GLOBAL ERROR BOUNDS FOR THE CLENSHAW-CURTIS QUADRATURE FORMULA

H. V. SMITH

School of Mathematics and Computing, The Polytechnic, Leeds, Yorkshire, England

Abstract.

The object of this paper is to derive global error bounds for integrals approximated by the Clenshaw-Curtis formula.

Introduction.

Clenshaw and Curtis [2] have described a method for evaluating integrals of the form

$$\int_{-1}^{1} f(x) \, dx$$

in which f(x) is approximated by a finite Chebyshev series.

If we use the notation of [2] and express f(x) by the infinite Chebyshev series

(1)
$$f(x) = \sum_{r=0}^{\infty} A_r T_r(x)$$

then the error E_N in the Clenshaw-Curtis quadrature rule is given by (see [2] or [4])

(2)
$$E_N = \sum_{R=0}^{N-2} \frac{16(R+1)N}{(N^2 - (2R+1)^2)(N^2 - (2R+3)^2)} A_{N+2R+2}$$

where N is assumed even and terms beyond A_{3N-2} have been neglected.

Our intention in this paper is to derive global error bounds for the Clenshaw-Curtis quadrature rule. It is interesting to note that Davis [3] has deduced similar bounds for other quadrature formulae by introducing a Hilbert space of analytic functions and using the Riesz representation of bounded linear functionals.

Following Davis, we shall introduce the conformal mapping

$$z = (\zeta + 1/\zeta)/2, \qquad \zeta = \rho \exp(i\theta), \qquad (0 \le \theta < 2\pi),$$

Received October 29, 1981. Revised April 27, 1982.

which transforms the circle $|\zeta| = \rho > 1$ onto an ellipse ε_{ρ} with foci at $z = \pm 1$, semi-axes $(\rho \pm \rho^{-1})/2$ and the interval [-1, 1] deleted.

From (1), whenever f(z) is analytic within and on the ellipse ε_{ρ} , $\rho > 1$,

(3)
$$A_n = (2/\pi^2 i) \int_{e_\rho} f(z)q_n(z)dz$$

where

$$q_n(z) = \frac{1}{2} \int_{-1}^{1} (1-x^2)^{-\frac{1}{2}} T_n(x)/(z-x) dx.$$

If we further assume

(4)
$$\max |f(z)| \leq 1, \quad z \in \varepsilon_a$$

then by (2), (3), (4) and [1] (line 36)

(5)
$$|E_N| \leq \left(\frac{\rho^2 + 1}{\rho^2 - 1}\right) \sum_{R=0}^{N-2} \frac{32(R+1)N}{|(N^2 - (2R+1)^2)(N^2 - (2R+3)^2)|} \rho^{-(N+2R+2)}$$

(= $\sigma_N(\rho)$, say).

A global error bound now follows from the numerical minimization of the right-hand side of (5) by assuming N (even) to be fixed and ρ to take any value in the interval $(1, \rho^*]$, where ρ^* is constant. In table 1 we list the values of the global error bounds for different values of N and ρ^* . In order to make this table comparable with Davis's table 13.2 (see [3] p. 474) we also list the semi-major axis a of each ellipse ε_{α^*} .

It is worth pointing out that global error bounds may also be deduced in the case max $|f(z)| \leq 1$, $|z| \leq R$, R > 1. As R increases, these bounds are not dissimilar from those derived from (5) as ρ^* increases.

Finally, for any particular function f, (5) may be replaced by

(5')
$$|E_N(f)| \leq \min(\sigma_N(\rho)|f|_{\varepsilon_n}), \quad 1 < \rho \leq \rho^*.$$

Since $|f|_{\varepsilon_{\rho}}$ increases as ρ increases and, for N fixed, $\sigma_N(\rho)$ decreases, an improved error bound may be derived from (5'). (This point is discussed in greater detail by Davis [3].)

396

а		4	8	12		20
	$\rho^* \setminus N =$				16	
1.2500	2	6.04(-2)	4.62(-4)	5.26(-6)	1.07(-7)	3.12(-9)
2.1250	4	4.09(-4)	1.03(-7)	9.87(-11)	1.55(-13)	3.04(-16)
2.8409	5.5	5.23(-5)	3.52(-9)	9.96(-13)	4.42(-16)	2.43(-19)
3.0833	6	3.03(-5)	1.43(-9)	2.88(-13)	9.01(-17)	3.50(-20)
4.0625	8	5.05(-6)	7.49(-11)	4.85(-15)	4.83(-19)	5.94(-23)

Table 1. Global error bounds for Clenshaw-Curtis quadrature, $|f(z)| \leq 1, z \in \varepsilon_{o^*}$.

Numerical examples.

1.
$$I = \int_{-1}^{1} dx/(3+x).$$

O'Hara and Smith [4] chose this integral to compare their methods of bounding the error term E_N in the Clenshaw-Curtis quadrature rule (which, for this example, will give 0.23(-12), 0.41(-9) and 0.36(-11) when N = 16) with the error bounds obtained from applying the techniques of Clenshaw and Curtis [2] (which give 0.27(-12) and 0.92(-9) when N = 16).

If we use the present method however, with N = 16 and $\rho^* = 5.5$ then, because $|1/(3+z)| \leq 6.286$, $z \in \varepsilon_{5.5}$, we see from table 1 that the error in approximating *I* by the Clenshaw-Curtis quadrature rule is less than or equal to 6.286 multiplied by the entry in the row $\rho^* = 5.5$ and the column N = 16, that is $\leq 6.286 \times 4.42(-16) \approx 0.278(-14)$. This compares most favourably with the exact error 0.209(-14).

2.
$$J = \int_{-1}^{1} \sin(x^2) dx.$$

This example has been considered by the author [5] in connection with the evaluation of the error term in Gauss-Legendre quadrature.

Suppose we wish the error in the approximation of J to be less than 10^{-15} , say. By letting $\rho^* = 6$ for example, we see

$$|\sin(z^2)| \le \cosh(\rho^{*2}/4) = \cosh(9) < 4052, \quad z \in \varepsilon_{a^*}.$$

From table 1, 4052 multiplied by the entry in the row $\rho^* = 6$ for which N = 20 is less than 10^{-15} indicating Clenshaw-Curtis quadrature with N = 20 would suffice.

Acknowledgement.

The author is extremely grateful to both referees, one of whom drew his attention to the work of P. J. Davis and also suggested a modified form of table 1.

REFERENCES

- 1. M. M. Chawla and M. K. Jain, Error estimates for Gauss quadrature formulas for analytic functions, Math. Comp. 22 (1968), 82–90.
- 2. C. W. Clenshaw and A. R. Curtis, A method for numerical integration on an automatic computer, Numer. Math. 2 (1960), 197-205.
- 3. P. J. Davis, Errors of numerical approximation for analytic functions, in: Survey of Numerical Analysis, ed. J. Todd 468-484, McGraw-Hill (1962).
- 4. H. O'Hara and F. J. Smith, Error estimation in the Clenshaw-Curtis quadrature formula, Comp. Jour. 11 (1968), 213-219.
- 5. H. V. Smith, The evaluation of the error term in some numerical quadrature formulae, Int. J. Num. Meth. Eng. 14 (1979), 468-472.