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Abstract. 
The paper proposes a new Gauss-Newton algorithm for the computation of periodic orbits in 

autonomous nonlinear ODEs. On the basis of Ftoquet theory, the new algorithm is shown to 
converge quadratically in a neighbourhood of the solution. Nontrivial examples are included. 

0. Introduction. 

Periodic solutions of nonlinear ODEs play an important role in several fields 
of application such as chemistry, epidemiology, or electronics. Mathematical 
problems in this context are existence, uniqueness, parameter dependence, and 
stability of periodic orbits of given dynamical systems. The present paper deals 
with a new Gauss-Newton algorithm for the actual computation of such 
solutions. In section 1, the key idea of the method to be proposed is derived 
on the basis of Floquet theory. In section 2, the basic algorithm and its 
multiple shooting implementation are worked out. The suggested Gauss-Newton 
technique for autonomous problems is shown to converge locally and quadratic- 
ally. Non-trivial numerical examples are documented in section 3. 

1. Preliminary considerations. 

Consider the system of n, in general nonlinear, ordinary differential equations 
(ODEs): 

(1.1) y '=  f(t,y). 

The problem is to compute possible periodic solutions, with some period T > 0. 
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The periodicity is reflected in the boundary conditions 
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(1.2) y(T) = y(O). 

Throughout the paper, critical points with f ( t , y ) =  0 will be excluded. In a 
first-order perturbation analysis any perturbations 6y(t) of the solution will 
satisfy the variational equation 

(1.3) 6y' = fy(y(t))6y. 

This linear ODE system can be formally solved in terms of the Wronskian 
matrix W(t, 0) with W(0, 0) = I. Hence 

(1.3') 6y(T) = W(T, O)6y(O). 

A rather general analytic discussion of periodic solutions can be found in 
the textbook of Coddington-Levinson [2]. 

Non-autonomous systems. If f~ ~ 0, then the right-hand side f is periodic 

f ( t + T )  = f ( t )  

with given T. Thus any periodic solutions y will have periods, which are just 
integer multiples of T. The conditions (1.1) and (1.2) define a periodic 
boundary value problem (BVP) with an associated sensitivity matrix (at t = 0, 
say): 

(1.4) E(0) := W(T,O)-L 

If E is nonsingular, then the periodic solution y will be locally unique - 
compare e.g. Lemma 1 in I"6]. Usually, the periodic solutions are characterized 
in terms of the (in general complex) eigenvalues of W(T, 0), say #1,--.,#n, 
also called Floquet multiplies. Note that E(0) just has eigenvalues/1 i -  1. Then, 
under the assumption 

(1.5) I/~1 < 1, i =  1 ..... n 

the periodic solution y is stable, i.e. any perturbation @(0) eventually dies out 
by virtue of (1.3'). 

Generally speaking, E(0) is nonsingular as long as none of the p~ equals 1. 
Under this assumption, the periodic BVP (1.1)-(1.2) can be treated by any 
standard BVP code. Therefore the rest of the paper will concentrate on 
autonomous systems, which are known to violate this assumption. 
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Autonomous systems. I f f  = 0, then the period T is unknown. Moreover, f is now 
a solution of the variational equation (1.3) so that 

(1.6) f (y(t))  = W(t, O)f(y(O)). 

Upon inserting (1.2) into (1.6) for t = T one obtains 

(1.7) f(y(O)) = W(T,O)f(y(O)), 

or, equivalently 

(1.7') E(O)f(y(O)) = 0 for f(y(O)) ~ O. 

This means the Wronskian has an eigenvalue 1 (say/~1) and E is singular. As 
a consequence, this type of problem cannot be solved by just applying any BVP 
code to (1.1)--(1.2)directly. In fact, additional consideration is needed. 

The condition (1.7) reflects the fact that in an autonomous system the 
phase of .the solution is undetermined, i.e. with y(t) a T-periodic solution 
y(t+to) with t o ~ 0 is also a T-periodic solution. For this reason, most 
authors (see [17], [10] or [16]) suggest to fix the phase by fixing a 
selected component of the initial values [10, 17], say 

y~(o) : =  ~, 

or by setting a component f~ of the right-hand side to zero [16]. Such approaches, 
however, require a careful choice of the index j (and the parameter ct). 

It is the purpose of the present paper to show that such ad-hoc devices and 
analytic preparations are unnecessary. The method proposed herein is based 
on the fact that #1 = 1 is a simple eigenvalue of the Wronskian W(T,O) - 
compare [2]. Thus E(0) has rank-deficiency 1. Hence, as a consequence of 
(1.7'), the extended (n, n + 1)-matrix [E, f ]  has full rank, i.e. 

(1.8) ranklE(0), f(y(0))] = n. 

This latter property inspires a special Gauss-Newton technique to be presented 
in section 2 below. 

Homoclinic orbits. A limiting case of periodic orbits are closed orbits with 
formally infinite period T. The method of section 2 will not be able to treat 
these problems. Instead a time transformation to finite interval will be necessary, 
which then leads to non-autonomous singular BVPs. This case is omitted here. 
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2. A Gauss-Newton technique for the autonomous case. 

In most applications, t is actually the time variable so that initial value 
problem (IVP) approaches to solve the BVP seem to be natural. For stable 
periodic orbits, and mildly nonlinear ODEs, even sinyle shooting might work. 
For unstable periodic orbits or for highly nonlinear ODEs, a multiple 
shooting technique will be preferable. 

2.1. Basic algorithm. 
This section presents the basic idea in the single shooting context. Let 

y(tlx, T) denote the T-periodic solution of the IVP 

(2.1) y' = f(y), y(0) :=  x. 

Then (n+ 1) unknowns z :=  (x, T) must be determined from the n equations: 

(2.2) F(z) :=  y(Tlx, T ) - x  = O. 

To solve these n nonlinear equations, consider the following Gauss-Newton 
(GN) method: for z ° :=  (x °, T °) given, let 

(2.3) a) Az k :=  -F'(zk)+F(z k) 

b) .z k+l :=!zk+Az k. 

The superscript + indicates the Moore-Penrose pseudo-inverse. The 
Jacobian (n, n +  1)-matrix F'(z) has the following structure: 

(2.4) F'(z) = [F x, Fr ]  = [E(0), f(y(T))]. 

At a solution point, z* say, one has 

(2.4') F'(z*) = [E(0), f(y(0))]. 

The comparison with (1.8) shows that F'(z*) has full rank n. 

THEOREM 1. Let F :D---, R ~, F~CI(Do) for some convex set D O ~ D c_ •,+1. 
Let the Jacobian F'(z) have full rank n for all z E Do. Then, under the assumptions 

(2.5) a) Ilzlz°ll < Oto, z°eDo 

b) llF'(zl)+(F'(z2)-F'(z3))ll ~- ?llzz-z31l, for zx, z2,z3 ~Do 
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c) h0 :=  ½%7"< 1, 

d) g(z°,r):= {z~R"+'l tlz-z°tt =<r} ~ Do f o r  r :=  ~to/(1 -ho) ,  

the G N  iterates {z k} defined in (2.3) remain 

point z* = l i m k ~  Z k with F(z*)  = O. 

The convergence rate can be estimated by 

in S(z°,r) and converge to a 

(2.6) 117+2 _zk+ ill ~ (~/2)t17 + t _zktl 2. 

PROOF. Apply Theorem 4 of [-8] with F r == F'(z) ÷. The essential part is to verify 
assumption (3.3.c,d) from [8], which in the special case reads: 

[IF'(z0 + ( I . -  F'(z2))F'(z2) +)F(zz)[l ~ X(Za)llzl - z211 

for some x(z)  < ~ < 1. 

The (n, n + 1)-matrix F' has a singular value decomposition 

F'(z) = U 2; V r, 

where U is an orthogonal (n, n)-matrix, V an orthogonal (n+ 1, n +  1)-matrix 
and • an (n, n + 1)-matrix of the form 

2; = [,D, 0], O = diag(d,,. . . ,  d,) 

with d i #  0, since rank(F'(z)) = rank(2;) = n. As a consequence, one obtains 

l F'(z) ÷ = V E + U r, ~+ = 

which implies F'(z)F'(z)  + = U 2; I /rV 2;+ U r = U 2; 2;+ U r = UI ,  U r = I, .  

Hence x(z) - 0 for all z 6 Do. This proves local quadratic convergence to some 
z* with F'(z*) + F(z*)  = O. 

With (2.4') and (1.8) one infers that F(z*) = O. • 
In order to expand the convergence domain of this ordinary GN method, one 

may reduce the GN steplength llAzkll by some factor 2k < 1. The damping s trategy  as 
described in [-5] applies directly: one must observe, however, that now the 
operator F'(z)+F'(z)  is a projector in R "+1 of just rank n, which induces a clear 
modification of the steplength estimates. For details see (2.16.b) in [-5]. 

REUARK. The algorithm above has some connection with a suggestion of 
Nakhla-Branin [14], who propose a gradient method including the treatment 
of t h e  autonomous case. In the present notation, their method requires the 
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computation of 

grad tp = [E(O), f (y(T))]rr  to minimize tp :=  ½M[2 2. 

This algorithmic approach reduces the computing time per Jacobian evaluation 
considerably by exploiting 

Err = : u(0)-- u(T) 

where u is the solution of the adjoint variational equation 

u' = --fy(y)ru, u(T) = r. 

Hence u(t) = Wr(T,  t)r. 
As in the present paper, these authors also ignore the multiplicity of the 

periodic solution coming from translation invariance. Numerical comparisons 
with this algorithm are in preparation. 

2.2. Multiple shooting realization. 
In what follows, certain details of realization are worked out, which have been 

implemented in a special code called PERIOD. This code is a specification of 
the general purpose multiple shooting code BVPSOL of Deuflhard-Bader [6]. 
The notation to be used also follows [6]. This notation naturally includes the 
single shooting case as well. 

Generalized Gauss-Newton method. In order to have fixed shooting nodes, a 
dimensionless variable 

:=  t /T~[O, 1] 

is introduced. Let 0 = z I < "~2 '~ " ' "  < 17rn = 1 denote the coarse grid and 
dz~ :=  z j + l - z j .  Then the following conditions must hold: 

(2.7) a) 

where 

Fj(xj, x~+1;T) :=  y(z~+tlx~,T)-xj+ ~ = 0, j = l ( I ) m - 1  

~Tdrj 
y(zj+ l lx~, T) = x~+ [ f(y(t))dt 

.h 0 

b) r(xl, X~) :=  Xm-X,  = O. 

By fixing xm :=  xl,  the boundary conditions (2.7b) can 
dropped. In addition to the Wronskian matrices on [x j, xj+l] 

Gj :=  0y(zj + l[xj, T)/Oxj = W(zj+ 1, ~)ly(TIx~ r) 

the Jacobian contains the n-vectors 

be formally 
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(2.8) 
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OF/OT = ay(z~+ fix j, T)/aT = Azj" f (y(~+ x lxj, T)) = : gj. 

The linear system to be solved per G N  iteration has the form 

(2.9) 

a) 

b) 

G1Axl - A x 2  + g i A T  = - F 1  

G m - I A x m - I - A x m + g m - I A T  = - F m - t  

- Axl + dxm = O. 

If the associated IVP is not ill-posed, then the so-called condensing alyorithm 
may be applied yielding the linear (n, n + 1)-system 

(2.1o) EAx I + g A T + u  = 0 

with E := G m - I . . . G I - I  

g := g , , - l + G , , - a g , , - 2 + . . . + G m - t  .. .G2gl 

u := Fm_I+G, ,_IFm_2+. . .+G, ,_I . . .G2F 1. 

This system is underdetermined. At a solution point z* :=  (x~' . . . . .  x*, T*) one 
obtains 

E* = W(zm, z l ) - I  

g* = Az ,_  i f ( x*)  + Az,_  2 W(zm, T,,_ 1) f (x*-  1)!+,.. + AT1W(z,, z2)f(x~)." 

Upon recalfing from (1.6) that f (x*)  = W(zm, z~)f(x*) and observing that, by 
definition, Azl +. . .+AZm_l = 1, one ends up with #* = f(x*). 

Thus, in comparison with section 1, one has [E*, g*] = [E(0), f(y(0))].  
Consequently, in view of (1.8) and (2.3), the following generalized G N  method is 

inspired (dropping the iteration index k): 

(2.11) 
a) \ A T  I 

b) Axj+l = GjAx j+# jAT+F i, j = 1 , . . . , m - 2 .  

Using standard techniques for a generalized Jacobian inverse J -  as essentially 
defined in [3], the iterative method above can also be shown to converge 
locally and quadratically. 

REMARK. Apart from the rank-deficiency in (2.11.a), there are, of course, 
similarities with the parameter identification technique as suggested by Bock [1]. 
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Note, however, that the period T is a rather special parameter - a fact, which 
is reflected in the key property (1.8). 

Jacobian rank-1 updates. The construction of such updates requires some 
special attention. Let G~÷~ denote the updated Wronskian at the iterate (k+ 1). 
Then the Davidon-Fletcher-PoweU condition in block row j reads (with 
damping factor 2k): 

(2.12) (d~+l k k k+l _g~)2kAT k *+ - Gj)2kAXj + (gj = F/ * - (1 --2k)F ~. 

As the #~ can be computed cheaply, only the Gj will be approximated. This 
leads to 

(2.12') ~ + 1  := G~ + VVjVjr 

wj := FJ 

k k 2 := (axj)/(&llaxjll2). 

lterative refinement sweeps (IRS). For unstable periodic orbits, the IRS 
technique as suggested in [6] may be worth performing. As the linear 
least squares system (2.11a) leads to a zero residual, the technique in [6], 
Section 2.2., can be directly applied. In order to start the IRS, one merely 
continues the recursion (2.11.b) up to j = m - 1  and computes the residual 
dr ° := A~m-A~I. 

Floquet multipliers. At the solution point, the computed Wronskian 

W(T,O) "-- G m _  1 ".." G1 

is available. PERIOD calls standard linear algebra software ([12, 13, 14]) to 
compute the associated eigenvalues #i- The standard value Pl = 1 is also 
computed to check for the accuracy of the Jacobian approximations. 

3. Numerical  experiments.  

All subsequent numerical problems have been solved by means of the 
special multiple shooting code PERIOD using the non-stiff extrapolation 
integrator DIFEX1 (see e.g. [4]). The common required relative error tolerance 
was 1.D-6. Throughout the examples m = 11 equidistant shooting nodes were 
chosen. The numerical experiments were run in FORTRAN double precision on 
the IBM 3081 of the Computing Center of the University of Heidelberg. 
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3.1. Nerve membrane model ([9], [16]). 

The model is represented by the ODEs: 

(3.1) y'~ = 3(Y2+yl--y3/3+2); y~ = --(yl--0.7+0.8y2)/3. 

Rough initial guesses obtained from Fig. 1 of [16] for 2 = - 1  were 
0 0 (x °, T °) = (3, 1.5, 12). The remaining initial guesses x2 . . . . .  xlo were constructed 

from the associated IVP solution y(tJx°). The code PERIOD required 12 GN 
iterations (among which 5 iterations were damped GN steps) with 27 
trajectory evaluations. The computing time was about 1.2 sec. The solution 
obtained was 

yl(0) = 1.8521 T = 9.6133 #1 = 0.99 

y 2 ( 0 )  = 1.2053 #2 = 2" 10 - 1 2  

The graph of the solution trajectory is presented in Fig. 1. As can be seen 
from the Floquet multipliers, the periodic orbit is stable. The essential difficulty 
in this example is the determination of T. It may be worth mentioning that, 
due to the stability of the orbit, a few revolutions in the (yl, y2)-plane already 
lead to the stable orbit. So methods especially designed for stable orbits (such 
as [11] might be preferable. These methods, however, require one to know the 
stability in advance! 

2 .0  

1.O 

0.0  

-1 ,0  

-2"°o!o '2.'o ' 6?0 ' 8 . ' o  ' 10.0 

Fig. 1. Solution trajectories for example 3.1. 
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3.2. Heated f l ow  problem ([11], [10]). 
This model is obtained by a reduction of a system of Navier-Stokes and 

heat transfer equations describing the flow in a layer of liquid heated from 
below. The ODEs  are (in terms of Cartesian coordinates) 

(3.2) x '  = - a ( x - y )  

y' = x ( r - z ) - y  

z' = xy  -- bz 

As in [10], the parameter  set a = 1.6, b = 4 was chosen. In order to test the 
code for an unstable orbit, the value r = 153.083 was taken from [10], Table II. 
Initial guesses were (x °, T °) = ( 0 , - 2 8 ,  140,0.95). The remaining guesses were 

once more obtained from the associated IVP solution. 
The code P E R I O D  required 12 G N  iterations (including 7 damped G N  

iterations) and 35 trajectory evaluations. The computing time was about  1.5 sec. 

The solution obtained was 

x ( 0 ) = - 0 . 8 7 8 9 0 D - 3  #~ = 1.00 

y(0) = - 0.27732 D + 2 #z = t 1.6 

z(0) = 0 .14188D+3 # a =  2 D - 1 0 .  

T = 0.94664 

A plot of the solution orbit  in space is given in Fig. 2. 

N I . 6  

I \ 7  / ' - J  

Fig. 2. Solution orbit of example 3.2 in 3 space dimensions. 
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