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Abstract. 

In this paper we study dynamic iteration techniques for systems of nonlinear delay differential 
equations. After pointing out a close connection to the 'truncated infinite embedding', as proposed 
by Feldstein, Iserles, and Levin, we give a proof of the supedinear convergence of the simple 
dynamic iteration scheme. Then we propose a more general scheme that in addition allows for a 
decoupling of the equations into disjoint subsystems, just like what we are used to from dynamic 
iteration schemes for ODEs. This scheme is also shown to converge superlinearly. 
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1. Introduction. 

Since the early eighties there has been a considerable interest in a class of  
iterative methods for ODE initial value problems called dynamic iteration or 
waveform relaxation methods. The basic idea of the techniques dates back to 
the work by Picard and Lindelrf  in the end of the last century, but the actual 
numerical implementation of such techniques was never a real issue until one 
hundred years later. At this time, fast computing facilities with large amounts 
of  memory made it reasonable to consider the practical exploitation of  dynamic 
iteration methods, and it was in the electrical engineering community that the 
method was first proposed in its recent form by Lelarasmee et al. [2]. With the 
growth of parallel computers, the methods have become even more interesting. 

The idea is basically to simplify the dependency structure in a system of 
differential equations by introducing an iteration, in which some of  the cou- 
plings in the fight hand side are read from the previous iteration. More precisely, 
given the initial value problem 

(1.1) 3~ = f(y),  y(0) = Yo, 

we define the iteration 

(1.2) 3~(k+,) = f(y(k+,), y(k)), Y(k+O(0) = Yo, 

Received May 1993. Revised March 1994. 



326 M. BJORHUS 

k = 0, 1, 2 , . . . ,  where j~ must satisfy ~f(y, y) = f ( y ) .  Here, and in the remainder 
of  this paper, we work in R m, equipped with the Euclidean norm. The initial 
function y(°)(t) can be anything as long as it satisfies the initial condition, but 
it is in practice most often taken to be constant. It is well known that the 
iteration converges superlinearly on finite intervals (see e.g., [3]). I f j  ~ is chosen 
such that the system appearing in the iteration (1.2) consists of  independent 
subsystems o f y  (k+'), j~ is called a block-Jacobi splitting of  the system; needless 
to say, this is an ideal situation from a parallel point of  view. 

For systems of  ODEs, it is the difficulties introduced by the couplings between 
the different components of  the system that motivates the use of  dynamic 
iteration. For the scalar delay equation 

(1.3) £(t) = F(t, y(t), y(O(t))), y(0) = Yo, 0(0) = 0, 

however, it is the coupling between y(t) and y(O(t)) that introduces difficulties. 
This coupling can be relaxed by defining a dynamic iteration scheme in which 
the delay term is read from the previous iteration. In other words, instead of  
(1.3), we introduce the scheme 

(1.4) y(k+ ~)(t) = F(t, y(k+ 1)(t), y(k)(O(t))), y(k+ ~)(0) = Yo, 

where k = 0, 1, 2 . . . .  and yt°)(t) is a given function. A natural choice is yt°)(t) 
--- Y0. In this way, we are left with a 'normal' ODE to solve in each iteration. 
This dynamic iteration scheme is what we intend to investigate below. 

2. Relation to the standard embedding. 

It is interesting to see that the sequence of  iterates y(k+,)(t), defined by (1.4), 
is actually nothing but scaled and dilated versions of  the components in the 
infinite-dimensional system of ODEs into which (1.3) can be embedded, as 
described by Feldstein, Iserles, and Levin [1]. This system is given by 

(2.1) Xm(t) = rmO,,(t)F(O,,(t), r-mx,,(t),  r--m--'Xm+l(t)), X,,(O) = rmyo 

for m e Z + and r e (0, 1), where Ore(t) = 0 o . . .  o O(t) (m times), and Oo(t) = t. 
The "standard embedding' of (1.3) follows from the fact that Xo(t) - y(t). We 
can state the following result. 

THEOREM 2.1. For N >- O, let y(°)(t) - Y o ,  xN+~(t) =- rU+'yo, and consider the 
sequences {y¢k)}~,+l and ~ m  ~" ~U+lj m=0. Then we have the fo l lowing relation 

xN+l_:(t) = rN+~-JY(:)(ON+,-:(t)), j = O , . . . ,  N + 1. 

PROOF. Let  o~J(t) = xN+~_~(t)/r N+'-j, j = 0 . . . . .  N + 1. Then we have, for 
j =  1 , . . . , N +  1, 

•U+l-j(t) 
d~i(t) = r u+~-~ 

= ON+, _:(t)F(O~+l _j(t), r-(U+' -J)xu+l _j(t), r-(U+' -j~- 'x(t~+,_j)+, (t)) 
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= ON+,--j(OF(ON.I--j(t), O J(O, 

Let nJ(t) = ytJ)(0N+~-j(t)), j = 0 . . . .  , N + 1. Then we have, for j = 1 . . . . .  
N +  1, 

i?(t) = F(ON+I_j(t), y(J)(OS+l-j(t)), y~J-~)(ON+l--(j-~)(t)))'ON+x-j(t) 

= Ou+~-j(t)F(ON+l-j(t), nJ(t), r f -  ~(t)). 

Since ¢d(O) = nJ(O) = Y0, it follows that  o~J(t) = nfft) i f  wJ-~(t) = nJ-~(t). But as 
o~°(t) = n°(t) by assumption, it follows by induction that  a,i(t) = nfft) for j = O, 
. . . .  N + 1. In other words, 

XN+l--j(t) 
r N+~-~ = yO)(Ou+,_j(t)) 

f o r j = O , . . . , N +  1. [] 

Hence, the numerical method one gets by truncating (2.1) to a system with 
N + 1 components  and successively solving forxm(t) ,  m = N, . . . .  O, as proposed 
in [1], is essentially the same as calculating the y(k), k = 1, . . . .  N + 1, in the 
dynamic iteration scheme. In other words, this means that  the choice o f  N in 
the former method  is not  critical, as passing to negative m just corresponds to 
exceeding N iterations in the dynamic  iteration scheme. Of  course, the results 
for negative m would need some rescaling in order to be appropriate approx- 
imations to y(t). Note that we easily can state a more general version of  the 
theorem. 

COROLLARY 2.2. The  conclusion o f  Theorem  2.1 holds unchanged  also i f  the 
assumpt ions  on y~°)(t) a n d  xN+~(t) are changed to 

y(°)(0N+~(t)) = r--(N+~)XN+~(t). 

PROOF. The proof  o f  Theorem 2.1 holds verbatim also in this case. [] 

3. Convergence properties. 

We now look at the convergence properties o f  the dynamic  iteration scheme 
(1.4) for an autonomous  problem, namely 

(3.1) Y'(k+l)(t) = F(y~k+l)(t), Y(k)(O(t))), Ytk+l)(O) = YO. 

We assume in the following that  F is Lipschitz continuous in its second ar- 
gument  and satisfies a one-sided Lipschitz condit ion with respect to its first 
argument; i.e., 

(3.2) (F(vl ,  w) - f ( v2 ,  w),  v,  - v2) -< u l l v .  - v2112, 

(3.3) liE(v, wO - E(v, w2)ll -< vllw~ - w211. 

We also assume 
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(3.4) 0(t) - t, 0'(t) > 0, 

which is natural when we talk of  delay equations. Now,  let ek(t) = y(k)(t) -- y(t); 
then we have 

(3.5) (0~+,(t), e~+,(0) 

= ( F ( y  ~k+')(t), y(k)(O(t))) -- F(y( t ) ,  y(O(t))), y~k+ O(t) -- y(t)) 

= ( F ( y  ~k+ ~)(t), y(k))(O(t))) -- F(y ( t ) ,  y(k)(O(t))), y(k+ ~)(t) -- y(t))  

+ (F(y( t ) ,  y(k)(O(t))) -- F (y ( t ) ,  y(O(t))), yCk+,)(t) -- Y(t)l  
\ / 

(3.6) 

Since 

ullek+~(t)ll 2 + Pllek(O(t))ll Ilek+dt)ll. 

(3 .7)  (Ok+l(t),ek+l(t)) = ~ l l e k + l ( t ) l l  z = llek+l(t)ll" tlek+~(t)ll; 

we have, when lle~+dt)ll ~ 0, the inequality 

d 
(3.8) ~ IEek+~(t)ll - ~llek+~(t)lt + ullek(O(t))ll. 

For those t where Ilek+ tit)II happens to vanish, it is probably not differentiable, 
even if ek+l(t) is C ~ there because of  the conditions on F, so in these points 
(3.8) cease to be valid. However ,  the derivations below only depend on the 
Gronwall  Lemma,  which still holds by applying it successively on the intervals 
between the zeroes of  [lek+dt)ll. N o w  we can state the following lemma. 

LEMMA 3.1. Given the a s sump t ions  (3.2), (3.3), a n d  (3.4), we have  

(3.9) 

2Yo" 2 Ilek+,(t)tl -< ~,k+, "'" tleo(Ok+,(s,))ll 

x e,~O,(,9-o,(,o). •. e~(~ s, + O--O(sk))eu(t-- sk )0 

x O'k(sO'" "O;(Sk-OO'(Sk) d s , . .  "dsk dSk+,. 

PROOF. First note that inequality (3.8) implies 

fo (3.10) Ilek+dt)ll -< p [lek(o(s))Ue"<'-') ds 

by Gronwall 's  Lemma.  The statement of  the lemma is now proved by induction. 
We note that (3.9) is true for k = 0 by (3.10), and if  it is assumed that (3.9) is 
true when k + 1 is replaced by k, we have 
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2 Ilek+l(t)ll <- v Ilek(O(sk+O)lle "t'-s~+o dsk+l 

--<% L"3o Jo "~  lleo(Ok(Zl))U 
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I l t ] × o~_1(20... O2(z~_9o (z~_ 1) dz l . . ,  dz~_, dz q 

[] 

We now proceed to get a bound for this integral. Note first the relation 

i 

o~+,(sj) = I I  o'(o,(sj)), 
t = 0  

which is a consequence of  (3.11). This means in particular that 

k 

(3.12) O'k(Sl) "'" O;(Sk--I)O'(Sk) = I I  O',(Sk+I-,) 
n = l  

× e ~4t-~k+O dSk+l. 

Now, introduce the new variables 

sj = O-'(z~), j = 1 . . . . .  k; 

i.e., we get the substitution rules 

z~ = O(sj) and dzj = O'(sj) dsj. 

Performing the change of  variables in the integral above yields 

Uek+l(t)ll -< v v k ""  [leo(Ok+l(Sl))ll 

X e#(Ok(s2)--Ok(Sl ))" • • e #(02(sk)-O2(sk-,))eu(O(s~+,) O(sk)) 

x o'~_,(O(sl))...oi(o(s~_9)o'(o(s~_O) 

x O'(sO ds~" "O'(Sk-O dSk-I O'(Sk) dSk] 
, . i  

X e~'(t--sk+O dSk+l. 

By noting that 

(3.11) OXO(O).O'(s 3 = Of+,(sj), 

the above expression reduces to (3.9), and hence the induction is completed. 
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k n--1 

-~" H H O'(Ol(Sk+l-n)) 
n=l  l=0 

k- - I  k 

= I I  I I  
l=0 n=l+ 1 

When it comes to the exponential terms in the integrand, they can be estimated 
according to the following lemma. 

LEMMA 3.2. Le t  U' = max{0, ~}. Then  

(3.13) e~0k~s2)--0k(,,)). • • e~(~sk+,)-atsO)e,~,-~k+,) _< e~". 

PROOF. For u = 0 the statement is trivial. Let u > 0, and observe that we 
can write the exponent in the left side of  (3.13) as 

I.t(~=l [Oj(Sk-j+2)--Oj-,(Sk-j+2)]-t-t--Ok(Sl))=: u-a1. 

Using the fact that  Oj(s~) - Oj_~(s~) <- O, it then follows that  

eu.al < e~(t-eu(sO) < e ~t. 
For u < 0, we write the expression as 

#(~--1 [Oj(sk_j+2)--Oj(Sk-j+~)]+t--Sk+,)=: /x'a2. 

Now using the fact that  0j (sO - 0j (s~_~) >- 0 we see that  

e ~''a2 <-- e u(t-sk+O <- 1. 

This completes the proof  o f  the lemma. [] 

So we have the following corollary o f  L e m m a  3.1. 

COROLLARY 3.3. Given the assumpt ions  (3.2), (3.3), a n d  (3.4), we have 

Ilek+,(t)ll Yo'Y? Y; <- vk+le ' '  "'" Ileo(Ok+~(s,))ll 

k--I k 

× I I  I I  o'(o,(sk+,_.)) as,...ask ask+,. 
I=0 n=l+ 1 

THEOREM 3.4 Given the assumpt ions  (3.2), (3.3), a n d  (3.4), we have 

sup Ilek+l(t)ll -< e " 'r(uT)k+' sup O'(t) sup Ileo(t)ll. 
t~to,r] (k + 1)! t=o V,tO,O~tr)l t, to.o~+,(r)l 

Using this result, we can state the following theorem. 
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PROOF. First we note that all factors in the integrand are positive. The 
product term comes from taking the supremum of (3.12) over [0, T], and 
similarly for the term containing the initial error. After taking these two terms 
outside the integral, we get an iterated integral in which the integrand is 1. 
Calculating this integral yields T k+ V((k + 1)!), and the proof  is complete. [] 

We see that if O'(t) is bounded by a constant, say C(0), we have 

k--1 ( )k--I k--1 
I I  sup O'(t) <- I X  C(O) k - ' =  C(O) z~:°l~k-') = C(O) k~k+wL 
t=o \tE[0,~(T)I ~=o 

This leads to the following main convergence theorem. 

THEOREM 3.5. Assume C(O) = q <- 1. Then, given the assumptions (3.2), (3.3), 
and (3.4), we have 

sup llek+l(t)ll ~,r (vT)k+l qk(k+l)/2 sup tleo(t)ll. 
t~to,rj < e (k+ 1)! ,~to,0k+,(r)l 

In other words, the iteration converges on all finite t ime intervals, since the first 
two terms are equal to the terms predicting the superlinear convergence o f  dy- 
namic iteration for ODEs, and the remaining term consists o f  a term converging 
to zero as q~k+ w2 i f  q < 1, and a term converging to zero as O(Ok+~(T)) ifO(t) < t. 

PROOF. The only thing that needs clarification is the last statement, which 
follows by looking at the Taylor expansion of  eo(t) around t = O, taking into 
account that yo(O) = y(O); i.e., we have 

eo(t) = t@(0) - J~o(0)) + O(t2), 

and the result follows. [] 

REMARK 3.1. It can be noted that if O(t) = t, this proof reduces to the proof 
for the superlinear convergence of  dynamic iteration for ODEs (1.2), with f 
replaced by F. 

EXAMPLE 3.1. Let us look at the scalar pantograph equation )~(t) = ay(t) + 
by(qt), where 0 < q < 1. We have t*' = max{a, 0}, p = [b[ and C(O) = C(q) -- 
q. We then get the following bound on the error in the iteration for a >- 0: 

sup lytk+'~(t) -- y(t)[ --< ear(lbIT)k+lq k(k+w2 sup lyt°)(t) - y(t)l, 
t~to, T) (k + 1)! ,~to.~÷,r~ 

and for a < 0 we just replace e ar by 1. To illustrate the speed with which the 
error decays, we have in Figure 1 plotted the three functions (where A is a real 
constant) 

A k + l  

f (k )  = (k + 1)----~' 
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Ak+ 1 
_ _  qk ( k+  1)/2, 

f~(k) = (k + 1)! 

A k +  1 
_ _  q k ( k +  l ) /2qk+ 1; 

f3(k) = (k + 1)! 

for the special case with A = 5 and q = 0.8. The first function is often appearing 
when one wants to show the supeflinear convergence of dynamic iteration for 
ODEs, the second includes the term showing the influence of  the delay, and 
the last includes the diminishing effect of  the error in the initial guess. 

In the language of  truncated infinite embedding, this bound can be written as 

sup Ixo(t) - y(t)[ = sup [y<N+'>(t) -- y(t)[ 
t~[O,T] te[O,T] 

<_ e~r(lbl T) N+I qN(N+l)n sup lY~°)(t) -- Y(t)[ 
(N + 1)! t~to,C'+'rl 

-- ear(Ibl T)N+lq NCN+l)/2 sup ]r--N--lXN+l(t/qN+l)-- y(t)[ 
(N + 1)! ~[o,q,,+,rj 

ar(Ibl TY +1 N(N+I)/2 
= e - ~  ~ ~ q t~to, rtsup [r--N--tXN+l(t) -- y(qN+lt)[. 

Remember that in this last approach, x~+l(t) is a fixed function taken as our 
initial guess, and xo(t) is the approximation to y(t) produced by the infinite 
embedding truncated to a system of  N + 1 equations. 

4. A more general scheme. 

One of the motivations for using the dynamic iteration approach for systems 
of  ODE initial value problems is the potential for parallelism it offers. In their 
paper, Feldstein, Iserles, and Levin propose a parallel implementation of  the 
truncated scheme (2.1). Their algorithm seems especially suitable for massively 
parallel machines and works for scalar equations, too. For systems of  equations, 
however, we would also like the splitting introduced by the dynamic iteration 
to give us the possibility of integrating different subsystems independently. As 
this is not the case in the scheme (1.4), we introduce a more general scheme, 
namely (in autonomous form) 

(4.1) ~(k+ l>(t ) = G(y(k+ 1)(0 , y(k)(t), y(k)(O(t))), y(k+ 1)(0 ) = Y0, 

where k = 0, 1, 2 , . . .  and y(°)(t) is, as always, a given function. In practice we 
would choose G(u, v, w) such that the Jacobian OG/Ou is block diagonal. This 
means that the system decouples into subsystems which can be solved inde- 
pendently of  each other in each iteration. The function G must clearly satisfy 

(4.2) G(y(t), y(t), y(O(t))) = F(y(t), y(O(t))). 

If  we want to prove convergence of  this scheme, we must place some restrictions 
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Figure 1. The  functions f~, f2 and  f3 with A = 5, q = 0.8. 
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on G. We will use the same tools as in the previous section, and we therefore 
assume that 

( 4 . 3 )  (G(u, ,  v, w) - G(ua, v, w ) ,  u ,  - u2) -< ~ [ l u l  - u2rl 2, 

(4.4) IIG(u, vt, w)ll - G(u, h ,  w)ll - vxllv~ - hll, 

(4.5) IIG(u, v, wO - a(u, v, w2)ll - v=llw~ - w211. 

Note  that these restrictions on G implicitly impose restrictions on F, through 
(4.2). As before, we use the notation ek(t) = y(k)(t) -- y(t); and by calculations 
completely analogous to the ones in (3.6) and (3.7), we get when Ilek÷,(t)ll ~ 0 
the inequality 

d llek+,(t)ll- mllek+~(t)ll + Vlllek(t)ll + v211ek(O(t))ll. 

Now, Gronwall 's  L e m m a  yields 

2 (4.6) Ilek+,(t)ll--- (v~llek(s)il + vzllek(O(s))ll)e"('-s)ds. 

We have the following lemma. 

LEMMA 4.1. Given the assumptions (4.2), (4.3), (4.4), (4.5), and the following 
relaxed version o f  (3.4) 

(4.7) 0 <- O(t) < t, 

we have 
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(4.8) 

M, B J O R H U S  

YoYo Yo Y? 
t Sk + I Sk 

tlek+,(t)ll -< H,,+,(Sk) x H,~(Sk_O''" H~(Sl) 

x 0'~lleo(s,)ll + v211eo(O(sO)ll) x e u ' ( t - s , ) d s , . . ,  dsk_~ dsk dsk+,, 

where ~' is as before, and 

Hu(V) = ~u' 
+ 112, 

t 

0 <- v <- O(u), 

O(u) < v <- u. 

PROOF. We prove the statement by induction. For k = 0, (4.8) is immediately 
satisfied by (4.6). Assume (4.8) is true, with k + 1 replaced by k. We then have, 
f rom (4.6), 

~ 0  t Ilek+,(OII-< O,,lle~(s~+,)ll + ~,~llek(O(s~+,))lt)e"'C'-'*+'~ds~+, 

Z([fo"+Z " Z <- el H,,(Sk-,)"" Hs~(s,) 

x (---)e,'~.,+,-.,)ds,.-- ds,_,Ws~ 

r f.~+,, & 
+ 2L3o f 

x(...)e~'(o(s,+l)-s,)dsl...dSk_, dSk])eXtN*+,)dSk+, 

< z f t f s k + ~ n s k + t ( S k ) ~ o S k a s k ( S k _ l ) ' ' ' ~ o S 2 n s 2 ( S , )  
-- ~ 0  ~ 0  

× (v, lleo(sl)ll + v211eo(O(sO)ll)e'~'-',)ds~'" dsk_~ dskdsk+,; 

where the last inequality is possible by noting that e,'(,m+,)-,,) < eX(,~+,-.,), and 
splitting the first of  the two integrals in square brackets in two parts. Hence 
the l emma is proved. [] 

T 

We can now show that the scheme (4.1) converges supedinearly, just by 
making a rather crude estimate o f  the expression for ILek+l(t)ll in the lemma. 

T~mOm~M 4.2. Given the assumptions (4.2), (4.3), (4.4), (4.5), and (4.7), we 
have 

[(vl + v2)T] k+l 
sup Ilek+,(t)ll--< e "'r sup Ileo(t)ll, 

t~[0.T] (k + 1)[ t~to.rl 
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i.e., the iteration converges superlinearly on all f inite t ime intervals as k ---, co. 

PROOF. The proof is clear by the following observations about the factors 
involved in the integrand of  (4.8). First, we have sups, to.~ Hr(s) <- v~ + v2. 
Second, sup,~to,r ~ (v~tleo(s)ll + v21teo(O(s))ll) <- (v~ + v2) sups, to.r1 Ileo(s)ll. Third, 
sup,.t,to, rl e "<t-s) -< e Cr. Taking the supremum over [0, T] in (4.8) and introducing 
these estimates, we are left to integrate the unit function. Evaluating these 
k + 1 iterated integrals yields the result. [] 

It would be natural to try to obtain other results for the convergence by 
introducing better estimates than the ones used to prove the theorem. We will 
do this below. However, we seem to have lost some information already in 
Lemma 4.1 when we introduced ix' instead of  Ix, as this results in a loss of 
information about the possible dissipative nature of  the system. Hence one 
should maybe not expect too much when deriving convergence estimates from 
the result of  the lemma. 

Let us try to keep the exponentials under the integral, but estimating the 
other terms as in the proof of Theorem 4.2. This leads to the problem of 
estimating an integral of  the form 

L r L ' ~ + ' L ' * . . . L ' ~ e ¢ t , - , , ) d s . . . d & _ , d s k d s k + , .  

We can calculate this integral exactly to get, when Ix' # O, 

(--ix')-(k+')e"r ~ (-#T)------~J j=k+, J! =: (_ix,)-(k+l) rk+,(ix'). 

When Ix' > 0, the sign of the function £k(#) is (--1) k, and we have the bound 

IG(ix ') l  < e "'~. 

We have then proved the following result. 

THEOREM 4.3. Under the same assumptions as before, we have when ~' > 0 

\ k +  1 

v~ + v21 
(4.9) sup Ilek+l(t)ll- G+,(#)  sup tteo(t)lh 

tetO,T] \ --IX' ] tEIO,T] 

This result would have been more interesting if we could replace Ix' by Ix, 
since for negative Ix the function rk00 has the property 

0 < rk+1Ox) < rk(ix) < I. 

As remarked above, this is not possible in our case, since we take Lemma 4.1 
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as our  po in t  o f  depar ture .  H o w e v e r ,  in  the case where  ta' > (vl + v2), the result  
(4.9) is still in terest ing in the sense tha t  it assures t ha t  the e r ro r  will be b o u n d e d  
by  a fac tor  e ~'r t imes  the  init ial  e r ror  for  all k. Such  es t imates  are crucial  to  
assure the numer i ca l  stabil i ty o f  the  i tera t ion w h e n  i m p l e m e n t e d  on  a compu te r .  
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