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1. Introduction. 

Extremely ill-conditoned least squares problems arise in many scientific and 
statistical applications. Let I1"11 denote the Euclidean vector norm, and consider 
the least squares problem 

(1.1) min t l K f - g l l ,  
f 

where the m x n matrix K, m _-> n, is assumed to be very ill-conditoned. To alleviate 
the ill-conditioning (1.1) is replaced by 

(1.2) min {IlK J - g l l  2 +/FIIfllZ}. 
f 

This is the regularization method of Tikhonov [11] and Phillips [10]; in the 
statistical literature the solution of (1.2) is called the rid#e estimate [7]. 

In some cases it is necessary to choose a regularization of the form 

min {llKf -g l l  2 +/~211Lfl12}, 
f 

where L is equal to a discretization of a differentiation operator. This 
can be transformed into a problem of the type (1.2) [4]. 

It is a non-trivial matter to choose a suitable value of the reyularization 
parameter #, which controls the degree of smoothness of the solution. Several 
methods have been proposed, which explicitly or implicitly correspond to the 
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addition of some a priori information into the problem formulation. In contrast, 
generalized cross-validation [7] is a method for choosing a value of the 
regularization parameter from the data. In this method # is chosen to minimize 

m-XllKf,-gll 2 
(1.3a) V(/~) = (m- l tr(I - K M ~  1KT))2 

where f~ is the solution of (1.2), and 

(1.3b) M~, = KTK +p21. 

In this procedure it is important to be able to compute function values V(/~) 
efficiently. The standard method is to use the singular value decomposition (SVD) 
of K [7]. 

In this note a modification is described, where instead of computing the SVD 
of K we use a bidiagonalization 

(1.4) K =  u ( B )  v r, 

where U and V are m x m and n x n orthogonal matrices respectively, and B 
is n x n bidiagonal. In this way we avoid the main part of the work in the 
SVD algorithm. We first briefly review how to solve (1.2) using the bidiagonal- 
ization of K. Then we show that starting from the decomposition (1.4) V(#) can be 
computed in O(n) operations. 

This note is similar in spirit to [4]. The algorithm for computing the trace- 
term in (1.3) was originally given by Grad, Zakraj~ek [9] in a different context, 
see also [3]. 

2. Generalized cross-validation computations. 

The decomposition (1.4) can be computed using a finite number of House- 
holder transformations or Givens rotations [5]. This is the first part of the 
SVD-algorithm (see e.g. [2], [6]). Using (1.4) we see that (1.2) is equivalent to 

(2.1a) min {liB f -  ~ll z +~211711z}, 
Y 

where 

(2.1b) 

~= vVf, 
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and ~ is an n x  1 vector• Obviously it is not necessary to compute the 
matrix U explicitly. It is also seen that (2.1a) is equivalent to 

(:)ll 
and this least squares problem can be solved efficiently using the algorithm 
given in [4], where a QR-decomposition is computed 

(2.2) 

Here B, is a bidiagonal matrix 

np 

l ~l ~I 
O~ 2 f12 

O~n- t ~ n - -  1 

~X n 

The algorithm is based on Givens rotations. The solution of (2.1a) (which is 
denoted ~v) can then be obtained by solving Bv~ = # r  The total operation 
count for the solution of (2.1al is O(n) (cf: [4]). 

It is now easy to compute the norm of the residual vector IIKfu-#ll. Using 
the decomposition (1.4) we get 

(2.3) IIKfu-gll 2 = I I B L -  #112 + I1~112. 

Given ~v the computation of this quantity can be performed in O(n) operations• 
For small values of # cancellation occurs in the computation of the norm 

of the residual vector (2.3), and there may be large errors, Cancellation can be 
avoided by basing the computations on the identity 

B(Br B + t,2 I)-  i B r _  l = _#t2 (BBr + It2 I)- 1 ; 

(the identity is easily proved, e.g. using the SVD of B). Note that a decom- 
position of BBr+I~2I can be obtained using a variant of the algorithm in [4]. 

It is somewhat more complicated to compute the trace-term in (1.3). Using 
the relation 

(2.4) tr(BA) = tr(AB), 
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we can simplify 
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tr(l - K M ~  1KT) = m-- tr(KM~ 1KT) 

= m - t r ( l - # 2 M ~  1) = m - n + # 2 t r M ~  1. 

Then from (1.4) and (2.4) we get 

tr(M~- 1) = t r ( V B T B V  r + #2i)- 1 = tr(BrB + #2i)- 1. 

A recursive procedure for computing the diagonal elements of the inverse of a 
band matrix can be obtained easily when the Cholesky decomposition of the 
matrix is known [8]. For completeness we here derive the procedure using a 
slightly different approach than that in [8]. 

From (2.2) it is seen that 

T B T B + # 2 I  = BuB,, ,  

and letting b~" denote the ith row of B~ 1, we obtain 

tr(M~- 1) = tr((B~B,)- 1) = ~ llbill 2. 
i = l  

Using the identity B~,B~ t = I we get the relation 

O~nbll ~-- e l l  ~ 

• ib i  = ei - flibi + 1, i = n - 1, n - 2 . . . . .  1, 

where e i denotes the ith unit vector. Since B~ 1 is upper triangular bi+ 1 is 
orthogonal to ei, and it follows that 

(2.5) 
IIb.II 2 = 1/ot~, 

IIb~ll 2 = (1 + fl211b,+ ~112)/~ 2 . i = n - l , n - 2  . . . . .  1. 

Using the recursion (2.5) we can compute the trace term in (1.3) and thus also 
function values V(#) in O(n) operations. 

It is also possible to compute the first derivative of V(#) in O(n) operations 

C3], [9]. 
In Table 1 we give the results of some timing experiments, where we compare 

our method to that based on the SVD. The test problem is an integral equation 
of the first kind given in [10], Example 1. The integral equation is discretized 
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using the trapezoidal rule giving an n x n matrix K. The algorithms were 
programmed in Fortran 77, and run on a DEC 20 computer  under the 
TOPS 20 operating system. Single precision is used. The SVD subroutine is from 
the N A G  library, and it computes only one of the orthogonal matrices. The 
bidiagonalization algorithm is a modification of the first part  of the SVD sub- 
routine in L I N P A C K  [2]. Neither of the orthogonal matrices in (1.4) is 
computed explicitly. 

Table 1 Execution time in seconds for  the two algorithms. The  cross-validation 
function is evaluated for  20 different values o f  I~. 

Dimension 

25 
50 

100 

Execution time in seconds 

SVD 

1.6 
6.3 

37 

Bidiagonalization 

0.95 
2.4 

13 

The SVD algorithm required approximately 0.95 iterations per singular value. 
This is in agreement with [1], where it is observed that for certain ill-conditioned 
matrices the SVD algorithm converges faster than for well-conditioned matrices. 

Our  tests indicate that for large problems the method based on the 
bidiagonalization is more efficient than that based on the SVD. 

It  should be remarked, however, that the modifications of the SVD algorithm 
described in [1] give a considerable speed-up, and therefore our method should 
be compared to that in [1]. So far we have not been able to pursue this. 
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