large that ¢(r) £ 0, we have
Re[G.(x),x] 20 (for all x & C*™ with {|x|| = r).
Consequently, for each T > 0, there exists an x(t) € C*” with
Gx(r)) =0, Ix(l=r
It follows that there is a sequence t,,7,,7s,..- |0 such that the vectors

x(ty), x(t;), x(z3), ... converge to some limit x*eC™ Since x(1,)
—[A+I}F(x(z,)) = 0 (k = 1) we see that x* is a solution to (3.1). |
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Clearly condition (1.4) implies that the assumption on A4 in theorem 2 is satisfied
with D = B. We thus arrive at the following

CoroLLARY. Let the Runge-Kutta method satisfy condition (1.4). Then the system of
equations (1.3b) has a unique solution whenever f: R x C* — C*®is a continuous function
satisfying (1.6), (1.7).

4. Remarks.

Remark 1. If m = 1, then system (1.3b) is essentially the same as the system of
algebraic equations arising if one uses a linear multistep method to compute the
approximations u,. For this case several authors have discussed the existence and
uniqueness of solutions ; see [4, 6, 9, 10, 11]. It should be noted that their results can
also be used to obtain results on Runge-Kutta methods which are diagonally
implicit, i.e. a;, = 0 whenever j < k.

Remark 2. It secems to us that many B-stable methods satisfy the hypothesis of
theorem 1, and for these methods we have existence and uniqueness as soon as (1.2)
is satisfied. However, the counterexample given in section 2 shows the existence of B-
stable methods which do not satisfy the assumption of theorem 1. We also note that
theorem 1 can be applied to some methods which are not B-stable.

ReMArRk 3. Let 8 > 0 be a given constant. It is easily verified that a function
[:Rx C* — € satisfies both (1.6) and (1.7) whenever

@1) Re<f(.O)~f (6,8~ = ~pE-¢f  (orallzeRand E ¢eC).

Condition (4.1) is equivalent to requiring that f(t,-)+ Bl is dissipative, or that
—f(t,-) is uniformly (or strongly) monotone with monotonicity constant § (cf. [8, p.
141}, [7, p. 611, [4, p. 63]).

Remark 4.  Asin [1, 2] we might consider the following weaker version of require-
ment (1.4),

4.2) b; 20 (1 £j < m), Qis positive semi-definite.
However, we would gain little by dealing with (4.2) instead of (1.4) since there are no
Runge-Kutta methods of practical interest which satisfy (4.2) but not (1.4) (because
such methods are equivalent to methods with fewer stages in which only strict
inequalities occur —see [ 5] for more details). Moreover the next example shows that
the conclusion in the corollary of section 3 is not necgssarily valid for Runge-Kutta
methods satisfying (4.2) but violating (1.4).

An example of a Runge-Kutta method which satisfies (4.2) and for which the
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system {1.3b) need not have a solution when (1.6), (1.7) hold, is given by

1 0 10
S FI B P
This method (with m = 2) is of no practical interest since the approximations u,

computed by it could have been calculated more easily from the Backward Euler
Method (i.e. (1.3) withm =1,a,, = 1,b, = 1).

ReMark 5. All conclusions in the sections 2 and 3 remain valid if we deal through-
out with the space R® instead of C°.
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