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Abstract. 

A new algorithm for the computation ofeigenvalues of a nonsymmetric matrix pencil is described. It is 
a generalization of the shifted and inverted Lanczos (or Arnoldi) algorithm, in which several shifts are 
used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the 
Hessenberg pencil, gives Ritz approximations to the solution of the original pencil. It is shown how 
complex shifts can be used to compute a real block Hessenberg pencil to a real matrix pair. 

Two applicationx, one coming from an aircraft stability problem and the other from a hydrodynamic 
bifurcation, have been tested and results are reported. 
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1. Introduction and review. 

The Rat iona l  K r y l o v  a lgor i thm computes  a selected set of eigenvalues to a non-  

symmetr ic  pencil,  

(1) (A  - ,~B)x = o, 

where the matr ices  are too  large to be t rea ted  by s t anda rd  s imilar i ty  t rans format ions  

as in e.g. the H o u s e h o l d e r - Q R  a lgor i thm,  but  not  too  large for a sparse  Gauss i an  

factor izat ion.  I t  extends the Spectral  T rans fo rma t ion  Lanczos  a lgor i thm [3, 4, 6] by  

using several shifts/aj in one run, rep lac ing  the Lanczos  po lynomia l s  in the Kry lov  

space descr ip t ion  of the a lgor i thm by a ra t iona l  function,  

Received November 1993. 



166 AXEL RUHE 

cj (2) r(2) = pj- 1(2) _ cl + . . .  + _ _  
(2 - #1)(2 - ~2) . . .  (2 - ~j) 2 - lq 2 - ~s" 

The poles, Ps, are the shifts, and the zeros of the numerator approximate the 
eigenvalues. A careful choice of shifts gives a much faster convergence to eigenvalues 
close to the poles. 

This approach comes to advantage when a factorization of the matrix is reason- 
ably cheap, compared to solution of a system and vector recursion. It may be 
contrasted to strategies where the Arnoldi algorithm is restarted several times for the 
same shift, as in the recent contribution by Sorensen [ 17]. When no factorization is 
possible, only much slower algorithms are available, built either around minimiz- 
ation of the Rayleigh quotient, see e.g. [10], direct Lanczos on a nearby standard 
problem, see Scott [16], preferably with some preconditioning in the spirit of 
Davidson [7], or a two level iteration as expounded by Szyld [19]. 

The first outline of Rational Krylov was given in [12], but with no numerical 
experience. In the first report in this series [13], we describe the Rational Krylov 
algorithm for the standard case, when B is regarded as a weight matrix of full rank, 
and the second [14] we show how to treat cases when both A and B may be singular, 
and how to apply the perturbation theory for regular pencils from [ 18] to bound the 
errors. In this third report, we show ho~v to apply complex double shifts to a real 
pencil (1), extending an idea of Parttett and Saad [8]. 

We will continue in section 2, by reviewing the basic recursion that gives an 
orthogonal basis V, where the pencil (A, B), (1) is represented by a Hessenberg pencil 
(K, H). In section 3, we show how to get Ritz approximations to eigenvalues and 
eigenvectors from this Hessenberg pencil. In section 4, we show to apply two 
complex conjugate shifts by first doing one complex solve, and then adding two real 
columns to the basic Vand the real Hessenberg pencil (K, H). Though we reason as if 
B is nonsingular, in our implementation we have used the recursion from [ 14] that is 
applicable also to a regular pencil with singular B matrix. 

In the final section 5, we apply the real and complex variants of the algorithm to 
two numerical test cases. The tests show that the real double shift variant comes to 
advantage, when we get a mixture of real and complex shifts, as happens when most 
of the eigenvalues of interest are in a region around the real axis. When we seek 
eigenvalues far out in the imaginary, the real variant needs to work longer, since it 
must get double the number of eigenvalues, while the complex variant can keep 
shifting in the upper half plane, and one can get those below by conjugation. 

A word about notation: We let V~ stand for a matrix with j columns, the first 
j columns of V if nothing else is stated, Ask is a j  x k matrix, but we avoid subscripts 
when all rows or columns are referred to. Columnj  of the matrix V is v s. We denote 
by ~ the complete conjugate of the number q, and by A n the conjugate transpose of 
the matrix A. We will always use the Euclidean vector norm, denoted by I[ []. 
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2. The Rational Krylov iteration. 

Starting with a vector vt, we build up an orthonormal basis Vj, one column vector 
v s at a time, using the following: 

ALGORITHM RKS: Choose s tart ing vector vl  

For  j = 1, 2 . . . .  unti l  convergence  

1. Choose shift #j  and start ing combinat ion r = VI i  

2. Operate  r : = (A - ~LsB ) -  1 Br 

3. Orthogonal ize  r : =  r - Vjhj where  hj = VjHr 

4. Get new vector vj+ l := r /h i+l  j ,  where  hj+ l.j = flrfl 

5. Compute  approx imat ive  solution and test Jbr convergence 

This algorithm differs from the shifted and inverted Arnoldi algorithm [1, 15, 11] 
only in that the shift/~j in step t may very with j, and that the iteration is continued, 
not with the last available vector v j, but with a combination, Vjt~, of all the vectors 
already computed. Most often we take either the first vector vl or the last vector vj. 

For  economic reasons, it is advisable to keep the shift #j constant for several steps, 
since then we can use the same factorized matrix 

(3) A - /~ jB  = L U  

in all of those. 
Now let us follow what happens. Eliminate the intermediate vector r and get, 

Vj+ ~ hj = (A - # j B ) -  I BVjt j .  

Multiply from the left by (A - ~gB), 

(4) (A - # jB)Vj+ lh j  = BVj t j .  

Separate terms with A to the left and B to the right, 

AVj+ ~hj = BVj+ l(hfl~ j + tj), 

now with a zero added to the bottom of the vector tg giving it length j + 1. 
This is the relation for the jth step, now put the corresponding vectors from the 

previous steps in front of this and get, 

(5) A V j + I H j + I . j  = B V j + , K s + I . j ,  

with two (j + 1) x j Hessenberg matrices, Hi+ ~.j consisting of the Gram Schmidt 
orthogonalization coefficients, and 

(6) K j+ 1,j = Hs+ 1,jdiag(#i) + Tj+ l.j. 
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3. Finding an approximate eigensolution. 

Now let us describe how to find an approximative solution and test for conver- 
gence in step 5 of ALGORITHM RKS. In the exceptional case of total convergence, we 
would get h j+ l j  = 0 and a zero last row in both H and K. Otherwise find an 
approximative solution 0 by solving the problem, 

(7) ( K j j  - O H j,j)s = O, 

by means of the QZ-algorithm. For a given solution (0, s) of this, we take the vector, 

(8) X = Vj+IHj+I, jS  , 

as a Ritz vector for the original problem (1). Its residual is, 

(9) (A - OB)x = (A - OB) V~+ , Hg+ ~d~ 

= B ~ + I ( K j + I , j -  OHj+I,j)s 

= By j+ l(kj+ 1,j -- Oh j+ 1,~)s~ 

= By j+ l (# j  -- O)hj+ 1.jsj 

= Bvj+ lflj.i, 

the second equality following from (5), the third from (7), and the fourth from (6). We 
let 

(10) flj,i = (#g - Oi)hj+ 1jSg,i 

estimate the norm of the residual for the ith eigenvalue approximation 0i. 
Compare this to the well known expression for the Lanczos algorithm [9, eq. 

(13-2-1) on p. 260], and note that we can estimate the norm of the residual using only 
short vectors of length j, Moreover, the residual is B-orthogonal to the subspace 
spanned by ~. 

4. Complex shifts for real pencils. 

When the matrices A and B are both real, the pencil (1) has complex pairs of 
eigenvalues. We can make sure that also the Ritz approximations 0 in (7) occur in 
pairs, by computing a real basis V, and a real pencil (K,  H) in the following way. 

When the shift # is real, all other quantities become real, and we can proceed with 
ALGORITHM RKS. When we have a complex shift p, we do all the factorization and 
solution operations on the shifted matrix (A - /~B) in complex arithmetic, but we 
separate the resulting vector r, in step 2 of the algorithm, into real and imaginary 
parts giving two new vectors Vj+l and vj+2. Each of this is a different rational 
function, and we see that for any real vector x, 
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1 
Re((A --  # B ) -  i B x )  = ~ [((A --  l tB) -1 + (A --  f iB ) -  l ) B x ]  

Im((A --  I~B)-1Bx)  = ~ [((A - ltB) -1  + (A --  f i B ) - 1 ) B x ] .  

A linear combination corresponds to taking a double shift, adding the quadratic 
term, 

c~ e2 p1(,t) + 
2 -- # 2--/~ (2 z -- 2p2 + q)' 

T o  do this, we replace steps 3 and 4 of ALGORITHM R K S  by: 

3' Separate  r = r l  + ir2, 

3a Orthogonal ize  rl  = r l  - Vjhj, where  hj = Vjrra, 

4a N o r m a l i z e  vj+ 1 :=  r l /h j+  1,j, where  h i +  1, j  ~ -  I[rl II, 

3b Orthooonal ize  r2 = r2 - Vj+ lhj+ l, where  hs+ 1 = Vjr+ lr2, 

4b Norma l i z e  vj + 2 : = r2/hj  + 2.j + 1, where  hj + 2.j + 1 = [1 rz L], 

all in real arithmetic. 
We will get the modified basic recursion by noting that, 

Re((A --  laB)- 1BVjt j)  = Vj+ 1 hi, 

Im((A --  itB) - 1 B V j t j )  = Vj+2hj+ 1, 

and then sum, 

Vj+2(h j + ihj+1) = (A - p B ) -  I BVj t j ,  

with a zero added to the bottom of the j + t vector hj to give both vectors length 
j + 2. Precisely as before (4), multiply and get 

(A - -  #jB)Vj+2(h  j -4- ih j+l)  = BVj t j ,  

but then separate real and imaginary parts again, setting 

# = p + i O ,  

and get 

= + AVj+2[h j ,  h j + l ]  BVj+2 [hj, hj+l] 9._Joj 

Put earlier columns in front and get the modified basic recursion (5), 
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(11)  AVj+2Hj+2,j+ 1 = BVj+2Kj+2, j+I ,  

with the real Hessenberg matrix H, and 

K = H M + T ,  

which is now real block Hessenberg since 

M = diag(/~2 . . . .  ( P i  0 r ) )  
, _ 0 r Pj 

is block diagonal. It contains 2 x 2 blocks where complex shifts have been used, for 
instance a sequence (real, complex, real, real, complex) will give a 8 x 7 matrix, 

x x x 

° x x  

x x 

K =  x x x 
0 0 x x 
O 0 0  x x x 
0 0 0 0  x 
0 0  0 0  x 

5. T w o  n u m e r i c a l  e x a m p l e s .  

We have tested the Rational Krylov algorithm using MATLAB4 on SUN4 work- 
stations. The linear system computations in step 2 of ALGORITHM RKS were done 
with the sparse matrix option in MATLAB4. Reorthogonalization was done in step 
2 whenever necessary. We took advantage of the complex arithmatic in MATLAB,  

even when we had real matrices. 
We started with the shift at a point goal in that part  of the complex plane, where we 

were interested in the eigenvalues. We used (10) to follow the residuals, and flagged 
an eigenvalue as converged whenever it got smaller than tolconv = .51o - 8. Then 
we took the best eigenvalue, that had a residual larger than tolshifi = .51o - 4 
tolconv 1/2, as the next shift, this in order to save some factorizations and avoid nearly 
singular shifted matrices. We kept the same shift at most  5 steps. 

Let us first report some runs on the test matrix TOLOSA taken from [2]. It is typical 
for those matrices one obtains when calculating the stability of an aircraft structure, 
and for a small n it looks like figure 1 left, with the spectrum as in figure 1 right. In our 
tests we took a larger n = 2000, and sought the eigenvalues out in the upper left end 
of the spectrum by choosing goal = - 750 + 2400i. These eigenvalues are the worst 
conditioned and also critical for the actual design. 

First we used the complex algorithm, ALGORITHM RKS, as described in section 2. 
In figure 2, the residuals for the different eigenvalues are shown as functions of the 
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F i g u r e  2. T o l o s a  m a t r i x  n = 2000,  F o l l o w  c o n v e r g e n c e  o f  R a t i o n a l  K r y l o v  w i t h  c p u  s econds  o n  SUN4. 

C o m p l e x  a l g o r i t h m .  

cputime in seconds. The dotted lines mark the end of each step j, and we see that they 
get successively more time consuming, since both the Gram Schmidt orthogonaliz- 
ation and the QZ-algorithm increase rapidly in cost with j. The dashdotted lines 
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Figure 3. Tolosa matrix n = 2000. Eigenvalue approximations o, shifts + .  

mark factorizations, which are cheap in this case, since the matrix is very sparse. The 
plus signs mark which of the eigenvalues that is chosen as the new shift. At the 11-th 
second, a t j  = 6, the best eigenvalue is taken, but next time after 27 seconds, a t j  = 11, 
we take the second best, since the best has already dropped below tolshift, which is 
marked by the upper dashdotted line. This new shift makes its eigenvalue converge 
much faster, so that two eigenvalues converge at stepj  = 15. We then choose a new 
shift at the fourth eigenvalue, which is converged at step j = 17 after 50 seconds. It 
continues in a similar fashion, and when we stop after 97 seconds a t j  = 24, we have 
flagged 8 eigenvalues as converged, and we plot them in figure 3. Circles mark 
eigenvalues and plus signs shifts, and note that the later shifts are close indeed. The 
first shift at 9oal falls outside the plot, as does all but 14 of the approximate 
eigenvalues. We computed left vectors and measured the reciprocals of the condi- 
tion numbers s71 to around 7.81o - 4, bad but not very ill conditioned. 

We also used the real double shift algorithm of section 4, see figure 4. After 
5 factorizations and 15 double steps we got 2 pairs of converged eigenvalues, as well 
as 4 pairs on their way. Note that we seek eigenvalues in both ends of the spectrum 
now, and that there are many eigenvalues between the members of the comlex 
conjugate pairs. This may explain why the complex algorithm works much better for 
this matrix; it got 8 eigenvalues in the positive imaginary end of the spectrum. 

Let us also report some results on the hydrodynamic bifurcation problem that we 
have used earlier [5, 13, 14]. Here both matrices A and B consists of partial deriva- 
tives of the nonlinear function f(x, ~), evaluated for different values of the parameter 
~, and the eigenvalues are used to predict for which value of ~, the derivative matrix 
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Figure 5. Hydrodynamic  matrix, n = 403, follow complex RKS. 

fx  = A(~)  is s i n g u l a r .  F o r  ( A , B )  e q u a l  t o  (A(~ I ) )  w e  p r e d i c t  t h e  s i n g u l a r i t y  a t  

2 
= ~o + ~ S - i - ( c q  - ~o), so  t h e r e  wi l l  b e  m a n y  e i g e n v a l u e s  a r o u n d  2 = 1, c o r -  



174 AXEL RUHE 

10 o 

10 "2 

10 ~ 

10 "e 

10 -8 

10 -1o 

10 -12 

10 "14 

10 "16 

10-1~ 

10 -~ 
0 

i: i i 

ii 
iii: i i 
iiii i i 
ii!i i i 

if!!!: 
ii!ill i 

i ~  i~ ~ 6 
i iii!ii i:: ! 
i i~ii~ iii. " i I " ~ : 3 
i iiii~i iiii : ' 7 

i !~iiii !i!~ ! ! i l  ! i i  i ! i : : i 
[ I::~( ; I ] ] : l  l : [ ~ l I [ [ : l  I ~ 1 : , , ] /  I I 

I 0 20 30 40 50 60 70 80 

Figure 6. Hydrodynamic matrix, follow real double shift algorithm, 

90 

responding to singularities far away  f rom the (%, el)  interval. We are interested in 
the closest singularities that  cor respond to large values of  2. 

We have chosen a discretization that  gives matrices of  order  n = 403. They are 
much  more  filled that  in the previous example,  so it was necessary to set s p p a r m s  
( ' t i g h t '  ) in MATLAB to get any sparsi ty at all in the factored matrices. 

First we used the unchanged (complex) version of ALGORITHM RKS.  The progress 
is followed in figure 5. We took goal = 4 which is ra ther  close to the largest 
eigenvalue 2 = 3.9450, and it is flagged as converged already at s t ep j  = 6. The next 
fl = 2.4803 is soon to follow at s tep j  = 8, and then they follow one eigenvalue every 
3 or 4 steps, until we s topped after 22 steps which took  85 seconds. 

We plot ted the eigenvalue approx imat ions  in figure 7, cutt ing away the outer  par t  
containing the outer  eigenvalues ill, f12, and 23 = 0. 31129. In this small example,  we 
could compute  all the eigenvalues with the MATLAB e i g  command ,  it took 391 
seconds, and plot ted them as dots. No te  that  also some of the not  yet converged 
approx imat ions  are ra ther  close to the correct  eigenvalues, and that  the approxi-  
mat ions  m a r k  up the par t  of  the complex  plane where there are eigenvalues. Some of  
the less accurate  approx imat ions  are not  complex  conjugate  in pairs. The eigen- 
values are slightly bet ter  condit ioned than  the TOLOSA case, we got s7 a as 1.301o -- 3 
and 1.341o - 3 for the first two eigenvalues 2a and 22. 
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Figure 8. Hydrodynamic matrix, real algorithm, computed approximations. 

In figure 6, we follow the progress of the real variant described in section 4. We let 
it run untilj  = 26 which took 80 seconds. The 4 first shifts were real, and the next 
3 shifts were complex. We got convergence to 4 real eigenvalues and two complex 
pairs, see the perfectly symmetric plot in figure 8! In this case the real algorithm 
works to advantage, one reason for that may be that work reasonably chose to be the 

real axis. 
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