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GLOBAL ERROR BOUNDS FOR THE 
CLENSHAW-CURTIS QUADRATURE FORMULA 

H. V. SMITH 

School of Mathematics and Computino, The Polytechnic, Leeds, Yorkshire, Enoland 

Abstract. 
I he object of this paper is to derive global error bounds for integrals approximated by the 

Clenshaw-Curtis formula. 

Introduction. 

Clenshaw and Curtis [2] 
of the form 

have described a method for evaluating integrals 

fl_ x f(x)dx 

in which f(x) is approximated by a finite Chebyshev series. 
If we use the notation of [2] and express f(x) by the infinite Chebyshev series 

(1) f(x) = ~' A,T,(x) 
r = 0  

then the error E N in the Clenshaw-Curtis quadrature rule is given by (see [2] or [4]) 

(2) 
/v- 2 16(R + 1 )N 

EN = ~ ( N  2 - (2R + 1)2)(N z _ (2R + 3)2) AN + 2R + 2 
R=O 

where N is assumed even and terms beyond A3N_ 2 have been neglected. 
Our intention in this paper is to derive global error bounds for the Clenshaw- 

Curtis quadrature rule. It is interesting to note that Davis [3] has deduced similar 
bounds for other quadrature formulae by introducing a Hilbert space of analytic 
functions and using the Riesz representation of bounded linear functionals. 

Following Davis, we shall introduce the conformal mapping 

z = (~+ 1/0/2, ~ = p exp (iO), (0 = 0 < 2n), 
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which transforms the circle I~l = p > 1 onto an ellipse ep with foci at z = _+ 1, 
semi-axes ( p A p - 1 ) / 2  and the interval r - 1 ,  1] deleted. 

From (1), whenever f ( z )  is analytic within and on the ellipse ep, p > 1, 

(3 )  A .  = ( 2 / n 2 i )  f f(z)q.(z)dz 
~p 

where 

_,fl 
q , ( z )  --  2 -1  (1 - x 2 ) - ½ T , ( x ) / ( z  - x ) d x .  

If  we further assume 

(4) max lf(z)l < 1, z ~ ep 

then by (2), (3), (4) and I l l  (line 36) 

(p2 _b 1' ~ N-2 

(-- aN(p), say). 

32(R + 1)N p-IN+ 2R+ 2) 
- (2R + 1)2)(N 2 - (2R + 3)2)1 

A global error bound now follows from the numerical minimization of  the 
right-hand side of  (5) by assuming N (even) to be fixed and p to take any 
value in the interval (1, p*], where p* is constant. In table 1 we list the values of  
the global error bounds for different values of N and p*. In order to make 
this table comparable with Davis's table 13.2 (see [3] p. 474) we also list the 
semi-major axis a of  each ellipse ep,. 

It is worth pointing out that global error bounds may also be deduced in the 
case max If(z)[ _-< 1, Iz[ _-< R, R > 1. As R increases, these bounds are not 
dissimilar from those derived from (5) as p* increases. 

Finally, for any particular function f ,  (5) may be replaced by 

(5') IEN(f)I ~- min (aN(P)l f l ,p) ,  1 < p <--- p*.  

Since Ifl~p increases as p increases and, for N fixed, aN(p ) decreases, an im- 
proved error bound may be derived from (5"). (This point is discussed in greater 
detail by Davis [3].) 
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Table 1. 
Global error bounds for Clenshaw-Curtis quadrature, If(z)l < 1, z e ep.. 

4 8 12 16 20 

1.2500 2 6.04( - 2) 4.62( - 4) 5.26( - 6) 1.07( - 7) 3. | 2( - 9) 
2.1250 4 4 . 0 9 ( - 4 )  1 .03( -7)  9 . 8 7 ( -  I1) 1 .55( -  13) 3 . 04 ( -  16) 
2.8409 5.5 5.23( - 5) 3 . 5 2 ( - 9 )  9 . 9 6 ( -  13) 4 . 4 2 ( -  16) 2 . 4 3 ( -  19) 
3.0833 6 3 .03 ( -5 )  1 .43( -9)  2 . 8 8 ( -  13) 9 . 0 1 ( -  17) 3 .50( -20)  
4.0625 8 5.05( - 6) 7.49( - 11 ) 4.85( - 15) 4 . 8 3 ( -  19) 5.94( - 23) 

Numerical  examples.  

1. l=f 1 dx/(3+x) .  

O'Hara and Smith [4] chose this integral to compare their methods of 
bounding the error term E N in the Clenshaw-Curtis quadrature rule (which, 
for this example, will give 0.23(-I2), 0.41(-9) and 0.36(-11) when N = 16) 
with the error bounds obtained from applying the techniques of Clenshaw and 
Curtis 1-2] (which give 0.27(- 12) and 0.92(-9) when N = 16). 

If we use the present method however, with N = 16 and p* = 5.5 then, 
because 11/(3+z)l < 6.286, z ees. s, we see from table 1 that the error in ap- 
proximating I by the Clenshaw-Curtis quadrature rule is less than or equal to 
6.286 multiplied by the entry in the row p* = 5.5 and the column N = 16, 
that is < 6.286 x4.42(- 16) ~ 0.278(- 14). This compares most favourably with 
the exact error 0.209(- 14). 

. f 
l 

J = sin (x2)dx. 
- 1  

This example has been considered by the author [5] in connection with the 
evaluation of the error term in Gauss-Legendre quadrature. 

Suppose we wish the error in the approximation of J to be less than 10-15, 
say. By letting p* = 6 for example, we see 

Isin (z2)l ~ cosh (p'2/4) = cosh (9) < 4052, z e ep.. 

From table 1, 4052 multiplied by the entry in the row p* = 6 for which N = 20 
is less than 10-~s indicating Clenshaw-Curtis quadrature with N = 20 would 
suffice. 
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