BIT 34 (1994), 165-176.

THE RATIONAL KRYLOV ALGORITHM FOR
NONSYMMETRIC EIGENVALUE PROBLEMS. III:
COMPLEX SHIFTS FOR REAL MATRICES

AXEL RUHE

Department of Computing Science
Chalmers Institute of Technology and the University of Géteborg
S-41296 Goteborg, Sweden

Dedicated to Carl-Erik Fréberg on the occasion of his 75th birthday.

Abstract.

A new algorithm for the computation of eigenvalues of a nonsymmetric matrix pencil is described. It is
a generalization of the shifted and inverted Lanczos (or Arnoldi) algorithm, in which several shifts are
used in one run. It computes an orthogonal basis and a small Hessenberg pencil. The eigensolution of the
Hessenberg pencil, gives Ritz approximations to the solution of the original pencil. It is shown how
complex shifts can be used to compute a real block Hessenberg pencil to a real matrix pair.

Two applicationx, one coming from an aircraft stability problem and the other from a hydrodynamic
bifurcation, have been tested and results are reported.
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1. Introduction and review.

The Rational Krylov algorithm computes a selected set of eigenvalues to a non-
symmetric pencil,

1) (A — AB)x =0,

where the matrices are too large to be treated by standard similarity transformations
as in e.g. the Householder-QR algorithm, but not too large for a sparse Gaussian
factorization. It extends the Spectral Transformation Lanczos algorithm {3, 4, 6] by
using several shifts y; in one run, replacing the Lanczos polynomials in the Krylov
space description of the aigorithm by a rational function,
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The poles, p;, are the shifts, and the zeros of the numerator approximate the
eigenvalues. A careful choice of shifts gives a much faster convergence to eigenvalues
close to the poles.

This approach comes to advantage when a factorization of the matrix is reason-
ably cheap, compared to solution of a system and vector recursion. If may be
contrasted to strategics where the Arnoldi algorithm is restarted several times for the
same shift, as in the recent contribution by Sorensen [17]. When no factorization is
possible, only much slower algorithms are available, built cither around minimiz-
ation of the Rayleigh quotient, see e.g. [10], direct Lanczos on a nearby standard
problem, se¢ Scott [16], preferably with some preconditioning in the spirit of
Davidson [7], or a two level iteration as expounded by Szyld [19].

The first outline of Rational Krylov was given in [12], but with no numerical
experience. In the first report in this series [ 13], we describe the Rational Krylov
algorithm for the standard case, when B is regarded as a weight matrix of full rank,
and the second [ 14] we show how to treat cases when both 4 and B may be singular,
and how to apply the perturbation theory for regular pencils from [ 18] to bound the
errors. In this third report, we show how to apply complex double shifts to a real
pencil (1), extending an idea of Partlett and Saad [8].

We will continue in section 2, by reviewing the basic recursion that gives an
orthogonal basis ¥, where the pencil (4, B), (1) is represented by a Hessenberg pencil
(K, H). In section 3, we show how to get Ritz approximations to eigenvalues and
eigenvectors from this Hessenberg pencil. In section 4, we show to apply two
complex conjugate shifts by first doing one complex solve, and then adding two real
columns to the basic Vand the real Hessenberg pencil (K, H). Though we reason as if
Bis nonsingular, in our implementation we have used the recursion from [ 14] that is
applicable also to a regular pencil with singular B matrix.

In the final section 5, we apply the real and complex variants of the algorithm to
two numerical test cases. The tests show that the real double shift variant comes to
advantage, when we get a mixture of real and complex shifts, as happens when most
of the eigenvalues of interest are in a region around the real axis. When we seek
eigenvalues far out in the imaginary, the real variant needs to work longer, since it
must get double the number of eigenvalues, while the complex variant can keep
shifting in the upper half plane, and one can get those below by conjugation.

A word about notation: We let V; stand for a matrix with j columns, the first
jcolumns of V if nothing else is stated, A is aj x k matrix, but we avoid subscripts
when all rows or columns are referred to. Column j of the matrix V'is v;. We denote
by 77 the complete conjugate of the number #, and by 4” the conjugate transpose of
the matrix 4. We will always use the Euclidean vector norm, denoted by || |.




THE RATIONAL KRYLOV ALGORITHM FOR NONSYMMETRIC ... 167
2. The Rational Krylov iteration.

Starting with a vector v, we build up an orthonormal basis V}, one column vector
v; at a time, using the following:

ALGORITEM RKS: Choose starting vector v,
Forj=1,2,... until convergence
1. Choose shift u; and starting combination r = Vit;
. Operate r:= (A — u;B)” ' Br

2

3. Orthogonalize r:=r — V;h; where h; = Vl'r

4. Get new vector v;,:=r/hj,, ;, where h;, ;= lIr|
5

. Compute approximative solution and test for convergence

This algorithm differs from the shifted and inverted Arnoldi algorithm [1, 15, 1 1]
only in that the shift y; in step 1 may very with j, and that the iteration is continued,
not with the last available vector v, but with a combination, V;t;, of all the vectors
already computed. Most often we take either the first vector v, or the last vector v;.

For economic reasons, it is advisable to keep the shift u; constant for several steps,
since then we can use the same factorized matrix

3) A—yB=LU

in all of those.
Now let us follow what happens. Eliminate the intermediate vector  and get,

Vis1hj = (A — u;B)” ' BVt
Multiply from the left by (4 — u;B),
4) (A — u;B)V; i h; = BV;t,.
Separate terms with A to the left and B to the right,
AV hy = BV, (b + 1),

now with a zero added to the bottom of the vector ¢; giving it length j + 1.
This is the relation for the jth step, now put the corresponding vectors from the
previous steps in front of this and get,

(5) AVj+1Hj+1.j=BV}+1Kj+1,j,

with two (j + 1) x j Hessenberg matrices, H; .., ; consisting of the Gram Schmidt
orthogonalization coefficients, and

(©6) Kji1;=Hjpqjdiagu) + Tiey ;.
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3. Finding an approximate eigensolution.

Now let us describe how to find an approximative solution and test for conver-
gence in step 5 of ALGorITHM RKS. In the exceptional case of total convergence, we
would get 4;.,; =0 and a zero last row in both H and K. Otherwise find an
approximative solution 6 by solving the problem,

(N (K;;—0H;)s =0,
by means of the QZ-algorithm. For a given solution (6, s) of this, we take the vector,
@ x=Vii1Hjiy s,
as a Ritz vector for the original problem (1). Its residual is,
) (A—0B)x=(A—0B)V,, Hj,y s
= BV 1(Kjs1; — OHju j)s
=Bv;, ks, — b8
= Buj1(p; — Ohye 1 s
= Bv;+1Bii

the second equality following from (5), the third from (7), and the fourth from (6). We
let

(10) Bii=(w; — 0)hjiq s,

estimate the norm of the residual for the ith eigenvalue approximation ;.

Compare this to the well known expression for the Lanczos algorithm [9, eq.
(13-2-1) on p. 260], and note that we can estimate the norm of the residual using only
short vectors of length j, Moreover, the residual is B-orthogonal to the subspace
spanned by V.

4. Complex shifts for real pencils.

When the matrices 4 and B are both real, the pencil (1) has complex pairs of
eigenvalues. We can make sure that also the Ritz approximations 8 in (7) occur in
pairs, by computing a real basis ¥, and a real pencil (K, H) in the following way.

When the shift p is real, all other quantities become real, and we can proceed with
ArLGoriTHM RKS. When we have a complex shift u, we do all the factorization and
solution operations on the shifted matrix (4 — uB) in complex arithmetic, but we
separate the resulting vector r, in step 2 of the algorithm, into real and imaginary
parts giving two new vectors v;,; and v;,,. Each of this is a different rational
function, and we see that for any real vector x,
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1
Re((4 — uB)™'Bx) = 5 (4~ pB)~! + (4 — aB)")Bx]

1
Im((4 — pB)™'Bx) = 5 (4 - uB)~! + (4 — aB)"")Bx].

A linear combination corresponds to taking a double shift, adding the quadratic
term,
2 3 pi(4)

L B E R

To do this, we replace steps 3 and 4 of ALGORITHM RKS by:
3 Separater =r, + ir,,

3a Orthogonalize ry = ry — V;h;, where h; = V]'r,,

4a Normalize v, :=ry/h;,  ; where by ;= |y,

3b Orthogonalize ry =ry — Vi 1hjyy, where hjy = Vi r),
4b Normalize v;.,:= 1/l 5 ;11, where by, j41q = |13,

all in real arithmetic.
We will get the modified basic recursion by noting that,

Re((A — uB)™'BVjt)) = V;4 1 h,
Im((4 — uB)" ' BVjt;) = Vis2hjey,
and then sum,
Viealh + ihjiy) = (A — uB)" ' BVjt;,

with a zero added to the bottom of the j + 1 vector k; to give both vectors length
j + 2. Precisely as before (4), multiply and get

(A — w;B)V;s(h; + ihjiy) = BVjty,
but then separate real and imaginary parts again, setting
u=p+io,
and get
t:

0

8. j
AV olhi b ] = BV, [hjahj+1]<f10 J)‘*‘[O 0:]
00

i Pj

Put earlier columns in front and get the modified basic recursion (5),
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(11) AVyiaHyia a1 = BYiaKjaa e,
with the real Hessenberg matrix H, and

K=HM+T,

which is now real block Hessenberg since

M =diag(yj,...,(_pa i’))
J J

is block diagonal. It contains 2 x 2 blocks where complex shifts have been used, for
instance a sequence (real, complex, real, real, complex) will give a 8§ x 7 matrix,

OO0 0 OO K X
OO OO K X X %
OO O R X X =
o B e R e TN R
o TP S Y

Ee TR L

“ o® X

5. Two numerical examples.

We have tested the Rational Krylov algorithm using MaTLAB4 on SUN4 work-
stations. The linear system computations in step 2 of ALGORITHM RKS were done
with the sparse matrix option in MATLAB4. Reorthogonalization was done in step
2 whenever necessary. We took advantage of the complex arithmatic in MATLAB,
even when we had real matrices.

We started with the shift at a point goal in that part of the complex plane, where we
were interested in the eigenvalues. We used (10) to follow the residuals, and flagged
an eigenvalue as converged whenever it got smaller than rolconv = .5, — 8. Then
we took the best eigenvalue, that had a residual larger than tolshift = .5, — 4 ~
tolconv/?, as the next shift, this in order to save some factorizations and avoid nearly
singular shifted matrices. We kept the same shift at most 5 steps.

Let us first report some runs on the test matrix ToLosA taken from [2]. Itis typical
for those matrices one obtains when calculating the stability of an aircraft structure,
and for a small nitlooks like figure 1 left, with the spectrum as in figure 1 right. In our
tests we took a larger n = 2000, and sought the eigenvalues out in the upper left end
of the spectrum by choosing goal = — 750 + 2400i. These eigenvalues are the worst
conditioned and also critical for the actual design.

First we used the complex algorithm, ALGORITHM RKS, as described in section 2.
In figure 2, the residuals for the different eigenvalues are shown as functions of the
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Figure 2. Tolosa matrix n = 2000. Follow convergence of Rational Krylov with cpu seconds on Sund.
Complex algorithm.

cputime in seconds. The dotted lines mark the end of each step j, and we see that they
get successively more time consuming, since both the Gram Schmidt orthogonaliz-
ation and the QZ-algorithm increase rapidly in cost with j. The dashdotted lines
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Figure 3. Tolosa matrix n = 2000. Eigenvalue approximations o, shifts +.

mark factorizations, which are cheap in this case, since the matrix is very sparse. The
plus signs mark which of the eigenvalues that is chosen as the new shift. At the 11-th
second, atj = 6, the best eigenvalue is taken, but next time after 27 seconds, atj = 11,
we take the second best, since the best has already dropped below tolshift, which is
marked by the upper dashdotted line. This new shift makes its eigenvalue converge
much faster, so that two eigenvalues converge at step j = 15. We then choose a new
shift at the fourth eigenvalue, which is converged at step j = 17 after 50 seconds. It
continues in a similar fashion, and when we stop after 97 seconds at j = 24, we have
flagged 8 eigenvalues as converged, and we plot them in figure 3. Circles mark
eigenvalues and plus signs shifts, and note that the later shifts are close indeed. The
first shift at goal falls outside the plot, as does all but 14 of the approximate
eigenvalues. We computed left vectors and measured the reciprocals of the condi-
tion numbers s; ! to around 7.8, — 4, bad but not very ill conditioned. .

We also used the real double shift algorithm of section 4, see figure 4. After
5 factorizations and 15 double steps we got 2 pairs of converged eigenvalues, as well
as 4 pairs on their way. Note that we seek eigenvalues in both ends of the spectrum
now, and that there are many eigenvalues between the members of the comlex
conjugate pairs. This may explain why the complex algorithm works much better for
this matrix; it got 8 eigenvalues in the positive imaginary end of the spectrum.

Let us also report some results on the hydrodynamic bifurcation problem that we
have used earlier [5, 13, 14]. Here both matrices 4 and B consists of partial deriva-
tives of the nonlinear function f(x, &), evaluated for different values of the parameter
o, and the eigenvalues are used to predict for which value of «, the derivative matrix
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Figure 5. Hydrodynamic matrix, n = 403, follow complex RKS.

f. = A(o) is singular. For (4, B) equal to {4(a,)) we predict the singularity at

(oty — ag), so there will be many eigenvalues around A = 1, cor-

o= + 4
—% T
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Figure 6. Hydrodynamic matrix, follow real double shift algorithm,

responding to singularities far away from the (a,, o) interval. We are interested in
the closest singularities that correspond to large values of A.

We have chosen a discretization that gives matrices of order n = 403. They are
much more filled that in the previous example, so it was necessary to set spparms
(*tight’) in MATLAB to get any sparsity at all in the factored matrices.

First we used the unchanged (complex) version of ALGORITHM RKS. The progress
is followed in figure 5. We took goal = 4 which is rather close to the largest
eigenvalue 4 = 3.9450, and it is flagged as converged already at step j = 6. The next
A = 2.4803 is soon to follow at step j = §, and then they follow one eigenvalue every
3 or 4 steps, until we stopped after 22 steps which took 85 seconds.

We plotted the eigenvalue approximations in figure 7, cutting away the outer part
containing the outer eigenvalues 44, 4,, and A; = 0.31129. In this small example, we
could compute all the eigenvalues with the MATLAB eig command, it took 391
seconds, and plotted them as dots. Note that also some of the not yet converged
approximations are rather close to the correct eigenvalues, and that the approxi-
mations mark up the part of the complex plane where there are eigenvalues. Some of
the less accurate approximations are not complex conjugate in pairs. The eigen-
values are slightly better conditioned than the TOLOSA case, we got s, * a5 1.30,, — 3
and 1.34,, — 3 for the first two eigenvalues A, and /,.
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Figure 8. Hydrodynamic matrix, real algorithm, computed approximations.

In figure 6, we follow the progress of the real variant described in section 4. We let
it run until j = 26 which took 80 seconds. The 4 first shifts were real, and the next
3 shifts were complex. We got convergence to 4 real eigenvalues and two complex
pairs, see the perfectly symmetric plot in figure 8! In this case the real algorithm
works to advantage, one reason for that may be that work reasonably chose to be the
real axis.
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