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Abstract

We improve an upper bound for the error of the Gauss-Legendre quadrature for analytic
functions previously given by Chawla and Jain.

1. Introduction

It is well-known [3] that the following Gauss-Legendre quadrature has
precision 2n—1,

n

1
(1) J flxydx = kZ wf(x)+ Eg, (f),

=1

ie., E; (f) = 0 for all fe2,, ,, the set of all polynomials of degree 2n— |
or less. Here x, are the zeros of P,(x), the Legendre polynomial of degree n,
and w, are defined by

1 top(x)
= = dx fi = c AL
W, P;,(xk)f_lx x xfork=1,2,....n

The following contour integral representation for the error term E¢ (f)in (1)
can be found in [3]:

@ Bo.t = G | [0, e
C
where C is a simple closed contour which contains the interval [—1,1] in

its interior and the function f(z) is supposed to be analytic inside and on C.
The function Q,(z) is defined by

1t P,
Q"(z)=§j_1;%dx, for z¢[—1,1].
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We introduce the conformal mapping - = {(¢+¢&~ ') which maps the circle
Il = p > 1 in the ¢-plane onto the ellipse E, with foci at - = +1 and
semi-axes 3(p+p~'). For the inverse mapping, ¢ = z+(z2—1)}, we choose
the branch of (z2—1)¥ such that |¢| > I for ¢ [—1.1].

Chawla and Jain [1, p.85] have given the following upper bound for [E; (f)I:

THEOREM 1. Let f(2) be analytic on [—1, 1] and continuable analyvtically so
as to be analytic within and on E,, p > 1. Then, given ¢ > 0, we have for n Z N(e),

(3) |Eg, (/)] < 2KM(p)(1 —e¢/p)~"p ™",

where M(p) = max |f(z)| on E,, K = /(Ep)/[n(p—p_‘)] and KE,) represents
the length of E,,.

We will improve this upper bound for |E; (/)| by showing that the constant 2
in (3) can be replaced by n/2.

2. Upper bounds for |Q,(z)| and |E (/)|

Davis [2, p. 311] gives the following series expansion for Q,(z),

X

4 0,)= > o6,&7% forzeE,

k=n+1
where o, = Jon P,(cos 0)sin (k0)dO, & = z+(z2—1)* and |E] > 1,

The following upper bound for |o,,| was given by Davis [2, p. 311]:
LemMal ForzeE, loy,l Sn,n=01,2,.., k=n+1l,n+2,...

Chawla and Jain [1] have improved this upper bound as follows:
LeMMA2  For zeE, lou| £2,n=0,1,2,.., k=n+1,n+3,...

In[1], Chawla and Jain have employed the lemma above and derived the upper
bound (3) for the Gauss-Legendre quadrature error. We will sharpen the upper
bound for o, | in lemma 2 and hence the upper bound for |E; (/)| in (3).

LEMMA 3 For zeE, logl £72,n=0,1,2,..,and k = n+1,n+3,....

PrOOF In [2, p. 308-309], Davis has shown that
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(5 P,(cos 0) = ) aa,_;cos (n=2))0,
i=0
where ap=PGHT27H, j=0,1.2,....n

It can be shown that
O<aj§l, for j=0,1,2,...,n
Therefore

o] < j P, (cos 0)] - [sin k0[d0
L]

n § n i
< [J P2(cos ())d()] [J sin® k()d()]
0 0
T n 2 1
= (n/2)} {[ [Z aa,_ oS (n—2j)()] d()}
0 ji=0

n H n t1
- (n/zﬁ[(nm 5 afai-,] < (n/z)[ ) a,=a,._,-J = /2.
;e j=0

i=0

The last equality follows from (5) with ¢ = 0. [ ]
Empioying the lemma above and following the same procedure as in
[1. p. 84-85], we can rewrite (3) as follows:

(6) |Eg (D] £ (/KM ()3 —e/p)~"p~ 2",

where K and M(p) are previously defined in theorem 1.
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