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Abstract. 

We show that the theorems of Sanz-Sema and Eirola and Sanz-Serna concerning the symplecticity 
of Runge-Kutta and Linear Multistep methods, respectively, follow from the fact that these methods 
preserve quadratic integral invariants and are closed under differentiation and restriction to closed 
subsystems. 
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1. Introduction. 

Concerning the numerical solution of  ordinary differential equations, Cooper 
[4] has shown that Runge-Kutta methods with vanishing stability matrix pre- 
serve the quadratic invariants of  the system, and Sanz-Serna [1 l] and Lasagni 
[9] have shown them to be symplectic when applied to Hamiltonian systems. 
See the review articles ofScovel [ 13], Yoshida [ 14], Sanz-Serna [ 12], and section 
II. 16 of Hairer et al. [8] for more details concerning the symplectic methods. 
Moreover, Eirola and Sanz-Serna [5] have shown that, for symmetric one-leg 
multistep methods (OLM), the quadratic invariants of  the system can be ex- 
tended to quadratic invariants of  the multistep method by a tensor product of  
A, a matrix associated with the OLM, and the matrix associated with the 
quadratic invariant. They also show that the symmetric OLM is symplectic 
with respect to a tensor product of  A and the symplectic matrix. See also Ge 
[7]. 

These results suggest that there is some relation between the preservation of  
quadratic invariants and symplectic structure. Indeed, since both the Runge- 
Kutta and the OLM's are equivariant under linear symmetry groups, being 
symplectic implies the preservation of  quadratic invariants of Hamiltonian 
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systems by a result of  Feng and Ge [6]. On the other hand, we observe that 
the invariance of  the symplectic structure determines an integral invariant for 
the natural extension to the Whitney sum T N  ~) T N  (cf. [2]) where N is the 
original phase space. If N is a linear symplectic space, then this Whitney sum 
can be trivialized to a vector space N G N @ N such that this integral invariant 
is quadratic. 

Our main theorem is that if  the method is closed under differentiation, closed 
under restriction to closed subsystems (to be defined shortly), and preserves 
quadratic invariants generated by those of the original system, then the method 
is symplectic when applied to a Hamiltonian system. We then obtain Sanz- 
Serna's [11 ] and Eirola and Sanz-Serna's [5] results concerning symplecticity, 
as a consequence of  quadratic invariant preservation, by verifying that those 
methods are closed under differentiation and restriction to closed subsystems. 
However, we remark that presently it is questionable if this result can be used 
to prove the symptecticity of  a method since the direct proof that a method 
preserves quadratic invariants is not necessarily simpler than the direct proof 
that it preserves the symplectic structure. Indeed, this result seems to indicate 
that, for a large class of linear methods, the converse should be true. 

2. Quadratic invariants and symplectic maps. 

Le t  N = R a x R a be the standard symplectic vector space with symplectic 
form 

d 

o~ = dq  A dp  = ~_~ dqi A dpi = J d y  A dr 
i = l  

where y = (q, p) and 

See Abraham and Marsden [ 1] for a treatment of Hamiltonian mechanics. For 
a Hamiltonian H, the Hamilton equations of  motion are 

(1) y = J-1VH(y). 

Since N is a vector space, we trivialize T N  to N x N, but will still refer to it 
as TN. 

Consider the tangent lift of  these equations to T N  obtained by differentiation: 

(2) y = J-1VH(y) 

i = J-ldVH(y)z. 

Now consider a numerical method for the solution of the Hamiltonian system 
(1). We adopt the notation 
(3) Yn+l = F(Y~) 



= J 1VH(y) 

y = J ~VH(y) 
z = J - ldVH(y) z  

ON QUADRATIC INVARIANTS AND SYMPLECTIC STRUCTURE 

Y~+~ = F(Y,3 

Y~+I = F(Y,3 
Y Zn+l = dF(Y~)Zn 

Figure 1. Tangent lift of a system and a method. 
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for such a method where Yn is a point in an appropriate numerical phase space 
M. For one-step methods M = N, and for k-step methods M can be identified 
with N k. The tangent lift of  the method (3) to one on T M  is 

(4) Vn+~ = F(Vn) 

(5) Zn+l = dF(Vn)Zn. 

If  the numerical method applied to the tangent lift system (2) gives the lift (4), 
(5) of  the numerical method applied to the original system, we say that the 
method is closed under differentiation and that Figure 1 is commutative. The 
left hand side of  the figure consists of  differential equations and the right hand 
side along the horizontal arrows is the numerical method applied to those 
differential equations. 

We say that the method is closed under restriction to closed subsystems if 
the method restricted to a closed subsystem is the same as the method applied 
to the full system and then evaluated on the variables of  the subsystem. Namely, 
restriction commutes with the method. To be precise, consider the system y 
= f(y) where y = (yl, Y2) and y~ are the subsystem variables. If  

f(Y) = (f~(Yt), f2(Y)), 

then the system y~ = f~(y~) is a closed subsystem. The method is closed under 
restriction to the Y~ variables if  

F(Y) = (r,(Y), F~(Y)) = (r(Y,), F2(Y)), 

where F(Y~) is the method applied to the subsystem alone. For example, the 
tangent lift of  a method closed under differentiation is closed under restriction 
to the original Y variables since the top half of  the method applied to the (Y, 
Z) variables in (4), (5) is the same as the method applied to the Y variables 
alone (eqn. 3). 

We say that the method (3) has a quadratic invariant Q, generated by a 
quadratic invariant Q of the original system if Q = Q for single-step methods 
and Q = A ® Q for multistep methods, where A is a symmetric matrix which 
depends on the method but does not depend on the specific system being 
integrated. We require A = t for single-step methods so that the condition can 
simply be stated as Q = A ® Q. The single step Q = Q corresponds to the result 
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of Cooper [4], and the multistep Q = A ® Q corresponds to the result of  Eirola 
and Sanz-Serna [5]. 

Consider the skew-symmetric bilinear function (Jz, w). It corresponds to a 
quadratic function (J. ,  . ) on the Whitney sum N @ N • N where the matrix 
J is 

:/ 0 . (6) J = ~ J 

Similarly, the skew-symmetric bilinear function ((A ® J)Z, W), defined on the 
numerical phase space M gives a quadratic function 

(7) ((A ® J)(Y, Z, W), (Y, Z, W)) = A 0 ( J Z , ,  W j )  = ((A @ J)Z, W) 

on M @ M @ M and we also refer to J = A ® J as being generated by J. Since 
J is a symplectic structure, A ® J is skew symmetric, but its nondegeneracy 
must be established for it to be a symplectic structure. Eirola and Sanz-Serna 
[5] have shown it to be symplectic for the symmetric OLM's. However, we are 
not concerned with this issue here and will broadly refer to A ® J as a symplectic 
structure. 

THF.OX~M 1. Suppose that the numerical method is both closed under differ- 
entiation and closed under restriction to closed subsystems. Suppose also that 
the method preserves the quadratic invariant Q generated by each quadratic 
invariant Q of  the original system. Then the mapping Y. ~ Y.+~ is canonical 
with respect to the symplectic structure ~ = A ® J when applied to the Hamil- 
tonian system (1). 

PROOF. Consider the system of  ODE's extended to the Whitney sum TN 
TN-~ N ~  N ~  N 

(8) ~¢ = J - 'VH(y)  

= J-~dVH(y)z 

ff = j - ldVH(y)w. 

Since the subsystems 

and 

~, = J-~VH(y) 

= J -  ~dVH(y)z 

= J-lVH(y) 

ff = J -  ldVH(y)w 

are both closed subsystems and tangent lifts of  the original system, the nu- 
merical method applied to (8) must be of  the form 
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Yn+l = F(Yn) 

Z~+~ = dF(Y~)Zn 

Wn+~ = dF(Y~)W~. 

Now observe that the system (8) has a quadratic invariant generated by the 
symplectic structure of the original system. Namely, 

(J(y, z, w), (y, z, w)) = (Jz, w) = const. 

where J is defined in (6). This is proved by straightforward differentiation: 

(Jz, w) = (J~., w) + (Jz, ~) = (JJ-~Bz, w) + (Jz, J-~Bw) = O, 

where B = dVH(y) is symmetric and J is skew symmetric. 
The hypothesis of  the theorem is that there is some A such that 3 = A ® J 

is preserved. By equation (7), preservation of  the quadratic invariant deter- 
mined by 3 is equivalent to the preservation of the bilinear function determined 
by 3 = A ® 3- Thus 

(3Z~+l, Wn+l) = (3Z., Wn). 

Since 

and 

Z n +  ~ = d F ( Y n ) Z  n 

Wn+, = dF(Yn)W~ 

and the invariant is preserved for all Z~ and W~, we deduce that 

dF(Y~)r3dF(Y~) = 3. 

Namely, the method is symplectic with respect to 3. The proof is finished. 

3. Applications. 

In this section, we show that the Runge-Kutta methods, Linear Multistep 
methods, and more generally the General Linear Methods are closed under 
differentiation and restriction to closed subsystems. See Hairer et al. [8] for a 
more detailed discussion of these methods. Consequently, by Theorem 1, to 
demonstrate symplecticity, one only needs to know when they preserve qua- 
dratic invariants. We consider the methods applied to the general ODE 

(9) y = f(y). 

3.1. Runge-Kutta methods. 

The s-stage Runge-Kutta for solving (9) is defined by the equations 

(10) Yi = Y~ + h ~ a;jf(Y) 
jffit 



342 P .B .  BOCHEV A N D  C. SCOVEL 

(11) y.+~ = y,, + h ~ b,f(Y~). 
i=l  

To show that the Runge-Kutta methods are closed under differentiation, we 
apply (lO), (11) to the system 

= f ( y )  

= df(y)z. 

The new approximation to the vectors y and z is now computed according to 
the formulae 

= aiJ~df(y:)Zy: Z Zrt j=l 

\z .+l ]  z. i = l  

Note that in the above equations the stages Y~ for the closed subsystem of 
variables y can be determined independently from the stages Zi. Once the Y~ 
are found, then the stages Zi can also be computed. Therefore, the equations 
for Y~ and Yn+l can be decoupled from the equations for Z~ and z,+l. Equations 
for the first pair are identical with the equations (10) and (11) for the system 
(9). For the second pair we have a similar situation with 

Z~ = z, + h ~ a j f (Yj)Zj  
j= l  

z,+~ = z,  + h ~ b~df(Y~)Zi 
i=1 

being equivalent to (10) and (11) applied to Z = df(y)z. On the other hand, 
differentiation of (10) and (11) results in equations identical to the above. Since 
h is small enough that the solutions are unique, we find that the tangent lift of  
the method (10) and (11) gives the same map as the method applied to the 
tangent lift of  the system (9). Consequently, the Runge-Kutta methods are 
closed under differentiation. 

The Runge-Kutta methods are homogeneous in the vector indices. Namely, 
the method treats all indices the same and does not mix components. Therefore, 
it is easy to see that ira subset of  the indices corresponds to a closed subsystem, 
then the Runge-Kutta method applied to the full system but then evaluated on 
the subsystem is the same as the method applied directly to the subsystem. 
Consequently, the Runge-Kutta methods are also closed under restriction to 
closed subsystems. 

Therefore, since Cooper has shown that Runge-Kutta methods with vanish- 
ing stability matrix (BA + ArB - bb r = 0 where B denotes the diagonal matrix 
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with entries bi) preserve all quadratic invariants, Theorem 1 tells us that such 
methods are also symplectic when applied to a Hamiltonian system 1. 

3.2 M u l t i s t e p  me thods .  

A general linear multistep method is defined by its two real characteristic 
polynomials 

k k 

O(x) = ~.~ %xJ; ak * 0; (r(X) = ~ BjXS; a(1) = 1. 
j=0 j= l  

The standard Linear Multistep Method (LMM) and the corresponding One- 
Leg Method (OLM) are then given by the equations 

(12) p(E)y~ = ha(E) f (yn)  

(13) a(E)y~ = hf(a(E)yn) ,  

where E denotes the shift operator Ey~ = y~+~. The methods (12) and (13) are 
called symmetric ifaj  = - % _ j  and Bs = Bk-S- It is convenient to regard a multi- 
step method as a one-step method defined on a suitable product space. For 
this let us solve (t3) for Y~+k: 

C~k-~ % hf(a(E)yn)" 
Yn+k = - -  Yn+k-1 . . . . . .  Y~ - 

Ol k 

If we introduce the vectors 

and the matrix 

A = 

O~ k Ol k 

y~ = (y r, . . . ,  yrk_~)r  

b r = (~k, " " ,  /30) 

__ Ctk_ 1 Oik_ 2 . . . O/1 O L ) \  

0 i k  O~k 0l: k 

0 -.. 0 

0 --- 1 

then the OLM (13) can be written as a one-step method which maps Yn to Yn+l 
as follows: 

(14) Y~+t = (A ® I)Yn + (el ® I ) h f ( ( b r  ® I)Yn+l), 
O/k 

where we refer to Lancaster [ 10] for the basic definitions of  tensor products. 
To verify that the OLM (13) is closed under differentiation, we apply the 

one-step representation (14) to the tangent lift 



344 e .B.  BOCHEV AND C. SCOVEL 

= f ( y )  

i = df(y)z. 

Let X, = (yr ,  z r ) r  where Y, and Z,  denote the respective approximations for 
y and z. It is easy to see that the formula for computation of  X,+I from X, can 
be decoupled into two separate equations 

V,+l = (A ® I)Y, + (el ® I )h f ( (b  T ® I)Y,+,) 
O¢ k 

and 

h 
Z n +  , = (A ~ I)Zn + (e, ® I ) : d f ( ( b r ®  I)Y,+l)(br® I)Z,+,. 

Ol k 

Differentiation of  (14) produces exactly the same as the above with Y'+~ 
instead of  Z,+I. For h sufficiently small, it follows that Y'+~ can be identified 
with Z,+~ which establishes that the method is closed under differentiation. It 
is straightforward to show that the one-step representation is closed under 
restriction to the direct product of  closed subsystem variables in M. Similarly, 
the LMM's are also closed under both differentiation and restriction to closed 
subsystems. 

Since Eirola and Sanz-Serna [5] have shown that for any quadratic invariant 
Q the symmetric OLM preserves the quadratic invariant Q = A ® Q, Theorem 
1 now implies that the symmetric OLM is symplectic with respect to the 
symptectic matrix J = 3. ® J when applied to the Hamiltonian system 1. 
However, it is not known which of  the LMM's preserve quadratic invariants. 

3.3 General linear methods. 

In this section we turn our attention to the so-called General Linear Methods 
(GLM) introduced in [3]. Indeed, being linear means that we solve a system 
which is linear in the state vectors and the vector field evaluated at the state 
vectors. 

A GLM for the autonomous system (9) is defined by the equations 

~7 -- ~ atjY7 + h /~of(~O; i =  1 . . . . .  k 
j ~ l  j ~ |  

y7 +a = ~ atjY] + h bof(u2); i = 1 . . . . .  s. 
j=l j=l 

Each Yi is an m-dimensional vector, where m is dimension of  the system (9). 
These vectors are called external stages since they contain all information from 
the previous step necessary for the computation of  the new approximation. 
The vectors u7 are the internal stages of  the current step. By the linearity and 
homogeneity of the method with respect to vector indices, an elementary cal- 
culation similar to those given above shows that GLM's are closed under both 
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differentiation and restriction to closed subsystems. Consequently,  to apply 
Theorem 1 and establish the symplecticity o f  any G L M  method,  we need only 
to find whether  the me thod  preserves invariants generated by the quadratic 
invariants o f  the original system. It might  be possible to formulate  a general 
condit ion in this sense similar to the condi t ion on the Runge-Kut ta  methods,  
but  at present we do not  know whether  such a condi t ion actually exists. One 
o f  the difficulties here is that  now we have to determine the form of  the quadratic 
invariants to be preserved by the me thod  simultaneously with the conditions 
on the coefficients o f  the G L M  which will guarantee the preservat ion o f  these 
invariants. In contrast,  in the Runge-Kut ta  case and in the symmetr ic  O LM 
case these problems were not  related. Indeed,  since Runge-Kut ta  are one-step 
methods,  we search only for the condit ions on the coefficients which will pre- 
serve the canonical symplectic structure. In the case o f  the symmetr ic  O LM 
we only had to identify the appropriate  symplectic structure on  the product  
space M = N k without  searching for condit ions on the coefficients. Conse- 
quently, we simultaneously seek condit ions on the G L M  and A such that the 
me thod  is symplectic with respect to A ® o r. 
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