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GLOBAL ERROR BOUNDS FOR THE
CLENSHAW-CURTIS QUADRATURE FORMULA

H. V. SMITH
School of Mathematics and Computing, The Polytechnic, Leeds, Yorkshire, England

Abstract.

The object of this paper is to derive global error bounds for integrals approximated by the
Clenshaw-Curtis formula.

Introduction.

Clenshaw and Curtis [2] have described a method for evaluating integrals
of the form

jl fix)dx
-1

in which f(x) is approximated by a finite Chebyshev series.
If we use the notation of [2] and express f(x) by the infinite Chebyshev series

I ) =% AT

r=0

then the error E, in the Clenshaw-Curtis quadrature rule is given by (see [2] or [4])

N 16(R+1)N
@ Ex ’R;, (Nz--(2R+1)2)(2\:2—(2R+3)2)A‘"“““‘+2

where N is assumed even and terms beyond A4,,_, have been neglected.

Our intention in this paper is to derive global error bounds for the Clenshaw-
Curtis quadrature rule. It is interesting to note that Davis [3] has deduced similar
bounds for other quadrature formulae by introducing a Hilbert space of analytic
functions and using the Riesz representation of bounded linear functionals.

Following Davis, we shall introduce the conformal mapping

z=((+1/02, C(=pexp(®), (0=6<2n),
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which transforms the circle |{| = p > 1 onto an ellipse ¢, with foci at z = 1,
semi-axes (p+p~')/2 and the interval [ —1, 1] deleted.
From (1), whenever f(z) is analytic within and on the ellipse ¢,, p > 1,

(3) A, = (2/n*i) J f(2)q,(2)dz
where

4a(2) = % ‘r (1 =x¥) " T (x)/(z — x)dx.
1

If we further assume
4) max |f(2)] £ 1, zee

P

then by (2), (3), (4) and [1] (line 36)

~(N+2R+2)

p2+1> NZ2 32(R+1)N
1

O) 1 = ( & (N GRT DN - GRE I

p*—
(= on(p), say).

A global error bound now follows from the numerical minimization of the
right-hand side of (5) by assuming N (even) to be fixed and p to take any
value in the interval (1, p*], where p* is constant. In table 1 we list the values of
the global error bounds for different values of N and p*. In order to make
this table comparable with Davis’s table 13.2 (see [3] p. 474) we also list the
semi-major axis a of each ellipse ¢,..

It is worth pointing out that global error bounds may also be deduced in the
case max |f(z)] £ 1, |zl £ R, R > 1. As R increases, these bounds are not
dissimilar from those derived from (5) as p* increases.

Finally, for any particular function £, (5) may be replaced by

5 IEx()l £ min(oy(P)If].), 1<p=p*
Since |f],, increases as p increases and, for N fixed, ay(p) decreases, an im-

proved error bound may be derived from (§"). (This point is discussed in greater
detail by Davis [3].)
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Table 1.
Global error bounds for Clenshaw-Curtis quadrature, |f(2)] £ 1, z € ¢,

N= 4 8 12 16 20
a p*

1.2500 2 6.04(—2) 4.62(—4) 5.26(—6) 1.07(=7) 3.12(-9)

21250 4 4.09(—4) 1.03(~7) 9.87(~11) 1.55(—-13) 3.04(~16)
2.8409 5.5 5.23(-5) 3.52(-9) 9.96(—~13) 4.42(—16) 2.43(-19)
3.0833 6 3.03(-5) 1.43(-9) 2.88(—13) 9.0H(—17) 3.50(—20)
4.0625 8 5.05(—6) 7.49(—11) 4.85(~1%) 4.83(—19) 5.94(—23)

Numerical examples.

1. I= jl dx/(3+x).
1

O’Hara and Smith [4] chose this integral to compare their methods of
bounding the error term E, in the Clenshaw-Curtis quadrature rule (which,
for this example, will give 0.23(—12), 0.41(—9) and 0.36(—11) when N = 16)
with the error bounds obtained from applying the techniques of Clenshaw and
Curtis [2] (which give 0.27(—12) and 0.92(—9) when N = 16).

If we use the present method however, with N = 16 and p* = 5.5 then,
because |1/(3+2)| £ 6.286, z € ¢5 5, we see from table 1 that the error in ap-
proximating / by the Clenshaw-Curtis quadrature rule is less than or equal to
6.286 multiplied by the entry in the row p* = 5.5 and the column N = 16,
that is < 6.286 x4.42(—16) = 0.278(— 14). This compares most favourably with
the exact error 0.209(— 14).

1

2. J = f sin (x?)dx.

-1

This example has been considered by the author [5] in connection with the
evaluation of the error term in Gauss-Legendre quadrature.

Suppose we wish the error in the approximation of J to be less than 10715,
say. By letting p* = 6 for example, we see

Isin (z%)] £ cosh (p*?/4) = cosh (9) < 4052, zee,..
From table 1, 4052 multiplied by the entry in the row p* = 6 for which N = 20

is less than 107 '3 indicating Clenshaw-Curtis quadrature with N = 20 would
suffice.
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