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Abstract. 
This paper deals with the systems of algebraic equations arising in the application of B-stable 

Runge-Kutta methods. It is shown that under natural assumptions such systems do not always 
have a solution. In addition, general sufficient conditions are presented under which such systems 
do have unique solutions. 

1. Introduction. 

We shall deal with the initial-value problem 

d 
(I.I) dt U(t) = f(t, U(t)) (t >= 0), U(O) = Uo, 

where u 0 is a given vector in the s-dimensional complex vector space C" and 
f:  R x C ~ --, C S is a given continuous function such that 

(1.2) Re(f( t ,~)- f( t ,~) , i~-¢)  <= 0 (for all t e R  and ~, ¢ ECS). 

Here (., .) stands for an arbitrary inner-product on C'. The corresponding norm will 
be denoted by I" I. 

We consider Runge-Kutta methods for the numerical solution of (1.1), written in 
the form 

(1.3a) 

(1.3b) 

u. = u._ I +h ~ bjf(t n_ t +cjh, yj), 
j=l 

Yj = Un- 1 + h ~, a j k f  (t n_ 1 + c~h, y~) 
k=l  

(1 =< j < m), 
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where b j, a~ are real parameters defining the method, cj = a~ + a j2 + ... +ajm, 
n > 1, h > O,t ,  = n h a n d u ,  " U(t,). 

We define the m x m matrix Q by 

Q = BA + A rB - B E B  

where A = (ajk), B = diag (b x, b 2 . . . . .  bin) and E is the m x m matrix all of whose 
entries equal 1. In [1, 2] the condition 

(1.4) bj > 0 (1 < j < m), Q is positive semi-definite 

was proved to imply that It~,-u,I < [ ~ , - t - u , _  x[ (n > 1) for any two sequences 
{~,}, {u,} computed by the Runge-Kutta method (this property was called B- 
stability or BN-stability). 

For some time it has been conjectured that the assumptions (1.2), (1.4) also imply 
that the system of algebraic equations (1.3b) has a unique solution 
Y = (Yl,Y2,-.., y,,)r ~ C~m. In section 2 we shall show that this conjecture is false. 

In section 3 we shall prove a theorem stating that (1.3b) has a unique solution 
under a slightly modified version of condition (1.4), namely the condition that 

(1.5) there exists a diagonal matrix D such that D and D A + A r D  are positive 
definite 

In addition, we prove in section 3 a theorem implying that (l.3b) has a unique 
solution under assumption (1.4) provided f satisfies a condition which is slightly 
stronger than (1.2).Uniqueness will be proved under the assumption that 

(1.6) Re ( f  (t, ( ) - f  (t, {), ( - { )  < 0 (for all t e R a n d  ~ ~ ~eC ' ) ,  

and existence under the assumption 

(1.7) lira Ke~,/tt, g+n~,g ;  = - ~  
J¢l--' =~ 

(for all t e R and r/6 C~). 

2. Construction of a counterexample. 

Let dl, d2, d3 be column vectors in R 3 with d~dk = 0 (1 ~ j < k < 3), dydj = 1 

(1 ~ j < 3), d3 = (I/w/3)(1, 1, 1) r, and let a # 0, p > ~ be given real numbers. We 
define the real 3 u 3 matrix S = (sjk) by 

Sdl = ad2, Sd2 = - a d l ,  Sds = Pd3. 

We note that 

(2.1a) vrSv = p[vrds] 2 (for all v ~ Rs), 
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(2.1b) 
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I - i (a-  x )S is singular, 

(2.1c) S is regular, 

(2.1d) there exist numbers b~ (1 ~ j =< 3) satisfying bj > 0 (1 <_ j < 3), 

3 3 3 

b~ = 1 and ~ s~nb. # ~, Sknb n (1 < j < k _-< 3). 
j = l  n = l  n = l  

The statements (2.1a)-(2.1c) follow from an easy calculation. Using (2.1c) it can be 
seen that  (2.1d) holds;  we can take bj = (1 + t + t2) - t d -  1 (1 < j < 3) where t is such 
that  t > 0 and ~ = t  (Sjn--Sk,)t n-1 V~ 0 (1 =<j < k < 3). Let B = diag(b~,b2,  b3) 
where the parameters b~ are chosen according to (2.1d). We define the matrix 

A = (ark) by 

(2.2) A = SB. 

From (2.1a), (2.1d), (2.2) it follows that  the Runge-Kutta  method (1.3) (with 
m = 3 and aik, bj as indicated) satisfies (1.4), and 

(2.3) cj # Ck (1 ~ j < k < 3). 

In view of (2.1b), (2.1c) and (2.2), there exists a vector z = (zt, z2, z3) r e C 3 such that  
the equation 

(2.4) (I - iA( t rB)-  l )y  = Az  

has no solution y ~ C 3. 
We c h o o s e s =  1, n =  1, u o = 0 , h =  1, and 

f ( t , ~ )  = igo( t )~+gt ( t  ) (for t ~ R, ~ C ) .  

Here go : R ~ R and g~ : R ~ C are cont inuous functions satisfying 

go(Cj) = (abe) -1, gl(c~) = zj (1 _~j ~_ 3) 

(note that  such go, gt  exist by (2.3)). 
With the definitions above, (1.3b) reduces to (2.4). Consequently the equation 

(1.3b) has no solution y = (Yt, Y2, Ya) r e  C3, whereas (1.2) and (1.4) are fulfilled. 

EXAMPLE. By choosing 

1 
dt = - - 7  (1, - 1, O) T, 

, / 2  

1 

d2 = ~66 (1, 1, - 2 )  T, 

bl = b2 =¼, b3 =½ 
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we obtain by this construct ion a fourth order  Runge-Kut ta  method  with 

A = 

This method  thus fulfils condit ion (1.4) whereas for some cont inuous  function f 
satisfying (1.2) the corresponding system of  equat ions (1.3b) has no solution. 

3. Sufficient conditions for existence and uniqueness of solutions 

THEOREM 1. Let f:  R x C  ~ --, C ' be continuous and satisfy (1.2). Let D be a diagonal 
matrix such that D and DA + AT D are positive definite. Then the system (1.3b) has a 
unique solution y = (Yl, Y2 . . . . .  Ym) T ~ csm" 

PROOF. Let  n __> 1, h > 0 and u,_ t e C~ be given. In the subsequent  we shall deal 
with the inner p roduc t  [-, .] and no rm II'll on C "  defined (as in [5, pp. 12-13])  by 

m 

Ix, y] = Z dj<xj, y~>, Ilxll = [x, x]* (for x, y ~ csm), 
j = l  

where D = diag (dl, d2 . . . . .  din), dj > 0, x = (xl,  x2 . . . .  , xm) r and y = (Yl, Yz . . . . .  y . ) r .  
We define A = A ® It where I~ is the s × s identity matr ix and ® stands for the 

Kronecker  product .  Fur ther  we define the function F :  C ~' --} C ~" by 

F(x) = h( f ( t ._ l  +clh, xt +u . -1 ) , f ( t . - 1  +c2h, x2 + u . -  1) . . . . .  
f ( t . - t  +cmh, x~+u . - l ) )  r 

(for x = (xl, x2 . . . . .  x~) r ~ csm). 

Writing yj = xj + u,_ 1 (1 __< j _<_ m), we transform the system (1.3b) into the equiva- 
lent equat ion 

(3.1) x -  AF(x) = O. 

Uniqueness. From lemma (2.2) in [4], it is found that  

Re [Aw, w] > 0 (for all w ~ C ~" with w ~ 0). 

This implies A is reguiar  and there exists a constant  fl > 0 such that  

(3.2) Re [A-  Xw, w] _~ Pllwll 2 (for all w ~ C*'). 



88 

Assuming 

M. CROUZEIX, W. H. HUNDSDORFER AND M. N. SPIJKER 

0 = ~ - A F ( ' 2 )  = x - A F ( x ) ,  

we obtain (from (3.2), (1.2)) 

flll~ - x t l  z < Re [A - 1(~ - x ) ,  g - x ]  = Re [F (~ ) -  F(x),  ~ - x ]  < O. 

Hence ~ = x. 

Existence. We define 

Go(x) = A - i x  - F(x)  (for x e C~'~). 

We have from (3.2) 

Re [Go(x)-Go(0 ), x] > #llxl t  2 (for all x e CSm), 

and therefore Re [Go(x), x] __> llxll(flllxH -HGo(0)H). This implies Re [Go(x), x] > 0 
for all x with IIxll > IIGo(0)tl//~. By a classical result (see e.g. [8, p. 163] or [7, p. 74]) it 
follows that there exists an 

x ~ C "m with [Ix[j < [lGo(O)H/fl such that Go(x) = O. 

Clearly x is a solution to (3.1). l l  

We now give a theorem with a weaker requirement on A and a slightly stronger 
requirement onfi 

THEOREM 2. Let  D be a positive definite diagonal matrix such that D A + A r D  is 
positive semi-definite. Let  f :  R x C s - ,  C s be continuous. Then the condition 

R e ( f ( t , ~ ) - f ( t , ~ ) , ~ - ~ )  < 0  ( f o r a l l t ~ R a n d ~  ~ e C  s) 

implies that the system (1.3b)has at most one solution, and 

lim Re ( f ( t ,  ~ + ~l), ~)  = - ~ (for all t ~ R, t/~ C s) 

implies the existence of  a solution to (1.3b). 

PROOF. 
Uniqueness. With the same notations as in the proof of theorem 1, we have 



ON THE EXISTENCE OF SOLUTIONS TO THE ALGEBRAIC EQUATIONS.. .  

(3.3) Re lAw, w] >= 0 (for all w 6 CSS), 

and (in view of  (1.6)) 

R e [ F ( Y , ) - F ( x ) , Y c - x ]  < 0 (for all ~,x~C~m with ~ # x). 

Assuming that  ~, x are two different solutions to (3.1) we obtain 

o = ~ - A F ( ~ )  = x - n F ( x ) ,  

and 
0 < Re [ A ( r ( ~ ) - e ( x ) ) ,  g ( ~ ) - e ( x ) ]  < O. 

We thus have a contradict ion.  

Existence. We define for r > 0 

q~(r) = max {Re IF(x),  x]  : x ~ C ~" and Ilxtl = r}. 
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Using (1.7) it can be proved that  lim,_.~ ~p(r) = - ~ .  
For  z > 0 we define 

G~(x) = ( A + ¢ l ) - l x - F ( x )  (for x ~ C  *m) 

where I stands for the sm x sm identi ty matrix. We note  that,  in view of  (3.3), (A + ¢I) 
is regular. It follows that  

Re [G,(x), x]  > - Re IF(x),  x]  > - ~o(tlxll). 

Choosing r > 0 so large that  ¢p(r) ~ 0, we have 

Re [G~(x), x]  => 0 (for all x e C Sm with Ilxll = r). 

Consequently,  for each • > 0, there exists an x(z) ¢ C ~" with 

G,(x(¢))  = O, IIx(T)ll ~ r. 

It  follows that  there is a sequence xl, x2,x 3 . . . .  ~0  such that  
x(¢1), x(¢z), x(%), . . .  converge to some limit x * ¢ C  ~m. 
- [.4 +zk l]F(x(~D)  = 0 (k ~_ 1) we see tha t  x* is a solut ion to  (3.1). 

the vectors 
Since x(~) 
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Clearly condition (1.4) implies that the assumption on A in theorem 2 is satisfied 
with D = B. We thus arrive at the following 

COROLLARY. Let the Runye-Kutta method satisfy condition (1.4). Then the system of 
equations (1.3b) has a unique solution whenever f:  R x C" ~ C s is a continuous function 
satisfying (1.6), (1.7). 

4. Remarks. 

REMARK 1. If m = 1, then system (1.3b) is essentially the same as the system of 
algebraic equations arising if one uses a linear multistep method to compute the 
approximations u n. For this case several authors have discussed the existence and 
uniqueness of solutions; see [4, 6, 9, 10, 11]. It should be noted that their results can 
also be used to obtain results on Runge-Kutta methods which are diagonally 
implicit, i.e. ajk = 0 whenever j < k. 

REMARK 2. It seems to us that many B-stable methods satisfy the hypothesis of 
theorem 1, and for these methods we have existence and uniqueness as soon as (1.2) 
is satisfied. However, the counterexample given in section 2 shows the existence of B- 
stable methods which do not satisfy the assumption of theorem 1. We also note that 
theorem 1 can be applied to some methods which are not B-stable. 

REMARK 3. Let fl > 0 be a given constant. It is easily verified that a function 
f :  R × C s --, C' satisfies both (1.6) and (1.7) whenever 

(4.1) R e < f ( t , ~ ) - f ( t , ~ ) , ~ - ~ )  ~ -B l~-¢ l  2 ( f o r a l l t ~ R a n d  ~,~EC~). 

Condition (4.1) is equivalent to requiting that f( t ,  ")+ flI is dissipative, or that 
- f ( t ,  .) is uniformly (or strongly) monotone with monotonicity constant/~ (cf. [8, p. 
141], [7, p. 61], [4, p. 63]). 

REMARK 4. AS in [1, 2] we might consider the following weaker version of require- 
ment (1.4), 

(4.2) b~ > 0 (1 < j  < m), Q is positive semi-definite. 

However, we would gain little by dealing with (4.2) instead of (1.4) since there are no 
Runge-Kutta methods of practical interest which satisfy (4.2) but not (1.4) (because 
such methods are equivalent to methods with fewer stages in which only strict 
inequalities occur -  see [5] for more details). Moreover the next example shows that 
the conclusion in the corollary of section 3 is not neccssatily valid for Runge-Kutta 
methods satisfying (4.2) but violating (1.4). 

An example of a Runge-Kutta method which satisfies (4.2) and for which the 
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system ( l .3b)  need not  have  a so lut ion  when  (1.6), (1.7) hold,  is given by 
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01] 00] 
This method  (with m = 2) is of  no practical interest since the approximat ions  un 
computed  by it could have been calculated more  easily from the Backward  Euler 
Method  (i.e. (1.3) with m = 1, a l l  = 1, b 1 = 1). 

REMARK 5. All conclusions in the sections 2 and 3 remain valid if we deal through- 
out with the space R s instead of C s. 
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