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Abstract. 
When finite difference and finite element methods are used to approximate continuous 

(differential) eigenvalue problems, the resulting algebraic eigenvatues only yield accurate estimates 
for the fundamental and first few harmonics. One way around this difficulty would be to estimate 
the error between the differential and algebraic eigenvalues by some independent procedure and 
then use it to correct the algebraic eigenvalues. Such an estimate has been derived by Paine, de 
Hoog and Anderssen for the Liouville normal form with Dirichlet boundary conditions. In this 
paper, we extend their result to the Liouville normal form with general boundary conditions. 

1. Introduction. 

Because it is representative of a wide class of continuous eigenvalue problems, 
we work in this paper with the canonical Liouville normal form 

(1) - - y " + q y  = 2y, q = q(x) ,  y = y(x) ,  0 <<, x <~ 7t, 

(2) cqy'(0)-ct2y(0) = 0, ~ly'(rr)+~2y(n) = O. 

In fact, from both a theoretical and a numerical point of view, the analysis of an 
eigenvalt~e problem as its LiouviUe normal form has considerable advantages 
(cf. [8]). However, the transformation to Liouville normal form must often be 
performed numerically and introduces its own computational difficulties (cf. [5]). 
This aspect will not be pursued here. 

When discrete (finite difference and finite element) eigenvalue problems are 
used to approximate continuous (differential) eigenvalue problems, it is not only 
necessary to prove that the numerical method used to solve the discrete 
problem is efficient and accurate, but also necessary to establish that the exact 
eigenvalues of the discrete problem itself yield accurate estimates of the 
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corresponding eigenvalues of the continuous problem. In fact, because accurate 
and reliable methods can be constructed for the solution of the discrete 
(algebraic) eigenvalue problems (cf. [10], Chapter 2), the accuracy of the 
approximate eigenvalues obtained is limited by the accuracy with which the 
exact eigenvalues of the discrete problem approximate the corresponding 
eigenvalues of the continuous problem. 

For example, consider the use of finite difference methods for the simplest of 
all Sturm-Liouville problems 

(3) - w "  = rtw, w(O)  = w(r t )  = O. 

Its exact eigenvalues and eigenfunctions are given respectively by 

(4)  ?/k = k2, W k = sin (kx), k = 1, 2,.... 

If, at the internal grid points of the uniform grid 

G =  { x i ; x i = i h ,  i = 0 ,  1,2  ... . .  n + l , h = n / ( n + l ) } ,  

the second derivative in (3) is approximated using central differences, the 
following algebraic eigenvalue problem is obtained 

with 

1 
A = ~  

" - 2  1 
1 - 2  1 

1 - 2  1 
1 - 2 .  

and # = [~'1,~'2 ..... ~ , ] r ,  ~ i -  w~ = w(x0, i = 1,2,.:.,n. For notational 
convenience, the explicit dependence of the algebraic eigenvectors on n will be 
suppressed. This problem can be solved without error since the eigenvalues ~/~k "~ 
and the corresponding eigenfunctions ~'k are known to be 

qtk") = 4 sin 2 (kh/2)/h 2 

and 

Wk = [sin kh, sin 2kh .. . . .  sin nkh] r. 
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Thus the error 

(5) etk ") = ~/k -- t/~k ") = O (k4/(n + 1)2) = O(k4h 2) 

is due solely to the use of finite difference methods in the approximation of (3), 
Its O(k4h 2) behaviour clearly establishes that the accuracy of the 
approximations q~k ") deteriorates rapidly as k increases. 

This dependence on k, which will always be made explicit in the present 
paper, verifies that the accuracy of the approximate eigenvalues is controlled 
strongly by the form chosen for the discrete problem and that, when finite 
difference and finite element methods are used, the resulting algebraic 
eigenvalues will only yield accurate estimates for the fundamental and first few 
harmonics. 

This does not negate the use of finite difference methods when 
approximations to the-first m eigenvalues of a differential eigenvalue problem 
are required with m >> 1. But, it does imply that some redundancy must be 
built into the algebraic eigenvatue problem used to construct the 
approximations before accurate estimates will be generated. A common 
technique, used by engineers, geophysicists and others, is to construct the 
discrete problem for n = lm, with />> 1, but only calculate its first m 
eigenvalues (cf. [10], §§2-2, 15-12). 

From a computational and numerical analysis point of view, such a 
procedure represents an obtuse way to calculate differential eigenvalues. An 
alternative approach is to work directly with the given differential eigenvalue 
problem to obtain estimates which have errors that can be bounded 
independently of k. There are a number of ways in which this can be done. In 
the classical approach, the Sturm-Liouville problem (or Liouville normal form) 
is replaced by a first order differential equation which is solved using shooting 
methods. Included in this class are the Priifer phase methods (cf. [5], and [6] 
for a summary). In a more recent approach, pursued with considerable success 
by a number of authors including Pruess [11], [12] and Paine and de Hoog 
[8], a simpler problem is constructed by replacing the coefficients in the Sturm- 
Liouville problem (or Liouville normal form) by piecewise constants. In fact, 
Paine and de Hoog [8] have deafly established the numerical advantages of the 
Liouville normal form by showing that, when this approach is applied to (1) 
and (2), O(h 2) accurate appoximations to the eigenvalues are generated. 
Summaries of the various methods which have been used, along with error 
estimates for the corresponding appoximate eigenvalues, is given in [6] and [2]. 
The latter paper discusses the use of comparison theorems to construct 
computable error bounds. Subsequently, Paine and Andrew [7] have derived 
O(h 2) methods of this type. 

Another way around the difficulty would be to estimate the error between the 
differential and algebraic eigenvalues by some independent procedure and then 
use it to correct the algebraic eigenvalues. 
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In 1981, Paine, de Hoog and Anderssen derived such an estimate for the 
Liouville normal form with Dirichlet boundary cond/tions 

(6) - v "  + q v  = Or, q = q(x) ,  v = v(x) ,  0 < x < re, 

(7) v(0) = v(~) = O. 

They showed that 

(8) Ok--O~ ") = e~'° +O(kh2) ,  1 < k <~ om, ~ < 1, 

where the 0~ ") correspond to the central difference eigenvalues of (6) and (7) on 
the uniform grid G and therefore satisfy 

( - A + Q ) ~  = Ot")~, ~ = [~7,, ~ 2 ..... ~7.] r, 

where Q = diag (qt, q2 ..... q,), and ~ -~ v i = v(xl) ,  qi = q(xi) ,  i = 1, 2 . . . . .  n. 

This leads naturally to the correction formula 

0~ " )=0~  ")+e~ "), k =  1,2 ..... n , n =  1,2 ..... 

The derivation of (8) is greatly simplified because the boundary conditions are 
Dirichlet and the exact value of e~ "~ of (5) is known. In this paper we show that 
similar results to (8) hold for the Liouville normal form (1) and (2). The central 
difference eigenvalues Ark "), k = 0,1,2 ..... n, of (1) and (2) satisfy, on the 
augmented grid 

G* = { ' x j ; x j  = j h ,  j = - 1 , 0 ,  1 ..... n , n +  l ,  h = It~n}, 

the following algebraic system 

(9) ( - L +  O)y = ).t")j~, 

with - 2  p 

1 - 2  

L = h - 2  

1 - 2  1 
q - 2  

p = 2~t/(c q +hc~2) 
q = 2/q/Ca1 +h/~2) 

and Yi "" Y~ = y(xj), j = 0, 1 ..... n, when the boundary conditions (2) are 
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approximated by the following finite difference formulas 
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~1(Yl -Y- I~2h-~2Yo = 0 ,  

and fl~ (~,+ , - ~._ ~ )/2h + flz~, = O. 
For  the Liouville normal form (1) and (2), the counterpart  of (3) takes the 

form 

(10) --u" = 7u, u = u(x), 

(11) ~ l U ' ( O ) - ~ u ( O )  = O, # ~ u ' ( ~ ) - # z u ( n )  = O. 

The central difference eigenvalues of (10) and (11) corresponding to the 2 t") of 
(9) are therefore defined by 

(12) - L i i  = yt")li, ai = [ u 0 ,  u l  . . . .  ,t~.] T, 

with t~ i - ui = u(xl), i = 0, 1 ..... n. 
The main result of this paper can now be stated. 

THEOREM. Under the assumption that q"(x)  is continuous on [0, 7t], it follows 

that there exists an ~ < 1 which is independent of  n such that 

(13) 

with 

2k--2~k "~ = etk"~ + O(h2), 1 < k <~ ~tn, 

E[ "~ = rk-- r~"). 

It will be proved in Section 2. It leads naturally to the correction procedure 

(14) ~k ") = 2~k "~ + etk ~), k = 0, 1, 2 . . . .  ,n. 

"~") asymptotic In establishing the relationship between ~k--2(k n) and ~ k - - f k ,  
expansions are derived for various quantities including '~k and 2tk "). In fact, we 
find that, when ~q = fll = 0, 

2k = k2+O(1) 

and 2tk ") = 4 sin 2 (kh/2)/h 2 + O(1). 
But, the first term in the difference between these two asymptotic expansions is 
just the correction e~k ") of (5) derived and used by Paine, de Hoog and Anderssen 
[9]. This suggests that the difference 

between the leading terms in the asymptotic expansions for the continuous and 
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discrete problems 

(15) 
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2k = ~k + O(k -"), 

and 2(k "~ = 73k ") + O(k- m), 

respectively, can also be used to correct the algebraic eigenvalue 
approximations; namely, 

(16) ff.~n) = ~n)q_gNkn) ' k m O, 1 , 2  . . . .  , n ,  n = 1 , 2  . . . . .  

The case m = 3 is discussed in section 2. Implementation of the correction 
procedures and numerical verification of the results are examined in section 3. 

2. The estimate 2 ~ - - ~  "~ = 8~'~+ O(hZ)- 

The essence of the proof is straight-forward once appropriate asymptotic 
formulas are available, though the details are technically awkward (cf. 
Anderssen and de Hoog [1]). Those used in the present examination were 
derived in [1] and [3]. 

Throughout the remainder of this paper, we shall make the assumption that 

f~ q(x)dx = O. 

This simplifies the proof at crucial stages without affecting their generality, since 
(cf. [4]) the only contribution that a non-zero value of this integral makes to 
the 2 k is a translation. 

For notational convenience, the dependence of 2 k, 2~ "~, Yk, Y~"), 7"k, 7"~ "~, etc. on k 
will often be suppressed in the sequel when there is no ambiguity of meaning. 

Because there is a sign redundancy in the boundary conditions (2), we shall 
assume that 

~1> /0  land t f l l />0 .  

In addition, we introduce the notation 

(17) ql(x) = I xq(z) dz. 
do 

Logically, the derivation of the results above involves two basically distinct 
steps: 
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1. Formal  estimates of  the error  2 - 2  t") in terms of  ~'-7~"~, and in terms of 

2. Construct ion of explicit estimates for ~'-~'~") and for y-yt"~ which can be 
used to apply the correct ions (14) and (16). 

Technically, the explicit estimates of  the second step are needed to prove the 
estimates of the first. 

The  construct ion of such explicit formulas depends crucially on the use of 
appropr ia te  asymptot ic  formulas for the eigenvalues 2, )ot"~, y and y<"~ of  (1)-(2), 
(9), (10)-(1 1) and (12L respectively, the eigenfunction y(x) and the eigenvector 

= (370,371 ..... 37,)r. It is these formulas which are derived in [3]. In general, they 
are only valid for 1 < k ~< ctn, with a < 1 and independent  of n. 

Asymptotic Formula for Yk. For  the Liouville normal form (10)-(1 1), 

= ~ ,  u(x) = cos (~x + 40, 

where ~b = O(k-~), l~ = O(k) and/~  satisfies the following fixed point  formula 

/~ = k - 1 + {sin- 1 (/~2/(/~ + / ~ 2 ) , ~ ) +  s in-  1 t~ /qt2 + ~2 ,,2~1/2-~/7t 
~. 2/I ,  2 1/"~ ! J /  " 

Asymptotic Formula for ~k "~. For  the discrete problem (12), 

yr,) = 4 sin 2 (~h/2)/h 2, t~j = cos (/2x j +  q~), j = 0, 1 ..... n, 

where qS = O(k-1), ~ = O(k-1) and/~ satisfies the following fixed point  formula 

f i = k - 1 + { s i n - '  (Bd(#] + B,~P~)'~)+ s i n -  ' (a2/(ot2.+ ot2/ i2)u2)}/rr ,  

with 
/i = sin (f~h)/h. 

Asymptotic Formula for y(x). For  the Liouville normal  form (1)-(2), 

1 
y = cos (px + ¢)  + ~ -  sin (~x + ~b) ql (x) + 

z #  
{cos ~ x  + ¢)q(x) 

-- cos (px -- ~b) q (0) - ½ cos (px + ~b )q 12 (x)} + 0 (k - 3) 

with q(x), ql(x), # and ~ defined above. 

Asymptotic Formula for 37j. For  the discrete problem (9) 

_ h 
(18) 37j = cos ~ x ~ +  ~ ) +  ~ sin (fix~+~)q1(.vj) 
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+¼ {cos (fih)[q(xj) cos (fix j +  ~)-- q(O) cos (/Sxj-- ~)] 

-½ cos (fixj + q~)q 12 (x j)} + O(k- 3), 

with q(x), ql(x), ~ and q5 defined above. 
Asymptotic Formula for )~n). For  the discrete problem (9), ~") = 7,~n)+ O(k-3) 

with 

1 (h  2 h cot/~h 
(19) ~'(k n) = ytk")+ ~ ]~ (q'(n)--q'(O))+ ~ {q(n)fl+q(O)a} 

x 

; ) + 4 sin 2 ~ {q'(x)fl- q'(O)~} + ¼ cos fih q2(x) dx , 

where a = 20qa 2 (sin fih/h){a~ + ~ (sin fih/h)2}, 

fl = 2fllf12 (sin fih/h/{fl~ + fl~ (sin fih/h)2}, 

= {~z sin 2 (fih)/h 2 - a2/{a~ + ~ sin 2 (fth)/h2}, 

and ~ = {f12 sin 2 (f~h)/h 2 - f12}/{f122 + fl~ sin 2 (f~h)/h2}, 

with q(x), q~(x), fi and q~ defined above. 

Asymptotic Formula for ;t k. For the continuous Liouville normal form (1)-(2), 
the required value for 2k of (15) is obtained by taking the limit as h ~ 0 in the 
formula (19) for ~[~") 

(20) ~'k --'~" 7k + 1--(.,l {q(n)fl+q(O)(t}+ ~---~k {q'(n)~-q'(O) ~} 
n \z/~k 

l f :  ) + ~ q2(x)dx , 
41~k 

where ~ = 2ala2/~k/{Ct2 +a~#2}, 

]~ 2 2 2 = 2#d~:~d(#~ +/~,~) ,  

2 2 2 2 2 2 = { ~  - ~} /{~  + ~ }, 

and /~ 2 2 = {/~F,~ -/~}/{/l~ + / ~ } ,  
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with q(x) and #k defined above. 
PROOF OF (13). Because the asymptotic formulas above are O(k -3) estimates, 

which do not depend on h, it is necessary to go to the explicit relationship 
between the continuous problem (1) and (2) and the discrete problem (9), which 
does depend on h, before the required O(h 2) estimate of (13) can be derived. It is 
this aspect which makes the proof of (13) technically awkward. 

From (1) and (9), it follows that 

(21) -y~ qjyj 2kYj, j = O ,  1, 2,..,n, and 

(22) -c52~j/h2+qjyj = 2tk")jTj, j = 0, 1,2~ .... n, 

where 62 denotes the central difference operator 62~j = jTj + 1 - 2~7j + ~j_ ~. 

Together, (21) and (22) yield 

n n 

(23) (~'k -'~'(kn))h E' YJYj = h ~'  {yj~2yj/h2-yjyT} , 
j = O  j = 0  

where the following summation convention has been used 

n n - 1  

2'  0j = ½0o + E 0r+½0.. 
j = O  j = l  

On using the asymptotic expansion 

~j = ~j+g~, ~j = COS(~kXj+~), gj = O(k- ' ) ,  

which follows from (18), identity (23) becomes 

n n 

(24) (,~k--2(kn))h ~ '  ~jyj = h ~ '  {(~2~j/h2+l, t2cj}y j 
j = o  j = o  

- h  E '  2 " "  E '  - " {l.tkyj+ y j}c j+h {c52gjyi/h2-ejYj}. 
j =O  j =O  

Through the repeated use of the asymptotic formulas above as well as 
estimates derived from the trapezoidal integration rule (cf. [1] for a more 
detailed discussion) individual estimates are derived for the three terms on the 
right hand side of (24). Together they yield 

tl n n 

(25)  (2k--k~")) h E' YJYj = (Tk--7 (n))h E'  cyyjq"('~k--~k) h E'  8jyj- 
j =O  j = O  j = O  

+ I(y) + R 1 (Y) + R2 (y) + O(h 2), 
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~k = 4 sin 2 (l~kh/2)/h z, l(y) = (~2 _ 7k) f f  cos (~k x + with dx, 

R I (y) = - {Y(r0 cos ([tkrC + C~) + y(rc)~ k sin (/~krt + q~)} 

+Y(n)(~--"+'~he-"-')--g{Y"+'--Y")'"\ 2[z and 

RE(y) = y'(O)cos~+ y(O)~ksin~--y(O) (g~-g- ' )  (Yl--Y-1) 
2h go 2h 

Fur ther  manipula t ion of various properties of /~k, Yk, 7k, and the asymptotic 
formulas, then yield the following estimates for the terms in (25): 

tl n n 

(°&-y•"))h ~ '  ey~+(yk--~k)h E'  = Z'  ej}'j ()'a-- 7~")) h Yi)'~ + O(h2), . 
j = o  j = o  j = o  

l (y )+Ra(y)+Rz(y  ) = O(hZ). 

Substi tut ion of  these two results into (25) yields 

n n 

j = o  j = o  

from which (13) follows. 

3. Implementation of the correction procedures. 

Formally,  the two correct ion procedures (14) and (16) become 

~k ") = -~k~(").-a- e'k'Z _ ~a sin 2 (ftkh/2)/h 2, k = 0, 1 . . . .  . n, n = 1, 2 ..... 

and ,~") = 2 r  ) +'~k-- ~"), k = O, 1 .. . . .  n, n = 1, 2 ..... 

Before they can be implemented computat ional ly ,  explicit estimates are required 
for Pk and /~k in the former, and for ~k and ~") in the latter. 

If approximat ions  for #k and /~k are derived using the iterative formulas 

(26) /~J) = k - 1 + f ~ J -  1)), /~o) = k -  1, and 
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/~J) = k - 1 + f ( s i n  (ffk J -  ')h)/h), /~o) = k - i ,  w h e r e  

f(z) = {sin- '  (ct2/(a 2 + ct2z 2)- ,t2) + s in - '  (fl2/(fl 2 + f12z2)- 1/2)}/n, 

then the following simple but effective correction formula is obtained 

(28) Zqk ~) = 2(k ") + (#(k*)) 2 -- 4sin 2 ((/~(k I ))h/2)/h 2. 

As a direct consequence of the way in which )T k was derived from ~k ") (as 
explained in section 2), it follows that 

~'k -- 2~ ") = 7k -- 7tk "~ + O(h2) - 

But we already know that 7k--y(k "~ defines a n  O(h 2) accurate correction which 
shows immediately that ~'k--~ "~ also yields an O(h 2) accurate correction. If #k 
and /~k are approximated respectively by #(k 2~ and /~k ~, as defined by (26) and 
(27), and these approximations are substituted in )T k and ~(k ~) of (19) and (20) to 
yield [~'k] ~2~ and [~k")] ~2~, respectively, then we obtain the following correction 
formula based on (t6) 

(29) = + [ L ] ,  =, _ 

for which it can be shown that ~")-2~ = O ( h 2 ) .  

We verify numerically the theoretical results and estimates derived above by 
considering the problem 

- y"+exp(x )y  = 2y, y'(0)-y(O) = y'(r0+y(~z) = 0. 

Table 1 Comparison of corrected eiyenvalues and asymptotic eiyenvalues with 
the exact 

0 3.3346e + 00 1 . 1 6 1 e - 0 4  1.16e - 0 4  1 . 1 6 e - 0 4  3 . 3 3 e + 0 0  

5 3 A 0 6 5 e  + 01 2.075e - O1 1.70e - 03 - 2.04e - 03 2.59e - 01 

10 1.0846e + 02 3 2 5 1  e + 00 3.25e - 03 - 6.42e - 04  1.47e - 02 

15 2 .3338e + 02 1.618e + O1 4.84e - 03 - 2.77e - 04  2.80e - 03 

19 3.6936e + 02 4.090e + 01 6.67e - 03 - 1.82e - 04  1.07e - 03 

The effectiveness of the correction formulas (28) and (29) are compared in Table 
1 which lists in successive columns 2 k (estimated using extrapolation applied to 
finite difference estimates obtained on grids of 200, 400, 800 and t600 points); 
2k--2~k 5°) (the error associated with us!ng the standard algebraic eigenvalues); 
~kSO) = ~k__~kSO); ~SO) = Zk~ --~'!50}'.k , and ~so) = 2k-~ k (a comparison of the 

asymptotic eigenvalues with the exact). 
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It  is c lear  that  

(i) The ' s imp le  cor rec t ion  p rocedure  based on  ~5o~ works  well. F o r  example ,  it  

es t imates  the  e r ro r  in 219 = ).~59°~ ~ 40.90 correct ly  to  two dec imal  p laces  (4 

significant places). 

(ii) The  more  complex  cor rec t ion  procedure  based  on  ~50~ yields a h ighly  

accura te  es t imate  (correct  to at  least  the  th i rd  decimal  place)  for 2k for k / >  9, 

and  the reby  es tabl ishes  the ut i l i ty  of  the cor rec t ion  p rocedu re  for S t u r m -  

Liouvi l le  e igenvalue p rob l ems  with general  b o u n d a r y  condi t ions .  

(iii) Even for the re la t ively small  k (e.g. k = 15) the  a sympto t i c  es t imate  

~(k yields a rel iable es t imate  of  2 k. 

T h e  O(h 2) convergence of  bo th  the es t imates  ~"~ and  ~"~ is i l lus t ra ted in Tab le  

2. 

Tab le  2 Verification o f  O(h 2) Converyence for  ,T[ s°~ and ~5o~ 

k ~50) ~,oo, ~zoo) k ~5o, ~,oo, ~zoo, 

0 1.16e-04 2.91e-05 7.27e-06 0 1.16e-04 
5 1.70e-03 3.73e-04 9.00e-05 5 - 2.04e- 03 

10 3.25e-03 6.34e- 04 1.48e- 04 10 - 6.42e-04 
15 4.84e-03 7.69e- 04 1.69e-04 15 - 2.77e-04 
19 6.67e-03 8.66e-04 1.78e-04 19 - 1.82e-04 

2.91e-05 7.27e-06 
- 5.17e-04 - 1.30e-04 
- 1.6 le - 04 - 4.03e - 05 
-6.81e-05 - 1.70e- 05 
-4.18e-05 - 1.05e-05 
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