
BIT 23 (1983), 308-320

O N I N C R E M E N T A L E V A L U A T I O N O F

O R D E R E D A T T R I B U T E D G R A M M A R S

DASHING YEH

The Division of Computer Science, The Norwegian Institute of Technology, N-7034 Trondheim,
Norway

Abstract.
A method is presented to augment a conventional evaluator for an ordered attributed grammar

into an incremental one, though it is applicable to tree-walker evatuators for any non-circular
attributed grammars. Also three improvements are suggested. The resulting incremental evaluator is
statically deterministic and evalffates a modified semantic tree in time proportional to the amount
of attribute instances affected by the modification.

Keywords and Phrases: attribute evaluators, attributed grammars, incremental attribute
evaluation, ordered attributed grammars.

1. Introduction.

Recently, the problem of incremental attribute evaluation was raised and
studied (see [3, 4, and 6]). There have been a few incremental attribute evaluators
running or coming, which have in common that the evaluation order is
determined at run time.

In this paper, we first present a method of augmenting a conventional
evaluator for an ordered attributed grammar (OAG, for short) into an
incremental one, then suggest three ways to improve it. The resulting
incremental attribute evaluator is statically deterministic, viz. the evaluation
order is determined at construction time, and evaluates a modified semantic tree
in time proportional to the amount of attribute instances affected by the
modification.

Although the method is described here only for OAG evaluators, it can be
readily extended to tree-walker evaluators constructed by the algorithm given in
[2] for any non-circular,attributed grammars (AGs, for short).

The rest of the paper is organized as follows: Section 2 contains an
introduction to OAGs and their evaluators; section 3 formulates the problem of
incremental attribute evaluation in its general form; section 4 presents our
incremental evaluator generated by augmenting a conventional OAG evaluator;
section 5 proves the validity of the incremental evaluator; in section 6, three /

Received November 4, 1982. Revised February 24, 1983.

ON INCREMENTAL EVALUATION OF OAGS 309

ways are suggested to improve the evaluator; and finally, some remarks are
given in section 7. At the end of the paper, there is an appendix.

2. Preliminaries.

The terms and notations not defined here can be found in [1, 5]. Below is a
brief introduction to OAGs and their evaluators; see [5] and others for a
complete description.

An AG is a context-free grammar extended by attaching to each symbol of
the grammar a finite set of attributes. Associated with each production of the
grammar is a finite set of semantic functions defining values of the attributes
occurring in the production. There are two kinds of attributes, viz. inherited
and synthesized. The start and terminal symbols are assumed to have only
synthesized attributes.

Within a production p, for each occurrence of a symbol and each attribute of
the symbol, there is correspondingly an attribute occurrence. For instance, let X
be a symbol occurring in p, and a an attribute of X, then we use X.a to denote
the attribute occurrence. If X occurs more than once in p, then we use Xl.a to
refer to the attribute occurrence corresponding to the first occurrence of X, and
X2.a to that to the second, and so on. For each synthesized attribute occurrence
of the left-hand side symbol, there is exactly one semantic function defining its
value, and arguments, if any, are either inherited from the left-hand side

symbol, or synthesized from right-hand side symbols; likewise for each inherited
occurrence of a right-hand side symbol. If X.a is used in defining Y.b, then Y.b
is said to depend on X.a, denoted by X.a -~ Y.b.Y.b is also called a dependant
of X.a, while X.a is called a donator of Y.b. The set of all dependants of X.a in
p is denoted by DEPENDANTS(X.a,p).

Let G be an AG, and w a sentence in L(G). Suppose w has been parsed
yielding a parse tree T. A semantic tree of w is generated by attaching all
attributes to their associated symbols that label the nodes of T. Each attached
attribute is said to have an attribute instance on the semantic tree. For
simplicity, we will use the same notations to denote an attribute occurrence and
its corresponding attribute instance as well as a parse tree and its corresponding
semantic tree; there would be no confusion if we read notations in the contexts
in which they occur.

From T we can construct such a directed graph that the vertices are all
attribute instances on T and the edges are all pairs (X.a, Y.b) where X.a - , Y.b.
The graph is called the dependency graph of T. I f there is a circuit in the graph,
then T is said to be circular. I f for every sentence in L(G) there is a non-circular
semantic tree, then G is said to be non-circular or well-defined.

The term "attribute evaluation" refers to a process of assigning values to all
attribute instances on a semantic tree in accordance with their defining
functions. Algorithms accomplishing attribute evaluation are called attribute

310 DASHING YEH

evaluators, or simply evaluators. An attribute instance is ready for evaluation
when and only when its defining function is a constant or its donators all have
been evaluated. Therefore, for an evaluator to evaluate a semantic tree it is
essential to find a proper evaluation order.

Informally, an OAG is such an AG that for each symbol X of the grammar a
partial order among the attributes of X can be set up in such a way that the
attribute instances that are attached to a node labelled with X on a semantic
tree are always evaluated according to such an order, no matter where on the
tree, nor on which semantic tree the node is situated.

For each OAG G, a tree-walker evaluator can be mechanically constructed
by the algorithm given in [5]. Let us call it the OAG evaluator of G. With each
evaluation process the OAG evaluator starts at the root, then walks around on
the tree; finally, it returns to the root and terminates there. When it comes to a
node, which is also called visiting the node, it first evaluates all attribute
instances that occur in the production applied at the node and are ready for
evaluation, then leaves for the father or a son of the node. A node may be
visited several times and the number of visits may vary from node to node.
When the OAG evaluator eventually terminates at the root, the semantic tree is
completely evaluated and the evaluation process is finished.

Structurally an OAG evaluator is a table-driven algorithm, i.e., a driver runs
under control of a table. The driver is the same for all OAG evaluators, while
one table is constructed for each OAG in particular. In detail, let G be an
OAG, then for each production p of G, a so-called visit sequence VS(p) is
constructed. VS(p) consists of two kinds of items : X.a and v(k, i), where X.a is
an attribute occurrence appearing in p. Suppose p is applied at a node N on a
semantic tree, in which case p is also called the production indicator of N.
Then, X.a in VS(p) means evaluating the attri[aute instance X.a, while v(k, 0
paying the kth visit to the father or to the ith son of N, depending on whether
i = 0 o r i > 0 .

If there is a total of m items of the form v(k, 0) in VS(p), where
k = 1, 2 m, then VS(p) is further divided into m segments, each ended with
a v(k, 0). We will use VS(p, k) to denote the kth segment of VS(p). For all
productions of G, all segments are collected into one table. A function called
MAPDOWN is devised which maps the visit number k of a son visit v(k, t3 and
the production indicator p of the son to be visited into the index d of the first
table entry of VS(p, k), i.e.,

d = MAPDOWN(k, p).

The action of the OAG evaluator of G is directed by the table above. At any
moment in an evaluation process there is exactly one table entry which is called
the current entry, directing the OAG driver. The visit sequence to which the
current entry belongs is called the current one and associated with the

ON INCREMENTAL EVALUATION OF OAGS 31 1

production applied at the node being visited. If the current entry is an item of
the form X.a, then the driver calls the semantic function defining X.a, and the
next item in the current visit sequence will be current next; if the current entry
is of the form v(k, i), then the driver leaves for the father or the ith son,
depending on whether i = 0 or i > 0, and the current visit sequence will be
changed accordingly. When a node is revisited, its associated visit sequence
resumes control from the item next to where it was left during the last visit. In
order to keep such a control flow, two parameters must be saved. One is the
reference to the node being visited, and the other is the index of the entry that
will be current next. A stack is used to maintain such parameter pairs
throughout an evaluation process. Figure 1 is the main loop of the OAG driver,
written in a PASCAL-like language.

begin
push(root,
repeat

case
X . a :

v(k, t) :

v(k, O) :
e s a c

MAPDOWN(1, root.rod_indicator));

stack_top.table_entry of
call semantic function defining X.a;
increment(stack_top.table_entry);
/* i > 0",/
increment(stack_top.table_entry);
push(stack_top.node_ref, MAPDOWN(k,

stack_top.node_ref.prodindicator));
pop;

until s tackis_empty;
end

Figure 1. The OAG driver.

Finally, if an evaluation process is coordinated on the time axis, then for
each node A there is a unique moment, viz. that of first visiting A, denoted by
MOMENT(1,A) . The stack configuration at MOMENT(1, A) is computable
and the computation procedure will be described in the appendix.

3. Formulation of the problem.

Let G be an OAG. We assume that the underlying context-free grammar of G
has an incremental parser such as, e.g., one described in [7].

Now let w = xzy and w' = xz 'y be two sentences in L(G). Suppose w and w'
have been parsed yielding the parse trees T and T', respectively. As said in [7],
T and T' must have the structures shown in Figure 2, where x = XoX 1,
Y = YlYo, and the shaded parts are the same in both T and T', viz. T' can be

312 DASHING YEH

XO x 1 z 1l I It 0 XO x I z ' It I 110

Figure 2. Incremental parsing.

obtained from T by replacement of the subtree rooted at the node labelled with
a symbol A. Note that x 0, x 1, Yo, and Yl all may be the empty string, and
particularly, if both x o and Y0 are empty, then the node A becomes the root S
in both T and T'.

Attaching all attributes to their associated symbols on T and T' we obtain
the semantic trees of w and w'. For simplicity we still use T and T' to denote
these two semantic trees and refer to nodes by their labeling symbols. Besides,
the set of all attribute instances on T' is denoted by ATTR.

Suppose that (1) C is a node which appears on T as well as on T', and (2) the
production applied at C on T is the same as on T', if C is not a leaf. Then,
each attribute instance of C is said to be retained after the subtree replacement
above was made. By this definition we divide A T T R into two subsets, one
consisting of all those retained and the other of the rest. We denote them by
RETAIN and NEWBORN, respectively. Clearly, the attribute instances in
NEWBORN all belong to the subtree rooted at A and are brought into
existence exclusively due to this subtree replacement. Furthermore, in
evaluating T' only attribute instances in RETAIN may have the same values as
in evaluating T. Let us denote the subset of all such attribute instances in
RETAIN by EQUVAL, and the rest by NOTEQU. Needless to say, the subtree
replacement above is also the sole source that causes the attribute instances in
NOTEQU to have the different values in evaluating T and T'. Just for this
reason we call the union of N E W B O R N and N O TEQ U the set of attribute
instances affected by the subtree replacement, denoted by AFFECT. Summing
up, we have the following relations:

ATTR = RETAIN w NEWBORN,

RETAIN = EQUVAL u NOTEQU,

A F F E C T = N E W B O R N ~) NOTEQU, and

A T T R = EQUVAL w AFFECT.

Now suppose that T has been evaluated and consider evaluation of T'. Of
course, T' can be evaluated by running the OAG evaluator of G over T' from

ON INCREMENTAl, EVALUATION OF OAGS 313

beginning to end; however, to the same goal, an incremental approach appears
to be more time-efficient because there are two potential advantages available:
(1) T has been evaluated, and (2) the attribute instances in RETAIN can retain
their values obtained in evaluating T and therefore need not be re-evaluated. In
essence, for the sake of evaluation of T', it suffices to evaluate the attribute
instances in AFFECT only, and the size of AFFECT is usually by far smaller
than that of ATTR. However, owing to our ignorance of the membership in
NOTEQU, evaluating more than the attribute instances in AFFECT is
unavoidable. In fact, there is no way of knowing a priori the membership in
NOTEQU, though we can learn that in RETAIN from parsing. Thus we have
to resort to heuristic methods. Precisely, we will search for the members of
NOTEQU within RETAIN in a trial-and-error manner, which inevitably results
in evaluating someones in EQUVAL.

Considering the discussion above we formulate the problem of incremental
attribute evaluation as follows: Given two semantic trees T and T' such that (1)
T has been evaluated and (2) T' can be obtained from T by replacement of the
subtree rooted at a node A, without evaluating the whole set ATTR, how
should we accomplish evaluation of AFFECT while re-evaluating members in
EQUVAL as few times as possible.

4. Description of the algorithm.

The incremental evaluator generated by the algorithm
conventional OAG evaluator augmented by a marking procedure.

below is a

ALGORITHM. The incremental evaluator.
INPUT. Two semantic trees T and T' such as described in (1) and (2) at the

end of § 3.
OUTPUT. The evaluated T'.
METHOD. The conventional OAG driver is augmented as follows:

(i) Assign to each attribute instance in RETAIN its value obtained from
evaluation of T, and to each in NEWBORN a special value 0, meaning
undefined;

(ii) by using the procedure described in the appendix, compute the stack
configuration at MOMENT(l, A) in a conventional evaluation process of
T', then set the stack to the resulting configuration;

(iii) mark every attribute instance in NEWBORN;
(iv) re-code the first case of the case statement in Figure 1 as shown in Figure

3.

314 DASHING YEH

begin
. . . /* initialisation as described in (i), */

. . . /* (ii), and (iii) above. */
repeat

case stack_top.table_entry of
X.a : increment(stack_top.table_entry);

if X.a_is_marked then
begin

call the semantic function defining X.a;
if not resulbequal_old_value then

mark all members of DEPENDANTS(X.a,
stack_top.node_ref.prod_indicator);

end;
v(k,i) : / * i > O . * /

increment(stack_top.table_entry);
push(stack_top.node_ref, MAPDOWN(k,

stack_top.node_ref.proindicator));
v(k,0) : pop;

esac
until stack_is_empty;

end

Figure 3. The incremental OAG driver.

In implementing the algorithm above, the common parts of T and T' can be
combined into one structure, while keeping their different subtrees separated.
This reduces storage use as well as assignment operations a great deal.
Moreover, for an attribute instance, the information on its marking can be
stored within its corresponding table entry, and also the first case of the case
statement in Figure 3 is accordingly split into the two cases, one dealing with
marked attribute instances and the other with unmarked ones. Thus, mark-
checking can be saved.

5. Correctness of the algorithm.

LEMMA 1. Every attribute instance in NOTEQU must directly or indirectly
depend on some members of NEWBORN.

PROOF. Let X.a be an attribute instance in NOTEQU. The function defining
X.a must not be a constant. If there is a member of N O TEQ U among the
donators of X.a, then the claim is proved, otherwise there must be a donator of
X.a, say, Kb which is a member of NOTEQU. Apply the same reasoning with
Y.b, and so on. As G is non-circular, such a deductive process must end with an

ON INCREMENTAL EVALUATION OF OAGS 315

attribute instance, say, Z.c such that a donator of Z.c is a member of
NEWBORN, because otherwise Z.c would be in EQUVAL, which contradicts
our selection of Z.c. •

LEMMA 2. Let BEFORE(I, A) denote the set of all attribute instances evaluated
before MOMENTA(I , A) in a conventiona.l evaluation process of Tfl. Then,
BEFORE(I, A) ~ EQUVAL.

PROOF. By definition, BEFORE(l , A) must be contained in RETAIN, because
the attribute instances in N E W B O R N all belong to the subtree rooted at A.
Furthermore, recall that RETAIN = EQUVAL w NOTEQU, and by lemma 1
it must hold that BEFORE(l , A) c EQUVAL, because the attribute instances
in BEFORE(l , A) by no means depend on anyone in NEWBORN. •

Lemma 2 justifies the skip of evaluating the members of BEFORE(l , A)
which is carried out by step (ii) of the algorithm.

LEMMA 3. Let MARK denote the set of the marked attribute instances
throughout an incremental evaluation process of T'. Then, AFFECT c MARK.

PROOF. First, by step (iii), we have NEWBORN c MARK.
Second, as seen from the first case of the case statement in Figure 3, an

attribute instance will be marked if and only if it depends on a marked one
which is not a member of EQUVAL. By lemma 1, we can conclude that a
member of NOTEQU will be marked sooner or later, which completes the
proof because AFFECT = NEWBORN u NOTEQU. •

Lemma 3 implies that the attribute instances in A F F E C T will be all
evaluated when the incremental evaluation process terminates.

LEMMA 4. For each attribute instance in A TTR, the value assigned by the
incremental evaluator accords with its defining function.

PROOF. By induction on the evaluation order number of an attribute instance.
Basis. Suppose X.a is the first evaluated attribute instance. As an attribute

instance is ready for evaluation when and only when its defining function is a
constant or its donators all have been evaluated, X.a must depend on no others
in ATTR. Therefore, no matter if X.a is in RETAIN or in NEWBORN, the
value assigned by the incremental evaluator to X.a always accords with its
defining function.

Induction. Assume that the claim holds for all attribute instances with the
evaluation order numbers < n. Let X.a be the nth evaluated attribute instance.
There are two cases: X.a is either marked or unmarked. If X.a is unmarked,
then, by lemma 3, X.a must be in EQUVAL. Noticing that the incremental

evaluator never re-evaluates an unmarked attribute instance, we get the claim

316 DASHING YEH

proved for the unmarked X.a. Now, if X.a is marked, then X.a must have been
evaluated by the incremental evaluator, as indicated in the first case of the case
statement in Figure 3. There are also two subcases: viz. the defining function of
X.a is either a constant or not. In the former subcase, the claim to be shown
holds spontaneously; in the latter, by the induction hypothesis, the values
assigned to all donators of X.a accord with their defining functions, and
consequently the value assigned to X.a accords with its defining function too.
Thus, we complete the induction as well as the proof. •

Combining lemmas 2-4, we obtain the following:

THEOREM 1. The Otcremental evaluator 9enerated by the algorithm in §4
evaluates T" correctly.

The following theorem 2 is essential for later computing the time complexity
of the incremental evaluator.

THEOREM 2. The size of MARK is proportional to that of AFFECT.

PROOF. By step (iii), MARK is NEWBORN at the start of incremental
evaluation of T'. Afterwards, as seen from the first case of the case statement in
Figure 3, MARK is enlarged only when a member of NOTEQU is found and
each enlargement is always bound by the maximum member of dependants of a
symbol in G. Noticing that AFFECT = NEWBORN u NOTEQU, the theorem
follows immediately, ol

6. Improvements.

In this section, three important improvements are in turn suggested to
terminate an incremental evaluation process of T' sooner than by running the
incremental evaluator described above.

6.1 Termination conditions.
Generally, an incremental evaluation process of T' eventually terminates

when the incremental evaluator finally returns to the root of T'. However, a
close study indicates that it may terminate sooner than such a moment. In fact,
by the definition of AGs, each semantic function is associated with one
production and only applied to the attribute instances occurring in the
associated production. Consequently, the only way in which a replacement of
the subtree rooted at A may propagate its influence is to expand successively
upwards one subtree by another. Now suppose Ai is a node such that (a) A i is
an ancestor of A, (b) the incremental evaluator is going to execute the last item
of the visit sequence associated with A~, and (c) all attribute instances of Ai
have been found to be in EQUVAL. Then, by the definition of A~, we can see

ON INCREMENTAL EVALUATION OF OAGS 317

that the attribute instances that are evaluated thereafter must all be in
EQUVAL because (1) they must all fall outside the subtree rooted at Ai, and
(2) the replacement of the subtree rooted at A has no more effect outside the
subtree rooted at A~. Therefore, the incremental evaluator need not run any
longer. Moreover, as far as semantics is concerned, only through its synthesized
attribute instances does A~ interface with other parts of T' outside the subtree
rooted at A~, and therefore condition (c) above can be relaxed as (c') all
synthesized attribute instances of A~ have been found to be in EQUVAL. Thus,
the incremental evaluator can terminate when we are going to execute the last
item of the visit sequence associated with an A, satisfying the following two
conditions:
(1) A~ is A or an ancestor of A;
(2) all synthesized attribute instances of A~ have been found to be in
EQUVAL.

We call (1) and (2) above the termination conditions. They should be tested
with A and each ancestor of A. In order to detect such testing moments, a
special symbol $ is inserted as the second last item in each visit sequence, and
a new case dealing with $, as shown below, is accordingly added to the case
statement in Figure 3:

$: increment(stack_top.table_entry);
if termination_conditions__hold then goto fin;

where fin is a label placed just before the end of the outmost block.

6.2 Skip visit&g the father.
Suppose A~ is the first node satisfying the termination conditions and the visit

sequence associated with Ai is VS(p). The incremental evaluator will terminate
after executing $ in VS(p). However, among the attribute instances that are
evaluated before executing that $, there may be some members of EQUVAL.
VS(p) is generally of the following form:

VS(p) = ..., Ava $, v(m, O)

where Ai.a is the last synthesized attribute occurrence. Among the items
between Ai.a and $ there may be some visits to the father of A~ which may
further lead to visits to brothers or more ancient ancestors of Ai. Anyway, the
attribute instances attached to such nodes definitely fall outside the subtree
rooted at Ai and therefore must belong to EQUVAL. In other words, they need
not be re-evaluated. This means that the incremental evaluator can skip all
visits to the father of A~ between A~.a and $. In order to achieve such a skip
another special symbol £ is inserted immediately after the last synthesized
attribute occurrence' in each visit sequence. When the incremental evaluator

318 DASHING YEH

executes £ the termination conditions are tested. If they hold true, then a flag
skip_father is set up, meaning that from now on all visits to the father can be
skipped. Naturally, when the incremental evaluator comes to $, the
termination conditions need not be tested once again, because the result of
testing can be learnt by checking whether the flag skip_father has been set up
or not.

Digression. This improvement also brings in a new insight into construction
of visit sequences. Indeed, in order to skip visiting the father as described
above, it should always be favorable to have synthesized attribute occurrences
evaluated as early as possible. In other words, if in a visit sequence there is a
father visit v(k, O) and a synthesized attribute occurrence X.a such that v(k, O)
precedes X.a but does not contribute to evaluation of X.a, then v(k, 0) should
be swapped with X.a if possible.

6.3 Skip visitin9 brothers.
The termination condition (2) says that all synthesized attribute instances of

A i must be in EQUVAL. As a matter of fact it can be a bit more relaxed as
described below.

Suppose s is such a synthesized attribute that if s is associated with a right-
hand side symbol, then s is only used in defining synthesized attributes of the
left-hand side symbol. Let us call s of type UP. Now suppose N is an ancestor
of A such that the incremental evaluator has executed £ in the visit sequence
associated with N and found that the synthesized attributes violating condition
(2) are all of type UP. Then, by definition, it is easy to see that the attribute
instances belonging to the subtrees rooted at brothers of N must all be in
EQUVAL. Therefore, it is superfluous to visit such brothers of N hereafter. In
order to skip visiting them, a flag skip_brothers is introduced. If the node being
visited is an N as described above, then the flag skip_brothers is set up. After
resuming execution of the visit sequence associated with the father of N, all
visits to brothers of N are skipped if the flag skip_brothers has been set up.

This improvement could be better appreciated if one notices that a good
many attributes used in practice are of type UP.

7. Conclusion.

In this paper, we have presented a method of augmenting a conventional
OAG evaluator into an incremental one and suggested three ways to improve
the time requirement of the resulting incremental evaluator. Noticing the two
remarks made at the end of § 4 as well as the improvements, it is easy to see
that the time complexity of our incremental evaluator can be represented in
terms of the size of the set MARK. Hence, by theorem 2, we conclude that our
incremental evaluator accomplishes evaluation of a modified semantic tree in

ON INCREMENTAL EVALUATION OF OAGS 319

time proportional to the amount of attribute instances affected by the
modification.

Furthermore, as nothing more than the static determinacy of OAG
evaluators has been utilized in the augmentation, the method can be readily
extended to tree-walker evaluators constructed by the algorithm given in [2] for
any non-circular AGs.

It is fair to note that we have been primarily dedicated to introducing the
method, rather than a specific implementation. However, there should be no
difficulties in implementing all ideas given in this paper.

The inherent drawback of all incremental evaluators, including ours, is the
requirement of a large amount of storage for saving the evaluation result of an
original semantic tree. Indeed, in an evaluation process a good many attribute
instances are ephemeral and allocated only temporary storage by a conventional
evaluator. Considering such a fact, incremental evaluators appear to be rather
space-expensive. Nevertheless, the cost in space is paid off by the gain in time
when using an incremental evaluator in an interactive environment. Very
promisingly, along with the increasing interactivity in programming and the
decreasing cost of memory, incremental evaluators will more and more go into
use in fields such as code generation, data flow analysis, separate com-
pilation, etc.

Appendix.

Below we describe for a given node A how to compute the stack
configuration at MOMENT(l, A) in an evaluation process of T'.

Let pl be the production applied at A, VS(pl) the visit sequence associated
with pl, and A the ith son of A~. From the mechanism of the OAG driver it is
easy to see that the topmost stack element must be (A~, dl + 1), where d~ is the
index of the table entry v(1, i) in VS(p~). Further suppose that v(1, i) occurs in
the kth segment of VS(pl), P2 is the production applied at A2, VS(P2) the visit
sequence associated with P2, and A~ the jth son of A 2. Again from the
mechanism of the OAG driver it is easy to see that the second topmost element
must be (A2, d2+l), where d2 is the index of the entry v (j , k) in VS(p2).
Continuing this reconstruction until the root of T' is reached, we can recover
all elements in reverse order compared with how they were pushed down into
the stack, so long as we have a means of computing d:, d2

Two auxiliary functions are devised for computing dl, d2 One is called
TRACEUP and maps the visit number k, the son number i, and the production
indicator p into the index d of the entry v(k, i) in the visit sequence VS(p)
associated with p. Thus, for instance, we have

d I = TRACEUP(1, i, p l), d2 = T R A C E U P (k , j , p2),

320 DASHING YEH

The other is called SEGMENTNO and maps the index d of an entry v and
the production indicator p into the segment number s such that v occurs in the
sth segment of the visit sequence associated with production p. Thus, for
instance, we have

k = SEGMENTNO(dl,pl).

For any node N, we can learn from parsing the son number of N as well as
the number of the production applied at N. Therefore, knowing TRACEUP
and SEGMENTNO is enough for computing dl, d2

Acknowledgement.

The author wishes to thank G. A. Green and D. H. Wanvik at RUNIT, the
Computing Centre of the University in Trondheim, for their helpful comments
on the paper. The scholarship provided by NORAD, the Norwegian Agency of
International Development, is gratefully appreciated,

R E F E R E N C E S

1. A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and Compiling. Vols. 1 & 2,
Prentice-Hall, (1972 & 1973).

2. R. Cohen and E. Hairy, Automatic generation of near-optimal linear-time evaluators for non-
circular attribute grammars. Conference record of the 6th ACM symposium on principles of
programming languages, (January 1979), 121-134.

3. A Demers, T. Reps and 1". Teitelbaum, Incremental evaluation for attribute grammars with
application to syntax-directed editors. Conference record of the 8th ACM symposium on
principles of programming languages, (January 198t), 105-116.

4. H. Ganzinger, R. Giegerich, U. Moencker and R. Wilhelm, A truly generative semantics-directed
compiler-generator. Proceedings of the SIGPLAN'82 symposium on compiler construction, (June
1982), 172-184.

5. U. Kastens, Ordered attributed grammars, Acta Informatica, Vol. 13 (1980), 229-256.
6. T. Reps, Optimal-time incremental semantic analysis for syntax-directed editors. Conference

record of the 9th annual ACM SIGACT_SIGPLAN symposium on principles of programming
languages, (January 1982), 169--176.

7. D. S. Yeh, On incremental shift-reduce parsing, BIT 23 (1983), 36-48.

