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Abstract. A series of schemes for pyramid multiresolution image coding has been proposed, all of them based 
on sets of orthogonal functions. Several of them are implementable in the spatial domain (such as wavelets), 
whereas others are more suitable for Fourier domain implementation (as for instance the cortex transform). Gabor 
functions have many important advantages, allowing easy and fast implementations in either domain, but are usually 
discarded by their lack of orthogonality which causes_incomplete transforms. In this paper we quantify such effect, 
showing a Gaussian Wavelet Transform, GWT, with quasiorthogonal Gabor functions, which allows robust and 
efficient coding. Our particular GWT is based on a human visual model. Its incompleteness causes small amounts 
of reconstruction errors (due to small indentations in the MTF), which, however, are irrelevant under criteria 
based on visual perception. 
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1. Introduction 

Multiresolution signal decomposition is being commonly accepted as an optimal solution to 
processing, coding, and analyzing signals (see for instance [Rosenfeld 1984]). In this sense, 
the functional organization of the human visual system is based in this kind of image decom- 
position since individual cells in the cortex are tuned for specific bands of spatial frequen- 
cies and orientations [De Valois, Albrecht and Thorell 1982; Campbell and Kulikowski 
1966]. In fact, the visual system performs a multiresolution, and also a multiorientation, 

parallel processing of images. Both neurophysiological [Marcelja 1980] and psychophysical 
[Daugman 1984] studies agree that the receptive fields, or frequency channels in the visual 
system are very accurately modelable by Gabor functions. 

From a point of  view of compact coding design, however, Gabor functions are not com- 
monly accepted. Probably this is due to two reasons: first Gabor, in his early work [Gabor 
1946] did not really address multiresolution pyramid coding. Second, and most important, 
Gaussian functions (wave packets) do not directly yield a complete (exact) mapping of  the 
signal. Although this can be overcome by more or less sophisticated methods [Daugman 
1988], many other complete transforms have been proposed, such as the Cortex Transform 
[Watson 1987]; the generalized Gabor scheme [Bastiaans 1981; Porat and Zeevi 1988]; 
wavelets [Morlet, Arens, Forgeau and Giard 1982; Mallat t989]; QMF filters [Woods and 
Nell 1986; Simoncelli and Adelson 1990] etc. Most of those transforms (wavelets, general- 
ized Gabor, QMF, etc.) have been designed to constitute a compact nonredundant coding, 

67 



422 R. NAVARRO AND A. TABERNERO 

involving the computation of a new set of coefficients in a different orthogonal base. Other 
schemes are basext on hmnan vision models (the Cortex Transform, CT, or the Gaussian 
Wavelet Transform, GWT, proposed here) and basically consist of image decomposition 
into a set of frequency and orientation channels. Since some amount of redundancy seems 
to be an intrinsic feature of the image mapping in the visual system (which is multipurpose 
with a high performance), these schemes may involve some amount of redundancy. Thus, 
this last type of mapping yields a less compact, but more robust coding, and also shows 
other advantages; for instance, in order to recover the image it is not necessary to perform 
any inverse transform, but just to add the channels. As far as we know, it is not clear 
which among those schemes is the best, but this important number of different proposals 
indirectly means that image mapping is still an open problem, which is being crucial, e.g., 
to define standard codes for digital video and broadcast High Definition TV (see for instance 
[Watson 1990]). 

The aim of this paper is to show' that Gabor functions (Gaussian wavelets) are also good 
candidates for image coding, presenting interesting features such as robustness or the possi- 
bility of easy and fast implementations in either spatial or spatial-frequency domains. In 
what follows, we first propose, in Section 2, a Gaussian Wavelet Transform (GWT), which 
is based on a visual model and is designed to minimize incompleteness effects. The imple- 
mentations in the Fourier and spatial domains are described in Sections 3 and 4, respec- 
tively. The effect of incompleteness are objectively quantified in terms of either the RMS 
(root mean square) reconstruction error in the spatial domain, or a Modulation Transfer 
Function, MTF in the Fourier domain, although subjective perceptual criteria can be more 
adequate in many applications [Gonzalez and Wintz 1977]. The GWT is also compared 
with other similar, but complete, transform (the Cortex Transform) in the discussion, 
Section 5. 

2. Gaussian Wavelet Representation of Images 

In this section we first describe briefly Gaussian wavelets, or Gabor functions, including 
the reciprocal representation in both spatial and frequency domains, namely receptive fields 
and channels respectively. Then, among all possible sets of Gabor functions, we shall make 
our choice based on visual models and image quality criteria. 

2.1. Gauss ian  Wavelets 

The Gaussian wavelet, or Gabor functions, is a complex exponential modulated by a Gaus- 
sian function. In two-dimensions (2-D), assuming radial symmetry and polar coordinates 
in the frequency domain, the analytical form in spatial variables is [Tabernero and Navarro 
1991]: 

gxo, yo.fo,Oo (x, y) = W "  go,o, fo,o~(x, y)  * 6(x - x o, y - Yo), 
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where 

go,o, fo,Oo(X, Y) = exp[-Tra2((xcosO0 + ysinO0) 2 + p2(ycosO0 - xsinO0)2)]. 

exp[i27rf0(xcos0 o + ysin00) + qS] (1) 

The shape of the Gabor function depends on the following parameters: W which is the 
gain or amplitude; a which is related to the radial bandwidth, and F which is the aspect 
ratio, while the labels Xo, Yo, fo, and Oo account tbr the double localization in both space 
and frequency domains. The Gabor function is complex, having a symmetric (real) and 
antisymmetric (imaginary) parts. Following an analogy with the human visual system [Jones 
and Palmer 1987], we shall decompose each Gabor function into two Receptive Fields in 
the space domain, differing in their parity, p = 0 (even) or 1 (odd). This choice is not 
arbitrary because it implies very important computational advantages. Then each single 
receptive field is defined by five labels (x0, Y0, fo, 00 and p). 

We have been dealing until now with Gabor functions in the spatial domain. However, 
one important advantageous feature of the Gaussian wavelets is their reciprocity in both 
domains (see Figure 1). This stems from the fact that the Fourier transform of a Gaussian 
is another Gaussian, which means that the functional form is basically the same in either 
the spatial or frequency domains. This will allow (next sections) the two alternative imple- 
mentations in either domain to be equally easy. Such duality is broken in some way by 
our visual system, which in any case is ultimately the final receptor of images. It is well 
established that humans can make a very good job in localizing things in space, while their 
ability for spatial frequency analysis is relatively poor. Our visual system uses an implemen- 
tation in the spatial domain performing a fine sampling of the space; however, this sampling 
is coarse in the frequency domain (this is imposed by the uncertainty relation) [De Valois 
1982; Daugman 198411. Implementations in the Fourier domain (where the spatial localiza- 
tion is in some way lost) would be more adequate in the hypothetical contrary case: a coarse 
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Figure 1. Real component (even receptive field) of a Gaussian wavelet, or Gabor function, (left) and its Fourier 
transform (right), showing the main parameters of Equation 1, 
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sampling in space, but a fine Fourier analysis. In any case we shall talk about Frequency 
Channels when dealing with the Fourier domain, and about Receptive Fields as regards 
to the spatial domain. 

2.2. The Set of "Logons'" 

Following Gabor [Gabor 1946], in order to represent a signal one can decompose it into 
a set of elementary quanta of information or logons. Image representations in space ~ixels) 
or by Fourier analysis (spatial frequencies) are just special cases. There is a lot of evidence 
showing that such representations of images are not the best. Depending on the application 
one could choose any intermediate case allowing a more or less coarse (or fine) local spec- 
tral analysis [Jacobson and Wechsler 1988]. The use of Gabor functions will insure an op- 
timum packing of information (minimizing the uncertainty relation) and the reciprocity 
in both domains. Unfortunately, Gaussian wavelets present a drawback: due to their shape 
they do not constitute a complete set. However, by quantifying the reconstruction error, 
it is possible to find a quasicomplete set of Gabor functions with a minimum error, which 
as we will show is perceptually irrelevant. 

Like most of the proposed transforms, our scheme is based on a linear scale in the spatial 
domain; i.e., a uniform distribution of receptive fields, and a logarithmic sampling in the 
Fourier domain; i.e., frequency channels distributed in octaves (log2). This permits multiscale 
pyramid implementations [Burt and Adelson 1983] with self-similar wavelets: all the wavelets 
can be obtained by translating, rotating or scaling one of them. The octave distribution 
of channels has shown to be optimal since the spectra of natural images tend to show expo- 
nential type decays [Navarro, Santamaria and G6mez 1987; Field 1987]. This means that 
the energy per frequency channel tends to be constant. 

The additional criteria to design the set of logons (the shape and number of wavelets) 
have been in our case [Tabernero and Navarro 1991]: known features of the human visual 
system, optimum coverage of both domains and simplicity. The resulting set is composed 
by four orientation channels (00 = 0 °, 45 °, 90 o and 135 °) and four frequency channels--and 
a low-pass residual [Burt and Adelson 1983]. The peak frequencies (fo) of the four channels 
are: half the Nyquist frequency (fN/2) for the highest frequency channel, and then halving 
for the next lower octave channel (fN/4, fs/8 andfN/16). The radial bandwidth has been 
set to one octave, a = 0.71 "fo in Equation 1, which yields a nearly optimum coverage 
of the radial frequency axis. The aspect ratio F = 1 allows circular symmetry, while the 
resulting angular bandwidth (0.71 radians) is not far from the optimum angular covering 
of the Fourier domain (for 4 channels is 7r/4 = 0.785). Finally, the localization of the receptive 
fields in space will be given by sampling requirements; sampling in a square grid, with 
an interval given by the Nyquist frequency of the corresponding channel. Figure 2a shows 
the basic 4 x 4 Gabor functions in the spatial domain, and Figure 2b the recovering of 
the Fourier domain by this set. This last figure clearly illustrates the nature of the incom- 
pleteness of the GWT, since the recovery of the Fourier domain is not complete. This causes 
a nonflat MTF: apart from the loss of high frequencies mainly in the corners (high fre- 
quency residue; [Burt and Adelson 1983; Watson 1987]), what is characteristic of the Gabor 
functions are the indentations between adjacent channels (this is further illustrated in 
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I 

Figure 2. The 4 x 4 basic Gabor functions of the GWT: (a) The (even) Receptive Fields in the space domain; 
~)  Coverage of the Fourier domain by the Frequency Channels. 

Figure 4). This makes the GWT be incomplete since a complete scheme would provide 
a uniform recovery of both domains. 

Once the set of logons is defined, the image representation is obtained by the expansion 
into these elementary signals. Any implementation will involve the computation of the inner 
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product of the signal with every Gabor function. The resulting numbers are samples of 
the image in a joint spatial/spatial-frequency domain [Jacobson and Wechsler 1988]. The 
logarithmic Gaussian mapping has the important feature that the joint size of logons is 
constant and optimal (minimum uncertainty relation means optimum packing of informa- 
tion) in the joint domain (see Figure 3). 

An important aspect of this kind of scheme is that one only needs the even real part 
of the Gabor functions to encode the image. However, in image analysis, the performance 
can be highly improved by using the complete transform, including even and odd receptive 
fields [Tabernero and Navarro 1991]. In fact, it is well known that the simple neurons in 
the visual cortex are arranged in couples, differing just because their receptive fields are 
in phase quadrature [Pollen and Ronner 1983]. This redundancy seems to be inherent to 
the visual process: the even receptive fields are bar detectors, while the odd ones are edge 
detectors [Watson 1990]; (see also Figure 7). 
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Figure 3. GWT coverage of the joint spatial/spatial frequency domain, with the minimum number of Gabor func- 
tions (logons), all of them having the same area (constant and maximum uncertainty relation). 
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3. Implementation in the Fourier Domain 

As far as we know, the implementation in the Fourier domain has been common in this 
kind of transform [Watson 1987], since on the one hand the frequency channels are straight- 
forwardly implementable as linear Fourier filters (in our case Gaussian windows in the 
frequency domain, Figure 2b), and on the other hand, by using a Fast Fourier Transform 
algorithm, and a pyramid implementation [Watson 1987], the computer time is quite 
reasonable. 

Most of the details of this implementation are the same as in similar schemes [Watson 
1987]. The unique but important question is that the Gaussian channels do not allow a 
complete and uniform covering of the Fourier domain. This can be appreciated in Figure 4. 
This figure shows the modulation transfer function, MTF of the Gaussian Wavelet 
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Figure 4. Modulation Transfer Function of the Fourier domain GWT implementation. The dashed line corresponds 
to the case of constant gain for the different channels, and the continuous line is after equalization by assigning 
different gains to the frequency channels (gains are 0.93, 0.93, 0.93 and 1.15 respectively). 
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Transform GWT, with, and without, assigning different weights (gains) to the different 
channels. The reason to assign different weights to the channels is to equalize (flatten) the 
MTF as much as possible; i.e., to minimize the reconstruction errors. The method used 
to find the gains, in both spatial and Fourier implementations, was empirical. The MTF 
was obtained using a random white noise as test image, as the ratio of the Fourier spectra: 
that of the recovered image after the GWT, versus that of the original. As can be appreciated, 
it is not possible with Gausian functions to obtain a completely flat MTE This explains 
why the GWT is not complete, in the sense that we do not exactly recover the original. 
However, we will show that while objective criteria (RMS error in space, or MTF in fre- 
quency), give noticeable differences with respect to the original, under subjective visual 
criteria it is difficult to distinguish between the original and the reconstruction. 

4. Implementation in the Spatial Domain 

The self-similarity of the Gabor functions, along with their Gaussian shape, allows easy 
pyramid implementations in either spatial or frequency domains. Although any filtering 
operar!cr can be equally performed in both domains by the convolution theorem, the Fast 
Fourier Transform (FFT) algorithms usually are more appropriate to implement the filter- 
ing in the Fourier domain. However, adequate filter design, with small filter convolution 
masks, can match, or even improve, the computing time when compared with a FFT imple- 
mentation. For instance, 3 x 3 filter masks are widely used in real time image processing, 
including low-pass Gaussian filters. For this purpose we started designing a couple (even 
and odd) of filter masks corresponding to the highest frequency, horizontal 0 = 0 ° channel. 
This consisted of finding the minimum number of samples needed to reasonably represent 
the shape of that Gabor function. As a result of this tradeoff, the receptive fields were 
implemented in 7 x 7 convolution masks [Tabernero and Navarro 1991]. The resulting 
filter masks, shown in Figure 5, permit a fast implementation. The computing time for 

0 - 3  0 13 0 - 3  0 
0 - 8  0 16 0 - 8  0 
0 - 1 3  0 22 0 - 1 3  0 
0 - 1 6  0 26 0 - 1 6  0 
0 - 1 3  0 22 0 - 1 3  0 
0 - 8  0 16 0 - 8  0 
0 - 3  0 13 0 - 3  0 

3 0 - 8  0 8 0 - 3  
6 0 - 1 1  0 11 0 - 6  
8 0 - 1 5  0 15 0 - 8  
10 0 - 1 6  0 16 0 - 1 0  
8 0 - 1 5  0 15 0 - 8  
6 0 - 1 1  0 11 0 - 6  
3 0 - 8  0 8 0 - 3  

EVEN FILTER ODD FILTER 

Figure 5. Filter masks of 7 × 7 pixels used in the spatial domain implementation. They correspond to the max- 
imum frequency fN/2, vertical 0 = 0 ° even and odd receptive fields. 
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the spatial implementation is roughly proportional to 72. N 2 ( N  being the number of rows 
in a square image), versus k "  N z • log/N 2 (typical values for k are between 2 and 3) of 
the fast Fourier implementation. In consequence, for typical image sizes both implementa- 
tions are approximately equivalent in computing time. 

Once the basic couple of receptive filters is designed, the complete set is obtained by 
rotating and/or scaling operations. While the four orientations are in fact obtained by rotating 
the originals, a pyramid implementation is more adequate for scaling: instead of magnify- 
ing the filters, which would imply much more computing time, the pyramid implementation 
applies the same set of filters to successive compressed versions of the image. Each com- 
pressed version is obtained by first applying a low-pass Gaussian filter (5 x 5 mask) to 
the image in order to avoid aliasing, and then a decimation by a factor of 2 in both dimen- 
sions [Butt and Adelson 1983]. This scheme is typical in multiresolution methods [Rosenfeld 
1984]. Figure 6 shows the result of the GWT expansion. The image is recovered by adding 
only the even logons (a), while the odd part (b) is equivalent to a set of edge detectors .  

As in the Fourier domain implementation, the effect of incompleteness is that the GWT 
is not exact. Furthermore, undersampling of the receptive fields causes a broadening of 
the Fourier channel, which affects the MTE This can be appreciated in Figure 7. This 
figure shows the MTF of the spatial domain GWT (computed from a white noise image), 
with and without assigning different weights, or gains, to the different channels. The equal- 
ized version is obtained with gains 0.45, 0.60, 0.65, and 0.90 for the four frequency channels, 
f~ to f4 respectively (the gain of the low frequency residual, 1, is unchanged). The assign- 
ment of different weights to the channels allows the equalization of the two implementations. 

Figure 6. Result of the complete GWT. The grey scale is proportional to the value of each logon. Note that the 
even receptive fields (up), behave as bar detectors, and are enough to code and reconstruct the image. The odd 
receptive fields are edge detectors (bottom). 
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Figure 7. Modulation Transfer Function of the spatial domain GWT implementation. The dashed line corresponds 
to the case of constant gain for the different channels, and the continuous line is after equalization by assigning 
different gains to the frequency channels (gains are 0.45, 0.60, 0.65 and 0.90 respectively). 

The matching is not total anyway, since the two implementations involve different comput- 
ing errors, sampling, quantization, etc. Figure 8 shows (a) the original image, and reconstruc- 
tions: (b) from Fourier domain and (c) from spatial domain implementations of the GWT. 
The RMS normalized errors of the reconstructions are 13 % in both cases. Most of this 
RMS error (about the 11% for the CT. See Section 5) comes from disregarding the high 
frequency residual band, corresponding to the energy contained in the corners of the Fourier 
domain [Watson 1987]. In fact, the visual appearance of the reconstructions resembles a 
very slightly low-pass filtered version of the original. The high frequency residual can be 
incorporated to the GWT, but its value is usually going to be negligible. Moreover, this 
high frequency residual will be zero when the acquisition system uses both conventional 
optical systems and adequate sampling. 
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Figure 8. Original image (a) and reconstructions from Fourier domain (b), and spatial domain (c) implementa- 
tions of the GWT. 

5. Discussion 

In this section we shall compare our GWT with a similar but complete transform. For this 
purpose, among the different published schemes, we chose the Cortex Transform, CT 
[Watson 1987], because this is probably the one presenting more similar features with respect 
to our GWT (4 × 4 channels, also based on visual models, etc.). The main difference 
is that the CT is complete; also the CT is difficult to implement in the spatial domain. 
In what follows, we use a version of the CT with exactly the same frequency, and orienta- 
tion channels as our GWT. 

5.1. Comparison Under Objective and Subjective Visual Criteria 

Figure 9 shows two reconstructions from the CT (a) and the GWT (b) respectively. In both 
cases the high frequency residual has been neglected, which causes most of the error. The 
RMS error is slightly smaller in the CT case: 1t% in the CT (which is only due to neglect- 
ing the high frequency residual), versus 13% in the GTW; while the visual appearance 
is almost identical. The effect of incompleteness is objectively quantizabte in the Fourier 

Figure 9. Comparison of the reconstructions obtained with the Cortex Transform, CT (a), and the Gaussian Wavelets 
Transform GWT (b). In both cases, the peak frequencies and orientations are the same, and the high frequency 
residual has been neglected. 
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domain as little indentations in the MTF of the transform or as a higher RMS error in 
the reconstruction. However, since the final receptor of images is usually going to be the 
human eye, subjective perceptual criteria are more adequate. In Figure 9, the GWT recon- 
struction could be better classified by several observers, although most of them would find 
it very difficult to establish a difference. This result points out that although Gabor func- 
tions have been previously discarded because of their lack of completeness, the GWT pro- 
posed here is quasicomplete; i.e., the effect of incompleteness is small in terms of RMS 
error, and irrelevant under perceptual criteria. 

The redundancy inherent in using an incomplete representation has been also argued 
against Gabor functions. For image compression applications, orthogonal transforms should 
give a better result than those nonorthogonal; i.e., a more compact coding with smaller 
entropy or bit/pixel rate, since minimum entropy also means minimum redundancy [Gonzalez 
and Wintz 1977]. To assess that redundancy, we have computed and compared the entropy 
of the different frequency channels of Figure 6, with that equivalently obtained by the CT. 
The resulting values for the higher frequency channel are 4.4 and 4.3 respectively, which 
involves only a 2 % of increment, while for the other channels there is not a noticeable 
difference (values are 4.6, 5 and 5.2 respectively. Note that these values of entropy are 
relatively high because they have been computed using the original quantization in 256 
linear levels. By an adequate quantization and coding, the entropy can be highly reduced). 
In order to complete this comparison we also need to l~mow the 2-D (area) bandwidth ratio 
between the GWT and CT frequency channels, because the total amount of bits required 
to code a channel is proportional to the entropy of that channel times its bandwidth. This 
has been estimated in the following way: first the minimum box in the Fourier domain 
containing a 99 % of the energy of a CT channel has been determined, and second, the 
percentage of energy of the equivalent GWT channel inside that box has been computed. 
The result is 90% approximately, which once again does not imply a big difference. Actu- 
ally this means a small increment in the amount of redundancy in the GWT with respect 
to the CT, which, as we shall show in Section 5.2, increases the robustness of the coding. 
Additionally, the reciprocity of Gaussian wavelets under Fourier transformation, makes 
them specially appropriate as a base of functions in joint representations. Moreover, the 
smoothness of Gaussian windows is very well suited to avoid edge effects, aliasing and 
ringing artifacts, etc., which are typical in Fourier filtering. As we shall show, this property, 
along with some amount of information redundancy, is important in robust coding. 

5.2. Comparison in Terms of Robustness of Coding 

One of the main applications of these kinds of transforms (Cortex, QMF, wavelets, etc.) 
is image coding. There is strong evidence suggesting that the human visual system also 
uses a similar scheme [Marcelja 1989; De Valois et al. 1982; Daugman 1984] and it has 
been shown that similar transforms allow high rates of data compression [Daugman 1988; 
Watson 1987]. Also the visual system makes an important use of redundancy: for instance 
the arrangement of neurons in couples with phase quadrature involves redundancy, but it 
is very important in shape and edge detection, or texture recognition. Many tasks can be 
more efficiently performed with this visual mapping of images, but also this mapping is 
well suited for robust coding. 
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Figure 10. Image reconstructions with partial losses of frequency channels. The first row (up) corresponds to 
the Cq" and the second (down) to the GWT. The first column (left) shows the reconstruction from only three 
frequency channels (missing the high frequency channel), and the second and third columns to reconstructions 
from two and only one channels, respectively. 

Probably the most important features of good coding are robustness and efficiency. In 
particular, the robustness under partial information losses (or errors), which could be ran- 
dom or even systematic, is critical [Watson 1990]. Pyramid multiresolution coding is robust 
under high frequency losses. This has been tested, and the result is shown in Figure 10. 
The first row presents image reconstructions from the CT, with progressive loss of high 
frequency channels: with only three channels (first column left, 19 %), and with two (sec- 
ond column ERMS = 26%), and just the lowest frequency channel (third, EkM s = 34%). 
The second row corresponds to the GWT in the same conditions (ERM s = 20%, 26% and 
35 %, respectively). In spite of these relatively high values of  the RMS error, this figure 
illustrates the robustness of this kind of representation. Our eye can perform a very good 
job in face recognition, even when just the two lower frequency channels are available (a 
small subset, 6% approximately, of the total number of logons). This also could exlain 
to some extent why this coding is convenient in human vision, since people with low visual 
acuity (myopic, amblyopics, etc.) can recognize objects, and perform most visual tasks. 

Figure 10 also illustrates a very important point. In the case of any kind of information 
losses, or errors, no coding is complete. In consequence, robustness is not at all dependent 
on completeness. If  we compare the first and second rows of Figure 10, we can observe some 
artifacts, ringing, which are more clear in the first row, CT. Once again, although the RMS 
error is slightly smaller for the CT (11%, 19 %, 26 % and 34 % in the CT versus 13 %, 20 %, 
26% and 35% in the GWT), visual criteria will not make the same difference. Besides, in the 
case of partial losses (compare the first and second couples of  pictures) the GWT presents 
slightly smoother artifacts, which means that under visual criteria, the GWT would be pref- 
erable. This fact is further illustrated in Figure 11, representing orientation channels losses. 
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Figure 11. Image reconstructions with partial losses of orientation channels. The first row corresponds to the 
CT and the second to the GWT. The first column shows reconstructions without a single orientation 045 in only 
one frequency f4 (high frequency). The second and third columns show reconstructions with one orientation channel 
missing for all frequencies (00 and 0135 respectively). 

Figure 11 shows reconstructions with orientation channel losses: the first column (left) 
corresponds to loosing a single orientation channel (00 = 45 °) only for the frequency band 
f3; the second and third columns correspond to orientation losses (0o and 0135 respectively) 
for all frequencies. The first row (top) corresponds to the CT and the second (bottom) 
to the GWT. Apart from some more. or less curious effects (noise removal, etc.), this is 
a significant example in which the CT is subject (on average) to more visual artifacts, the 
GWT appearing to be more  robust. This is because when an orientation channel is missing 
in the CT, which is less redundant, a deep and sharp hole appears in the Fourier domain. 
On the contrary, with Gabor functions, that hole is much less deep since it is partially 
filled by the adjacent channels, and of course it has much smoother edges. This is a very 
important advantage, because in these examples, the partial filling of holes in the GWT 
will allow image restoration (by inverse or Wiener filtering methods, etc.), while the deep 
holes in the CT are very difficult to restore. 

Another important aspect of the GWT is that it is well suited for parallel optical imple- 
mentations. In this sense, an optical wavelet transform has been recently proposed by [Freysz, 
Pouligny, Argoul and Arneodo 1990]. With an adequate design of optical filters, it would 
be amenable to completely parallel optical implementation; i.e., by multiplying the object 
by a high frequency square array of dots, many replicas of  the object spectrum can be simul- 
taneously obtained allowing to apply several filters at the same time. 
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6. Conclusion 

Gaussian wavelets (Gabor  functions) present a series of important advantages with respect 

to other wavelets, at the cost of incompleteness. Many authors have argued against Gabor 
functions for their lack of  orthogonality and completeness, and proposed other alternative 
complete schemes and orthogonal bases of functions. However, we have shown that by a 
careful choice of the Gabor  functions, in order to optimize the recovery of  the frequency 
domain, the effect of incompleteness of  the GWT is small, and perceptually almost insignif- 

icant. Moreover, the GWT proposed here can be considered in practice quasicomplete. The 
advantages are very important (most of them were already shown by Gabor  in 1946): mini- 
mizing the uncertainty relation (optimum packing of information); formal reciprocity, which 
makes implementations possible and easy in either domains, and robustness under informa- 
tion losses, minimizing artifacts, etc. A final advantage is that the GWT is also based on 

human vision. Since the human visual system shows a high performance in most aspects, 
which has not been improved, or  even reached, by artificial systems, image processing 
environments based on visual models are expected to be well suited for artificial vision. 
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