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Abstract.

When finite difference and finite element methods are used to approximate continuous
(differential) cigenvalue problems, the resulting algebraic eigenvalues only yield accurate estimates
for the fundamental and first few harmonics. One way around this difficulty would be to estimate
the error between the differential and algebraic eigenvalues by some independent procedure and
then use it to correct the algebraic eigenvalues. Such an estimate has been derived by Paine, de
Hoog and Anderssen for the Liouville normal form with Dirichlet boundary conditions. In this
paper, we extend their result to the Liouville normal form with general boundary conditions.

1. Introduction.

Because it is representative of a wide class of continuous eigenvalue problems,
we work in this paper with the canonical Liouville normal form

(1) —y'+gqy =24y, q=¢qkx), y=yx), O0<x<m,
) Y’ (0)—0,9(0) =0, B,y (n)+B,y(n) = 0.

In fact, from both a theoretical and a numerical point of view, the analysis of an
eigenvaluec problem as its Liouville normal form has considerable advantages
(cf. [8]). However, the transformation to Liouville normal form must often be
performed numerically and introduces its own computational difficulties (cf. [5]).
This aspect will not be pursued here.

When discrete (finite difference and finite element) eigenvalue problems are
used to approximate continuous (differential) eigenvalue problems, it is not only
necessary to prove that the numerical method used to solve the discrete
problem is efficient and accurate, but also necessary to establish that the exact
eigenvalues of the discrete problem itself yield accurate estimates of the
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corresponding eigenvalues of the continuous problem. In fact, because accurate
and reliable methods can be constructed for the solution of the discrete
(algebraic) eigenvalue problems (cf. [10], Chapter 2), the accuracy of the
approximate eigenvalues obtained is limited by the accuracy with which the
exact eigenvalues of the discrete problem approximate the corresponding
eigenvalues of the continuous problem.

For example, consider the use of finite difference methods for the simplest of
all Sturm-Liouville problems

(3) —w' = nw, w{0) = w(n) = 0.

Its exact eigenvalues and eigenfunctions are given respectively by

4) 1, = k%, w, = sin(kx), k=12...

If, at the internal grid points of the uniform grid
G={x;x;=ihi=0,12,..,n+1, h=n/ln+1)},

the second derivative in (3) is approximated using central differences, the
following algebraic eigenvalue problem is obtained

— AW = n"‘)ﬁ':

with

=

1 -2 1
L 1 —2J

and W = [W;, Wp,...,]", W, xw =w), i=12.,n For notational
convenience, the explicit dependence of the algebraic eigenvectors on n will be
suppressed. This problem can be solved without error since the eigenvalues 7{"
and the corresponding eigenfunctions w, are known to be

n" = 4sin? (kh/2)/h?
and

W, = [sin kh, sin 2kh,. . ..sin nkh]".
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Thus the error
(5) e =, —n" = 0(k*/(n+1)*) = O(k*h?)

is due solely to the use of finite difference methods in the approximation of (3).
Its O(k*h?) behaviour clearly establishes that the accuracy of the
approximations #\” deteriorates rapidly as k increases.

This dependence on k, which will always be made explicit in the present
paper, verifies that the accuracy of the approximate eigenvalues is controlled
strongly by the form chosen for the discrete problem and that, when finite
difference and finite e¢lement methods are used, the resulting algebraic
eigenvalues will only yield accurate estimates for the fundamental and first few
harmonics.

This does not negate the use of finite difference methods when
approximations to the-first m eigenvalues of a differential eigenvalue problem
are required with m > 1. But, it does imply that some redundancy must be
built into the algebraic eigenvalue problem used to construct the
approximations before accurate estimates will be generated. A common
technique, used by engineers, geophysicists and others, is to construct the
discrete problem for n=Im, with > 1, but only calculate its first m
eigenvalues (cf. [10], §§2-2, 15-12).

From a computational and numerical analysis point of view, such a
procedure represents an obtuse way to calculate differential eigenvalues. An
alternative approach is to work directly with the given differential eigenvalue
problem to obtain estimates which have errors that can be bounded
independently of k. There are a number of ways in which this can be done. In
the classical approach, the Sturm-Liouville problem (or Liouville normal form)
is replaced by a first order differential equation which is solved using shooting
methods. Included in this class are the Priiffer phase methods (cf. [5], and [6]
for a summary). In a more recent approach, pursued with considerable success
by a number of authors including Pruess [11], [12] and Paine and de Hoog
[8], a simpler problem is constructed by replacing the coefficients in the Sturm-
Liouviile problem (or Liouville normal form) by piecewise constants. In fact,
Paine and de Hoog [8] have clearly established the numerical advantages of the
Liouville normal form by showing that, when this approach is applied to (1)
and (2), O(h*) accurate appoximations to the eigenvalues are generated.
Summaries of the various methods which have been used, along with error
estimates for the corresponding appoximate eigenvalues, is given in [6] and [2].
The latter paper discusses the use of comparison theorems to construct
computable error bounds. Subsequently, Paine and Andrew [7] have derived
O(h?) methods of this type.

Another way around the difficulty would be to estimate the error between the
differential and algebraic eigenvalues by some independent procedure and then
use it to correct the algebraic eigenvalues.
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In 1981, Paine, de Hoog and Anderssen derived such an estimate for the
Liouville normal form with Dirichiet boundary conditions

(6) —v" +quv = O, g = q(x), v = v(x), 0<x<m,
N v(0) = v(rn) = 0.

They showed that

8) 0,—0" = e+ 0kh*), l<k<oma<l,

where the 6" correspond to the central difference eigenvalues of (6) and (7) on
the uniform grid G and therefore satisfy

(—A+Q)W =05, ¥ =[y,0,,...5,]7,

where Q = diag(q,,q,,.. +4,), and &, > v, = v(x;), ¢; = q{x,), i = 1, 2,...n.
This leads naturally to the correction formula

oW = 0" +el k=1,2,..n,n=12,...

The derivation of (8} is greatly simplified because the boundary conditions are
Dirichlet and the exact value of e{” of {5) is known. In this paper we show that
similar results to (8) hold for the Liouville normal form (1) and (2). The central
difference eigenvalues A", k=0,1,2...,n, of (1) and (2) satisfy, on the
augmented grid

G* = {x;;x; =jh,j= —1,0,1...nn+1, h = n/n},

the following algebraic system

) (=L+Q)7 =A"F, 5§ =[Jo» J1-Ful”
with .o P N
L -2 ! p = 20, /(x; +hoty)
L=hp? ' . ’ ‘ ' ;g =2B,/(B.+hB)
1 -2 1
\ q s J

and §;~y;=y(x;), j=01...n, when the boundary conditions (2) are
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approximated by the following finite difference formulas

ay (¥, —F-1)2h—0,54 = 0,

and Bi(Fus1 = Fu-1)2h+B,5, = 0.
For the Liouville normal form (1) and (2), the counterpart of (3) takes the
form

(10) —u’ = yu, u = u(x),

(1 o, (0)—au(©0) =0,  Byu'(m)—Pou(n) = 0.

The central difference eigenvalues of (10) and (11) corresponding to the A™ of
(9) are therefore defined by

(12) —Lii = y"i, i = [ilg, iy, - ]
with 4, =~ u; = u(x;),i=0,1,.. ,n
The main result of this paper can now be stated.

THeorReM. Under the assumption that q'(x) is continuous on [0, 7], it follows
that there exists an o < 1 which is independent of n such that

(13) =P =P+ 0(0?), Il <k<on,

with g =y, — .

It will be proved in Section 2. It leads naturally to the correction procedure
(14) A = A+, k=0,12,..n

In establishing the relationship between A,—A{ and y,—y, asymptotic

expansions are derived for various quantities including 4, and A{". In fact, we
find that, when o; =, =0,

A =k*+0(1)
and A" = 4sin? (kh/2)/h* + O(1).
But, the first term in the difference between these two asymptotic expansions is
just the correction e of (5) derived and used by Paine, de Hoog and Anderssen
[9] This suggests that the difference

égi”) = Zk - x&")

between the leading terms in the asymptotic expansions for the continuous and
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discrete problems

(15) by = A+ Ok™™),
and A =T+ 0k™™),

respectively, can also be wused to correct the algebraic eigenvalue
approximations; namely,

(16) I = 04 g™ k=0,1,2...n, n=12. ..

The case m = 3 is discussed in section 2. Implementation of the correction
procedures and numerical verification of the results are examined in section 3.

2. The estimate 4, —A{™ = ¢+ O(h?).

The essence of the proof is straight-forward once appropriate asymptotic
formulas are available, though the details are technically awkward (cf.
Anderssen and de Hoog [1]). Those used in the present examination were
derived in [1] and [3].

Throughout the remainder of this paper, we shall make the assumption that

J" qg(x)dx = 0.

0

This simplifies the proof at crucial stages without affecting their generality, since
(cf. [4]) the only contribution that a non-zero value of this integral makes to
the 4, is a translation.
For notational convenience, the dependence of 4,, A", y,, ¥, 7, I, etc. on k
will often be suppressed in the sequel when there is no ambiguity of meaning
Because there is a sign redundancy in the boundary conditions (2), we shall
assume that

a, >0 |and |8, >0.
In addition, we introduce the notation

17 0(x) = fxqm .

0

Logically, the derivation of the results above involves two basically distinct
steps:
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1. Formal estimates of the error A—A™ in terms of A—1®, and in terms of
P ="

2. Construction of explicit estimates for Z—1® and for y—y™ which can be
used to apply the corrections (14) and (16).

Technically, the explicit estimates of the second step are needed to prove the
estimates of the first.

The construction of such explicit formulas depends crucially on the use of
appropriate asymptotic formulas for the eigenvalues 4, A, y and v of (1}-(2),
9), (10)-(11) and (12), respectively, the eigenfunction y(x} and the eigenvector
¥ = (Jo» 15 - »¥)"- It is these formulas which are derived in [3]. In general, they
are only valid for 1 < k < an, with a < 1 and independent of n.

Asymptotic Formula for y,. For the Liouville normal form (10)-(11),

y=u’,  ulx)=cos(ux+g),
where ¢ = O(k™ 1), u = O(k) and p satisfies the following fixed point formula
po=k—1+{sin™" (B,/(B3+ B1u?)'*)+sin ™ (oy/ (o} + ap?) 2} /m.
Asymptotic Formula for y™. For the discrete problem (12),

Y™ = 4sin’ (ih/2)/h*, ;= cos(ix;+P), j=0,1...n

where ¢ = O(k™1), i = O(k™!) and ji satisfies the following fixed point formula
fi = k—1+{sin™" (B,/(B3 + B3A%)"/?) +sin ™" (a,/ (65 + aift?)1?)}/m,

with
i = sin(fih)/h.

Asymptotic Formula for y(x). For the Liouville normal form (1)-(2),
1. 1
y = cos (ux + &)+ n sin (ux +¢) g, (x)+ o {cos (ux + ¢)q{x)

—cos (ux — $) q(0) — 3 cos (ux + $)gi (x)} + O(k™3)

with g(x), g,(x), 4 and ¢ defined above.
Asymptotic Formula for §;. For the discrete problem (9)

(18) §; = cos (jix;+ @)+ sin (fix; + )q, (x,)

sin fih
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2
+% (sinhﬁh) {cos (jih)[q(x;) cos (jfix;+ &) — q(0) cos (jix;— §)]

—%cos (fix;+§)gi(x;)} + Ok ™3),

with g(x), ¢,(x), i and ¢ defined above.
Asymptotic Formula for 2. For the discrete problem (9), A = A" +0(k™3)
with

19) T =g ) (— @@ -0+ S (g + g0
B—q'0 P\ cosin |- q0yd
4sm {q(n) 70} +3 sngn) CF .9 (x)dx },
where a = 20,0, (sin fh/h){a +a? (sin Fh/h)*},
B = 2B B, (sin h/h/{B3+ B2 (sin fih/h)?*},
% = {uf sin? (fih)/h? — o3 /{e3 +af sin® (fih)/h?},
and B = {B3 sin? (fih)/h* — B3}/{ B3 + B3 sin? (jih)/h?},

with g(x), g,(x), ji and ¢ defined above.
Asymptotic Formula for A,. For the continuous Liouville normal form (1}-(2),

the required value for 4, of (15) is obtained by taking the limit as & — 0 in the
formula (19) for "

1/1 R 1 2 N
(20) Te=n+ ;(ﬂ {g(m)B+q(0)3} + v {q(m)B—q'(0)a}

1
+ x)dx
a2 0q() )

where &= Za,az;tk/{az +<¥1!f~k}
B = Zﬁlﬁzﬂk/{ﬁg 1,“k}
& = {o3p?—ad}/{o3 +aip?},

and B = (B — B3B3+ Boui},
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with g(x) and g, defined above.

ProoF oF (13). Because the asymptotic formulas above are O(k ~*) estimates,
which do not depend on h, it is necessary to go to the explicit relationship
between the continuous problem (1) and (2) and the discrete problem (9), which
does depend on h, before the required O(h?) estimate of (13) can be derived. It is
this aspect which makes the proof of (13) technically awkward.

From (1) and (9), it follows that

(21 —-Yi+q;y; =Xy,  J=0,1,2,...n, and
(22) .—62i1/h2+q‘]y1 = A}c")j;j’ .] = Os 19 22' -l

where 6° denotes the central difference operator 82§, = 7, ; —2;+ J;_,.

Together, (21) and (22) yield
(23) =AMk Y §iy;=h Y {y0*5/h*—3,y;},
ji=0 ji=o

where the following summation convention has been used

n—1

Z, 61=%00+ Z 61+%0n.
j=0 j=1

On using the asymptotic expansion
§; =48, & =cos(ix;+P), & =0k"),
which follows from (18), identity (23) becomes

(24) (lk"/lfc"))h Z, ijJ’j =h Z( {525j/h2+ﬂf5j}y1'
j=o j=o

n n
—h ¥ iyt yiteth T 0%y ke =gy}
i=0 i=0
Through the repeated use of the asymptotic formulas above as well as
estimates derived from the trapezoidal integration rule (cf. [1] for a more

detailed ‘discussion) individual estimates are derived for the three terms on the
right hand side of (24). Together they yield

25) (z’k—}'g:”))h Z’ ijyj = (yk—ygc”))h Z’ Ey)’j“‘(')’k“?k)h Z’o &y,
ji=0 j=0 j=

+1(y)+ R, (»)+ Ry (y)+O(W?),
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with 9, = 4sin® (h/2)/h*, I(y) = (i —7,) '[ cos (fi,x + §)y(x)dx,
(4]
R, (y) = —{y'(m)cos (fm + &)+ y(m)fi, sin (Fm + P)}

éﬂ —én— —- n - n
+ y(n)(—“Zh—’»> _: (y—éh.y_> and

& —&.1) = yi—y_1) _

R,(y) = ¥'(0) cos @+ y(0)fi, sin ¢ — y(0) 5 o

Further maniphlation of various properties of [, 7. 7% and the asymptotic
formulas, then yield the following estimates for the terms in (25):

(=7 Zo &yt (—Ph ZO &y; = =1k ZIO Fiy+0W?),
i= = i=

J
H(y)+ R () +R,(y) = O(h*).
Substitution of these two results into (25) yields
('J-k"{;‘"))h Z' )7,')’,' = (Yk"?;c"))h Z‘ fj)’j‘*’o(hz),
j=0 i=0

from which (13) follows.

3. Implementation of the correction procedures.
Formally, the two correction procedures (14) and (16) become

I = A"+ pk —4sin® (i h/2)/h?, k=0,1,..n n=12...
and I = Jw 4 T -T™ k=0,1...1, n=12,..

Before they can be implemented computationally, explicit estimates are required
for p, and fi, in the former, and for 7, and 2 in the latter.
If approximations for g, and ji, are derived using the iterative formulas

(26) WP = k=14f@YY), O = k-1, and
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27 AP = k—1+ f(sin (@~ Vh)/h), B = k-1, where
f2) = {sin™ ! (oy/ (03 +a72%) 712 ) +sin ™! (By/ (B3 + BizP) TP}/,
then the following simple but effective correction formula is obtained
(28) A = A0+ (uf)? ~ dsin® (I )/ 2)/2.

As a direct consequence of the way in which 1, was derived from 7 (as
explained in section 2), it follows that

To— AN =y =9+ O(h?).

But we already know that y, —y™ defines an O(h?) accurate correction which
shows immediately that 1, — 2 also yields an O(h?) accurate correction. If u,
and fi, are approximated respectively by u* and fi?, as defined by (26) and
(27), and these approximations are substituted in £, and A of (19) and (20) to
yield [7,]® and [Z"]®, respectively, then we obtain the following correction
formula based on (16)

(29) j}{n) = Z‘n)+[xk](2)~[2';‘n;]{2)’
for which it can be shown that f}:”-,{k = O(h?).

We verify numerically the theoretical results and estimates derived above by
considering the problem

—y'+exp(x)y =4y, y(0)—y(0) = y(n)+y(n) = 0.

Table 1  Comparison of corrected eigenvalues and asymptotic eigenvalues with

the exact
k }'k ;'k__M(SO) é{ksm a‘soy a‘so)
0 3.3346e +00 1.161e —04 1.16e — 04 1.16e —04 3.33¢+ 00
5 3.4065¢+01 207501 1.70e - 03 —2.04e—03 2.59e—-01
10 1.0846¢ + 02 3.251e+00 3.25¢—-03 —642¢—-04 147e-02
15 2.3338¢+02 1.618¢+01 4.84e—-03 —277e-04 2.80e—-03
19 3.6936e +02 4.090e +01 6.67¢ —03 —1.82¢e—-04 1.07e— Q3

The effectiveness of the correction formulas (28) and (29) are compared in Table
1 which lists in successive columns A, (estimated using extrapolation applied to
finite difference estimates obtained on grids of 200, 400, 800 and 1600 points);
A, —A39 (the error associated with using the standard algebraic eigenvalues);
30 = 3, Q50 F50 — ) _J6O0: and 59 = 4, ~71, (a comparison of the
asymptotic eigenvalues with the exact).
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It is clear that

(i) The simple correction procedure based on I{°® works well. For example, it
estimates the error in 4,9 = A$Y ~ 40.90 correctly to two decimal places (4
significant places). .

(ii) The more complex correction procedure based on A(*® yields a highly
accurate estimate {correct to at least the third decimal place) for A, for k = 9,
and thereby establishes the utility of the correction procedure for Sturm-
Liouville eigenvalue problems with general boundary conditions.

(iii) Even for the relatively small k (e.g. k =~ 15) the asymptotic estimate
7, yields a reliable estimate of 4,. .

" The O(h?) convergence of both the estimates A" and 1% is illustrated in Table
2.

Table 2 Verification of O(h*) Convergence for 7°® and Fiso
k k

k é}(so) é}‘wm éizooy k é;‘soy g‘wm ggzoo;

0 L16e—04  291e—05  7.27e—06 0  1.16e—04  291e—05 7.27e—06

5 1.70e—03  373¢—04  9.00e—05 5 —204e—03 ~517¢—04 —130c—~04

10 325¢—03  634e—04  1.48¢—04 10 —642%—04 —16le—04 —4.03e—05

15 484e—03  769%—04  1.69¢—04 15 —277e—04 —68le—05 —1.70e~05

19 667e—03  8.66e—04  178e—04 19 —182%-04 —4.18e—05 —1.05—05
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