GLOBAL ERROR BOUNDS FOR THE CLENSHAW-CURTIS QUADRATURE FORMULA

H. V. SMITH

School of Mathematics and Computino, The Polytechnic, Leeds, Yorkshire, Enoland

Abstract.

I he object of this paper is to derive global error bounds for integrals approximated by the Clenshaw-Curtis formula.

Introduction.

Clenshaw and Curtis [2] have described a method for evaluating integrals of the form

$$
\int_{-1}^1 f(x) \, dx
$$

in which $f(x)$ is approximated by a finite Chebyshev series.

If we use the notation of [2] and express $f(x)$ by the infinite Chebyshev series

(1)
$$
f(x) = \sum_{r=0}^{\infty} A_r T_r(x)
$$

then the error E_N in the Clenshaw-Curtis quadrature rule is given by (see [2] or [4])

(2)
$$
E_N = \sum_{R=0}^{N-2} \frac{16(R+1)N}{(N^2 - (2R+1)^2)(N^2 - (2R+3)^2)} A_{N+2R+2}
$$

where N is assumed even and terms beyond A_{3N-2} have been neglected.

Our intention in this paper is to derive global error bounds for the Clenshaw-Curtis quadrature rule. It is interesting to note that Davis [3] has deduced similar bounds for other quadrature formulae by introducing a Hilbert space of analytic functions and using the Riesz representation of bounded linear functionals.

Following Davis, we shall introduce the conformal mapping

$$
z = (\zeta + 1/\zeta)/2, \qquad \zeta = \rho \exp(i\theta), \qquad (0 \le \theta < 2\pi),
$$

Received October 29, 1981. Revised April 27, 1982.

which transforms the circle $|\zeta| = \rho > 1$ onto an ellipse ε_{ρ} with foci at $z = \pm 1$, semi-axes $(\rho + \rho^{-1})/2$ and the interval $[-1, 1]$ deleted.

From (1), whenever $f(z)$ is analytic within and on the ellipse ε_{ρ} , $\rho > 1$,

(3)
$$
A_n = (2/\pi^2 i) \int_{\varepsilon_\rho} f(z) q_n(z) dz
$$

where

$$
q_n(z) = \frac{1}{2} \int_{-1}^1 (1-x^2)^{-\frac{1}{2}} T_n(x)/(z-x) dx.
$$

If we further assume

(4)
$$
\max |f(z)| \leq 1, \quad z \in \varepsilon_o
$$

then by (2) , (3) , (4) and $\lceil 1 \rceil$ (line 36)

$$
(5) |E_N| \le \left(\frac{\rho^2 + 1}{\rho^2 - 1}\right) \sum_{R=0}^{N-2} \frac{32(R+1)N}{\left[(N^2 - (2R+1)^2)(N^2 - (2R+3)^2)\right]} \rho^{-(N+2R+2)}
$$

(= $\sigma_N(\rho)$, say).

A global error bound now follows from the numerical minimization of the right-hand side of (5) by assuming N (even) to be fixed and ρ to take any value in the interval $(1, \rho^*)$, where ρ^* is constant. In table 1 we list the values of the global error bounds for different values of N and ρ^* . In order to make this table comparable with Davis's table 13.2 (see [3] p. 474) we also list the semi-major axis a of each ellipse $\varepsilon_{a^{**}}$.

It is worth pointing out that global error bounds may also be deduced in the case max $|f(z)| \leq 1$, $|z| \leq R$, $R > 1$. As R increases, these bounds are not dissimilar from those derived from (5) as ρ^* increases.

Finally, for any particular function f , (5) may be replaced by

(5')
$$
|E_N(f)| \leq \min (\sigma_N(\rho)|f|_{\varepsilon_o}), \qquad 1 < \rho \leq \rho^*.
$$

Since $|f|_{\epsilon_p}$ increases as ρ increases and, for N fixed, $\sigma_N(\rho)$ decreases, an improved error bound may be derived from (5"). (This point is discussed in greater detail by Davis [3].)

					.	
a	$N =$ ρ^*			12	16	20
1.2500	2	$6.04(-2)$	$4.62(-4)$	$5.26(-6)$	$1.07(-7)$	$3.12(-9)$
2.1250	4	$4.09(-4)$	$1.03(-7)$	$9.87(-11)$	$1.55(-13)$	$3.04(-16)$
2.8409	5.5	$5.23(-5)$	$3.52(-9)$	$9.96(-13)$	$4.42(-16)$	$2.43(-19)$
3.0833	6	$3.03(-5)$	$1.43(-9)$	$2.88(-13)$	$9.01(-17)$	$3.50(-20)$
4.0625	8	$5.05(-6)$	$7.49(-11)$	$4.85(-15)$	$4.83(-19)$	$5.94(-23)$

Table 1. *Global error bounds for Clenshaw-Curtis quadrature,* $|f(z)| \leq 1$, $z \in \varepsilon_{\infty}$.

Numerical examples.

1.
$$
I = \int_{-1}^{1} dx/(3+x).
$$

O'Hara and Smith [4] chose this integral to compare their methods of bounding the error term E_N in the Clenshaw-Curtis quadrature rule (which, for this example, will give $0.23(-12)$, $0.41(-9)$ and $0.36(-11)$ when $N = 16$) with the error bounds obtained from applying the techniques of Clenshaw and Curtis [2] (which give $0.27(-12)$ and $0.92(-9)$ when $N = 16$).

If we use the present method however, with $N = 16$ and $\rho^* = 5.5$ then, because $|1/(3+z)| \le 6.286$, $z \in \varepsilon_{5.5}$, we see from table 1 that the error in approximating I by the Clenshaw-Curtis quadrature rule is less than or equal to 6.286 multiplied by the entry in the row $\rho^* = 5.5$ and the column $N = 16$, that is $\leq 6.286 \times 4.42(-16) \approx 0.278(-14)$. This compares most favourably with the exact error $0.209(-14)$.

2.
$$
J = \int_{-1}^{1} \sin(x^2) dx.
$$

This example has been considered by the author [5] in connection with the evaluation of the error term in Gauss-Legendre quadrature.

Suppose we wish the error in the approximation of J to be less than 10^{-15} , say. By letting $\rho^* = 6$ for example, we see

$$
|\sin{(z^2)}| \le \cosh{(\rho^{*2}/4)} = \cosh{(9)} < 4052, \qquad z \in \varepsilon_{\rho^{*}}.
$$

From table 1, 4052 multiplied by the entry in the row $\rho^* = 6$ for which $N = 20$ is less than 10^{-15} indicating Clenshaw-Curtis quadrature with $N = 20$ would suffice.

Acknowledgement.

The author is extremely grateful to both referees, one of whom drew his attention to the work of P. J. Davis and also suggested a modified form of table 1.

REFERENCES

- 1. M. M. Chawla and M. K. Jain, *Error estimates for Gauss quadrature formulas for analytic functions*, Math, Comp. 22 (1968), 82-90.
- 2. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197-205.
- 3. P. J. Davis, *Errors of numerical approximation for analytic functions*, in: *Survey of Numerical Analysis,* ed. J. Todd 468-484, McGraw-Hill (1962).
- 4, H. O'Hara and F. J. Smith, *Error estimation in the Clenshaw-Curtis quadrature Jbrmuta,* Comp. Jour. 11 (1968), 213-219.
- 5. H. V. Smith, *The evaluation of the error term in some numerical quadrature formulae*, Int. J. Num. Meth. Eng. 14 (1979), 468-472.