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Abstract. 

A sufficient condition for the symplecticness of q-derivative Runge-Kutta methods has been derived by 
F. M. Lasagni. In the present note we prove that this condition can only be satisfied for methods with 
q < 1, i.e., for standard Runge-Kutta methods. We further show that the conditions of Lasagni are also 
necessary for symplecticness so that no symplectic multi-derivative Runge-Kutta method can exist. 
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I. Introduction. 

F o r  the  n u m e r i c a l  so lu t i on  o f  o r d i n a r y  d i f ferent ia l  e q u a t i o n s  y '  = f ( y )  we  c o n -  

s ider  q-derivative R u n g e - K u t t a  methods  given  by 

+ i + ± oI;  
r = l i = l  r = l j = l  

w h e r e  

(1.2) 
hr 

Y / C r ) = 7 ( D r y ) ( Y / )  f o r / =  1 . . . . .  s a n d  r >  1. 

Here ,  the  d i f ferent ia l  o p e r a t o r  D acts  on  func t ions  ~ :  ~"  --} ~"  a n d  is def ined by 
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(1.3) (D t/,)(y) = ~p,(y)f(y) 

so that O l y  = f ,  D2y = f ' f ,  D3 y = f " ( f , f )  + f ' f ' f ,  etc. For a detailed discussion of 
such methods we refer to Section II. 13 of [4]. We closely follow the notation of this 
monograph and we shall use several results presented there. 

In this paper we are interested in the numerical solution of Hamiltonian systems 

(1.4) P' = OH q' ~pH 
-- t?--q- (p' q)' = (P' q)" 

A characteristic property of the flow of (1.4) is that it is symplectic, i.e., it preserves 
the differential 2-form dp ^ dq. Numerical methods, for which the numerical flow 
(Po, qo)~-*(Pl,ql) shares the same property are called symplectic (see [7] for an 
overview on symplectic integration.) Lasagni [6] was the first to study the symplec- 
ticness of multi-derivative Runge-Kutta methods. By a direct verification of the 
invariance of dp ^ dq he has shown that the conditions (we use the convention 
bl  m) = al'] ') = 0 for m > q) 

h!O aF) _ h(r) aq ) ~0 for i :~j (1.5) ~ j  - ' j i  : v, -w [bl l+~) f o r i = j  

(for i,j = 1 , . . . ,  s; l, r = 1 , . . . ,  q) are sufficient for the method to be symplectic. 
The main new results of this paper are the following: we first show (Section 2) that 

for irreducible methods the condition (1.5) can be satisfied only for the case q = 1. 
This is not very surprising because the number of conditions in (1.5), namely 
qs(qs + 1)/2, grows faster than the number of free parameters in the method which is 
qs(s + 1). 

In the second part of this paper (Section 3) we prove that for irreducible methods 
the condition (1.5) is not only sufficient but also necessary for symplecticness. Both 
results together imply that the method (1.1) cannot be symplectic unless for the case 
q = 1 which corresponds to standard Runge-Kutta methods. 

2. Non-Exis tence  of  Methods  Satisfying (1.5). 

Methods, which have superfluous stages, have to be excluded in this section. 
Extending the notation of [2] to multi-derivative methods, we consider methods 
which are irreducible in the sense of the following definition. 

DEFINITION. A multi-derivative method (1.1) is called D J-reducible if for some 
non-empty index set T c {1 . . . . .  s} 

b~ r ) = 0  f o r i t T a n d f o r r _ >  1, 

al~ ) = 0  f o r i ¢ T , j ~ T a n d f o r r > _ l .  
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Otherwise  it is called D J-irreducible. 

The stage-values Y~ for i s T do not  influence the numerical  result Yl and can be 
removed  f rom the scheme. 

THEOREM l. A D J-irreducible multi-derivative Runge-Kutta method (1.1), which 
satisfies the condition (1.5) for all i, j and l, r, is equivalent to a standard Runye-Kutta 
method (i.e., bl ~) = a~ ) = O for all i,j and r >_ 2). 

PROOF. Put t ing  T = {ilbl 1) = 0} we shall prove  that  
a) b~ r ~ = 0 f o r i =  1 . . . . .  s a n d r _ > 2 ;  
b) al~ ) -- 0 for i~ T, j = 1 . . . .  , s and r _> 2; 

(1) = 0 for i(~ T , j~  T. C) aij 
This implies T = 0, otherwise the me thod  would be D J-reducible.  Hence, by (a) and 
(b), all coefficients b~ '}, a}~ } vanish for r > 2 and  the me thod  is a s tandard  Runge- 
K u t t a  me thod  (q = 1). 

For  the p roof  of  (a) we fix some i ~ { 1 . . . . .  s} and let m be the largest integer such 
that  bl '~ ~ 0. We shall show that  the assumpt ion  m >_ 2 leads to a contradict ion.  
First, we p u t j  = i and  1 = r = m in (1.5) to obta in  a17 ° = bl")/2. Next,  we deduce 
f rom the same condi t ion w i t h j  = i and r -- m but  arbi t rary  l tha t  all ) = b~)/2 for all 
l > 1. Finally, we put  l = 1, r = m - 1 and obtain  bl r") hll)h (m-l) h(1)a ('n-l~ 

- -  " ~  ~ i  ~ i  - -  ~ i  - ' i i  - -  

bl m- 1)al~) = 0, which contradic ts  the assumpt ion  b~ ") ~ 0. 
Using (a) it follows f rom condi t ion (1.5) with I = 1 and r > 2 (or r = 1 a n d j ~  T) 

that  v,hg)a(.0.w = 0. This implies al~ ) = 0 for i~ T and r _> 2 (or i ¢ T,j  ~ T and r = 1) and 
proves  the s ta tements  (b) and (c). • 

3. Characterization of Symplectic Methods. 

The aim of this section is to prove  that  for irreducible me thods  the condit ion (1.5) 
is also necessary for symplecticness. We introduce a kind of irreducibility and give 
an algebraic character izat ion for it. The  equivalence of (t. 5) with symplecticness is 
then obta ined  f rom a general result of  [1] which is valid for me thods  whose solution 
can be represented as a B-series. 

3.1. B-Series Representation o f  the Numerical Solution. 

We consider the numerical  solut ion Yl, given by (1.1), as a function of h and 
develop it into a Tay lo r  series. This yields 

hp(O 
(3.1) Yl = Yo + ,~ ~ offt)a(t)F(t)(yo) 

where T represents  the set of  rooted  trees, p(t) the number  of  vertices of  the tree 
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t (order of t), a(t) is an integer coefficient, F(t)(yo) are the so-called elementary 
differentials and the coefficients a : T ~ ~ depend on the parameters of the method. 
A series of the form (3. l) is called a B-series. Instead of discussing all the expressions 
appearing in (3. l) (see [4] for more details) we only collect those definitions which 
will be used in the sequel. 

We denote by z the only tree of order 1, and by 

t = [ t ,  . . . . .  t in]  

the tree which consists of a root and of m leaving branches, to the end of which the 
trees [tl  . . . . .  tin] are attached. Similar to yl also the internal stages Y~ can be written 
in the form (3.1) with a(t) replaced by g~(t). These coefficients are given by 

(3.2) a(t) ~ ~ (r, (o = bi gi (t) 
r = l  i = l  

(3.3) g, t t )= ~ ~ al;)gf)(t) 
r = l j = l  

where gl~)(t) are the coefficients of the B-series for y(r~. For  t = r they are given by 
g~l)(z) = 1, gl')(~) = 0 for r > 2, and for t = [h  . . . . .  tin] we have the recursion 
(formula of Kastlunger; see exercise 2 of [4], Section II. 13) 

(3.4) gl,)(t) _ p(t) E g[Z°(tO"'" 'g~;'m)(tm) 
r }~i + . . .  + Z m = r _  1 

21 ..... , ~ _ > 0  

where 91°)(0 = g~(t) for all t e T. 
For  later use we include the definition of the coefficients y(t): we put y(z) = 1 and 

for t = [t~ . . . . .  t,,] we define 

(3.5) 7(t) = p(t)'y(tt)' . . ." y(t,,). 

3.2. S-Irreducibility. 

The following definition corresponds, in the case of standard Runge-Kutta 
methods, to the irreducibility introduced in [5]. 

DEFINITION. Two stages i and j of the method (1.1) are called equivalent if for every 
initial value problem y' = f (y)  and for every sufficiently small step size h it holds 
Y/= Y/. The method (1.1) is called S-irreducible if it possesses no equivalent stages. 

For  methods with equivalent stages the number of stages s can be reduced without 
changing the numerical solution y~. The following lemma gives an algebraic charac- 
terization of S-irreducibility. It extends recent results of [1] and [3]. We shall 
assume that the set of trees T is ordered with z being the first tree. 
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LEMMA 2. For the q-derivative s-stage Runge-Kutta method (1.1) consider the 
q" s × oo matrix G whose columns are given by 

1 
(3.6) (g~( t ) , . .  mtt~, . - -  . , g ~  , ,  . . . ,  g ? ~ ( t )  . . . .  g ~ ( t ) )  T 

;,(t) 

for t ~ T. Then, the method (1 . t )  is S-irreducible if  and only if the matrix G has full rank 
q.s .  

PROOF. If  the stages i a n d j  are equivalent  it follows f rom the independency of the 
e lementary  differentials that  the coefficients of  the B-series for I~. and Yj are identical, 

i.e., gi(t) = gj(t) for all t ~ T. This  implies that  g~l)(t) = p(t)" g i ( tO ' . . . "  gi(tm) equals 
g~a)(t) for all t so that  the rows i a n d j  of G are the same. 

Fo r  the p roof  of  the "only if" par t  let us assume that  the me thod  is S-irreducible. 
The  idea is to search for a matr ix  C = (Co, Ca . . . .  , Cq~_ 1) with Cl ~ E~ such that  the 
produc t  GC is a confluent Vande rmonde  type matrix.  Put t ing Co = (1, 0, 0 , . . . ) r ,  the 
first co lumn of GC is the vector  (3.6)for t = z, i.e., (1, 0 . . . . .  0) T where the elements of 
1 ~ R s and 0 e ~ are all equal  to t and 0, respectively. We will show in par t  (a) below 
that  there exists a vector  CI e ~ (only finitely m a n y  componen t s  are non zero) such 
that  the elements of 

satisfy: r/~ 1~, ., r/~ a~ are distinct and r/~2),. . t2~ . . . .  , qs are non zero. We then consider the 
polynomia l  p(x) of  degree qs - 17 defined by 

(3.7) p ° ) ( i ) = ( j +  1)!-r/~ j+l)  f o r / = l  . . . . .  s a n d j = 0  . . . .  , q - 1 .  

In par t  (b) below we shall p rove  the existence of vectors  C~(l > 2) such that  

(3.8) GC~ = i f ( l )  . . . . .  p~(s), ~ .  Pt(1) . . . . .  2! dx pz(s)" 

1 d q- a 1 d q- 1 tT 
. . . .  qt dx q- 1 Pl(1) . . . . .  q! dx q- a PZ( s ) /  " 

In  order  to prove  the linear independence of the vectors GCo . . . . .  GCos-a we 
suppose 

q s -  1 

(3.9) ~ dl" GCt = 0 
/=0  

and consider the polynomia l  Q(y) = ~7~=-o a dzfl. The condi t ion (3.9) implies that  the 
po lynomia l  Q(p(x)) has zeros of multiplicity q at 1, 2 . . . . .  s. Since p'(1) . . . . .  if(s) are 
non  zero, Q(y) must  have zeros of  multiplicity q at p(1) . . . . .  p(s). The fact that  these 
zeros are distinct implies that  Q(y), a po lynomia l  of  degree qs - 1, vanishes ident- 
ically so that  do . . . . .  d~_ 1 = 0. Hence,  the vectors  GCo . . . . .  GCq~_ 1 are linearly 
independent  and the "only if" s ta tement  of  the l e m m a  is proved.  



THE NON-EXISTENCE OF SYMPLECTIC MULTI-DERIVATIVE . . .  85 

a) Since the method is S-irreducible, there exists for every pair (i,j) with i # j a tree 
t e  T such that gi(t) # gj(t). Due to the relation glll([t]) = p([t])'gi(t), a suitable 
choice of trees tj and coefficients cj guarantees that the numbers 

k (1) r- 9i ([tj]) 
(3.10) r h=  ~lcJ  ~ , i =  1 . . . .  s 

1 

are distinct. We then put 

(3.11) n " ) ' -  k gll)([tj]) -,i "-- ~ C ~ - -  i = l  . . . . .  s ; l = l , . . . , q .  
j ° l  7([t j]) ' 

The values ql 1) = q~ (i = 1 , . . . ,  s) are distinct. Furthermore, assuming that one tree 
among the t i is z, we can achieve ql 2) # 0 for all i by making the corresponding 
coefficient cj large enough. 

b) Using the definition (3.4) of gl~)(t) we see that the lth power of ~/i is a linear 
combination of values 911)(0, namely 

k 0 1 " ( [ t j , ,  . . . .  t j , ] )  
,I  = S c j , ' . . . ' c i , "  i ...... i,=1 y( [ t j , , . . . , t i , ] )  

Hence, there exists a vector Ct such that q] . . . . .  q~ are the first s components of GC~. 
We still have to prove that 

d _ ~  k a ! r+ l ) tF t .  . 
(3.12) (pt(x))lx=~ = (r + 1)! ~ cj~ "...-c~F ~" ,~oj, . . . .  tj,]) 

i ...... / ,  = ,  7 ( [ t /  . . . . .  , t j , ] )  

Using Kastlunger's formula (3.4) and the definitions (3.11) and (3.7), we see that the 
right-hand side of (3.12) can be written as 

k a(~, + l~([tj j )  aO., + 
r! ~ c j . . . . . c j ,  Z " -  

J, ..... j ,  = i  ~, +... +a, =r  y ( [ t j , ] )  y ( [ t h ] )  

x,+...+x,=,( ,, r ~pt~,,(i). = ~ ), ." p~')(i). 
• . . ,  2t /  " " 

However, Leibniz' rule implies that this expression is equal to the left-hand side of 
(3.12). • 

3.3. Necessary and Sufficient Condition for  SympIecticness. 

In the article [1] it is shown that the B-series (3.1) defines a symplectic transform- 
ation for each problem of the form (1.4) if and only if the coefficients a(t) satisfy the 
relation 

(3.13) --a(u°v) + __a(v°u) _ a(u) a(v) fora l lu ,  v e Z  
y(u o v) y(v o u) Y@ ~(v) 

Here we have used the notation 
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u o v  = [ u l  . . . . .  u ~ , v ] ,  y o u  = Evl . . . . .  v~,u] 

for u = [ul . . . . .  u,,] and v = [vl . . . . .  v~]. The coefficients y(t) are those of(3.5). We 
shall apply this criterion to the coefficients (3.2) of our mult-derivative method (1.1). 

LEMMA 3. Let be 

(3.14) ""um!('r) : = blZ) b~ ~) - ~,hq) a('O-u -- ~ jb(') a(1)-ji - -  ~ij~iA ~ ( l + r )  

where 6q is the Kronecker delta. The coefficients a(t) of  (3.2) then satisfy 

s 

~,(u o v) + ~,(v o u) ~(u) ~(v) ;.r= ~ ;j  7(u) ?(v) 

for all trees u, v ~ T. 

PROOF. We multiply (3.14) by gll)(u)/y(u) and g~)(v)/v(v), sum over all appearing 
indices and insert formula (3.3). In this way we obtain 

~ ~,m(t,,, g}')(u) g~')(v) / ~  ~ , , ( ' ) tu~\/q " ,,(r)h,~\ (3.15) / V  S ' b g )  ~ " j / I V  V htr) ~ j w ~ l  
/ ,  i j  - -  ~ ~ / ~  = t  el,l,, t l  / . .a ~ ~ J  (V~  l ~,,= i ~,j ?(u) 7 ( 0  ,,t = ~ ;= ~ ~ ) / \ , =  ~ j =  ~ ~'~ J / 

q 

~=~=1-~ ~(u) ~(v) ,=~=~  ~(v) ~(u) t , ,=~;=~'  ~(u) ~(v)" 

On the other hand, it follows from (3.4) and (3.5) that 

gl')(uo v) _ " ~  r -- k glr-k)(u) glk)(v) 

7(u o r,) kd"= o r 7(u) y(v) 

so that 

g~')(u 0 V) gl')(v 0 U) g}')(u) gi(v) g}')(v) gi(u) 
(3.16) + - + 

~(u o v) ~(vo u) "l(u) ~,(v) ~(v) ~(u) 

If we multiply (3.16) by bl ') and sum over all i and r we obtain exactly the last three 
expressions of (3.15). The definition (3.2) of the coefficients a(t) thus yields the 
statement of the lemma. • 

"~ '  aF-k~(u) g}%,) 
+ ~,(u) o~(v) " k = l  

It follows from Lemma 3 that the condition (3.13) holds if and only if G TMG = 0, 
where G is the matrix of Lemma 2 and 

(3.17) 

/ (m( i , i )L . [ v " i j .  :J ,J ' ' "  (m!l'q)L "\ 
M 

I I 
(q'l)] . (rr1(qlq)~ ] 

I 

\ (mq" Ji,j v,qj Ji,j/ 

Since G has full rank for S-irreducible methods, this is equivalent to M = 0 which is 
identical to condition (1.5). We thus have proved the following result. 
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THEOREM 4. An S-irreducible multi-derivative Runge-Kut ta  method is symplectic i f  

and only if condition (1.5) is satisfied. 

Combining the statements of Theorems 1 and 4 we obtain the main result of this 
article. 

THEOREM 5. A multi-derivative Runge-Kut ta  method, which is D J- and S-irreduc- 

ible, cannot be symplectic unless bl r) = al~ ) = O for all i , j  and r > 2. 
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