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1 Introduction 

In this paper we study the problem 

(I) u(=k~(t), t) = o 

u (x ,  - l) = Uo(X) 

if Ixl < ~ ( t ) , - 1  < t < 0  

if - l < t < 0  

if Izl < 

where the functions ~, ( and u 0 satisfy the following hypotheses: 

HI .  ~ E C3(R), 0 < t/:' < 7 in R for some q' > 0, p ( - p )  = - ~ ( p )  for p E R, and 

lim ~(p) = ~ < +oc;  (1.1) 
p----~+oo 

H2. ff E (71([--1,0)) fl C ( [ - 1 , 0 ] ) ,  4(0) = 0, and ~(t) > 0 and ff'(t) < 0 for 
t ~ [ - 1 , 0 ) ;  

H3. u o ~ C l ( [ - ~ ( - 1 ) , ( ( - 1 ) ] ) ,  u 0 > 0 in ( - ( ( - 1 ) ,  ( ( - 1 ) )  and U o ( ~ ( - 1 )  = 0. 

In the rest of the paper we shall indicate these assumptions collectively by hypothesis 
H. 

A typical example of a function ~ satisfying H1 is given by 

P ~ ) ( p ) -  ~ . _ _ = ,  (1.2) 
v,1 

which corresponds to the well-known mean curvature operator. The nonlinear diffu- 
sion equation 

u t = ~(Ux) x (1.3) 
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and its generalization ut = ~/~(u, Ux) x arise in several applications, discussed by Blanc 
[5] and Rosenau [24]. 

Because of condition (1.1), equation (1.3) is not uniformly parabolic. Actually the 
parabolicity of the equation is so strongly degenerate, that, as was noticed by Blanc 
[4-7] and by Bertsch and Dal Passo [1, 2], solutions may be discontinuous. This rather 
hyperbolic character of  the equation is also reflected in the existence of an entropy 
condition, which is necessary [1 ] and sufficient [8] to guarantee uniqueness of "weak" 
solutions of the corresponding Cauchy problem. 

As we shall see in Sect. 2, Problem I possesses a unique solution u(x, t), which 
is smooth in the set 

Q = { ( z , t ) : l x l  < r  < t < 0};  

in Sect. 3 we shall show that u does not necessarily satisfy the condition u = 0 at 
the lateral boundaries of  Q, and that, instead, u~ may be infinite at these boundaries. 
For the precise definition of a solution we refer to Sect. 2. 

The main purpose of  this paper is to study the behaviour of u near the vertex (0, 0) 
of Q. More in particular we would like to know for which functions r satisfying 
hypothesis H2, u(x,  t) ~ 0 as (x, t) -+ (0, 0). 

First we establish a class of functions ff for which all solutions, i.e. independently 
of u 0, vanish at the vertex: 

Theorem A. Let hypotheses H 1 and H2 be satisfied. I f  

0 / '  - - d r  = oo 
~(~) 

-1  

(1.4) 

then ]br any u o satisfying hypothesis H3 the solution u o f  Problem 1 satisfies 

lim u(x, t) = 0 .  (1.5) 
Q~(x,t)-~(O,O) 

If, in addition, r162 --~ 0 as t --, O, then there exists a t o E ( -  1, O) such that 

lim u ( x , t ) = O  for t 0 < ~ - - < 0 .  (1.6) 
Q~(x,t)-*(+r 

Observe that, generically, ~ t  vanishes at t = 0 as soon as (1.4) is satisfied, and 
that (1.6) means that u satisfies the boundary condition u ( ~ ( t ) ,  t) = 0 for t close 
enough to 0. 

Condition (1.4) turns out to be necessary in the sense that if it is not satisfied, then 
Problem I has solutions which do not vanish at the vertex: 

T h e o r e m  B. Let hypotheses H1 and H2 be satisfied. I f  

0 

~( ) ' 
--1 

(1.7) 
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then there exist initial functions u o which satisfy hypothesis H3, such that the corre- 
sponding solutions ~ of Problem I satisfy 

l imsup u(z , t )  > 0.  (1.8) 
Q~(x,t)~(O,O) 

Given a function ~ which satisfies condition (1.7), it remains to decide whether 
there exists initial functions for which the solutions vanish at (0, 0). The following 
result settles this question almost completely. 

Theorem C. Let hypotheses H1 and H2 be satisfied, and let ~ satisfy condition (1.7). 
There exists a constant c* > 0 which only depends on ~ such that: 

( i )  if 
~(t) , 

l i m i n f ~  > c , (1.9) 
t~O v / - t  

then for all u o satisfying hypothesis H3 the corresponding solutions w of Problem I 
satisfy 

l imsup u ( x , t ) > O ;  (1.10) 
Qg(x,t)-+(O,O) 

( i i )  if 
li sup ~(t) < c* (1.11) 

m0 x / ~  { 

then there exist initial functions u o satisfying hypothesis H3 such that the corresponding 
solutions u of Problem I satisfy 

lim u(:c, t) = 0.  (1.12) 
Q~(x,t)~(0,0) 

We shall prove Theorem A, B and C in, respectively, Sects. 4, 5 and 6. In Sect. 6 we 
give a precise characterization of the constant c* of  Theorem C. 

In the special case that 

(( t)  = e ( - t )  ~, (c, c~ > 0) 

we may summarize our results as follows: 

c~ > 1 ~ (1.13) 
1 1 C:r 5 < c t  < 1 or a =  5, c <  =~ (1.14) 

all solutions vanish at (0,0) ,  

some but not all solutions 
vanish at (0, 0), 

and 

1 1 c *  O < a < 5 o r a = - ~ , c >  ==~ none of the solutions vanish at (0, 0). (1.15) 

These results are rather different from the known results for the (non)linear heat 
equation [11-13, t8, 20-23] and the porous medium equation [9]. For these equations 

1 (1.14) never occurs, while (1.13) and (1.15) occur if, respectively, a -> ~ and 

0 < a < 1; in particular the behaviour of the solutions near the vertex depends 

on the differential operator and the geometry of the boundary, but not on the initial 
function u 0. In the case of  Problem I however, the behaviour may depend on u 0 (cf. 
(1.14)), which in some sense is another hyperbolic feature of the problem. 
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2 Existence and uniqueness of a solution 

First we define what we mean by a solution of Problem I. We shall use the notation 

Q* = {(z , t )  : Ixt < r  < t < 0} 

and, for T r ( - 1 , 0 )  

Q T =  {(x,t)  E Q : - I  < t _ _ < T } .  

Definition 2.1. A function u : Q* --~ R is a solution o f  Problem I if, f o r  any 
T r (--1,O) 

(i) u E C2'1(Q) N C(Q*)  A/~V(QT); 
(ii) there exists a function ~b : Q -+ R which is continuous in QT such that 

~ ( x ,  t) = O(uz(x  , t)) for  any (x, t) E Q ; 

(iii) u t = r  x in Q, u ( . , - 1 )  = u o in ( - ~ ( - 1 ) , r  and 

: k g ~ < O  and ~2(I~l-~b~)  = 0  i f x = + ~ ( t )  f o ra . e ,  t c ( - 1 , 0 ) ,  (2.1) 

where ~z denotes the trace o f  the function u at the lateral boundaries x = •162  o f  Q. 

Since u is a function of bounded variation, the trace of u is well defined. We 
observe that (2.1) is trivially satisfied if u satisfies, in the sense of  traces, the Dirichlet 
boundary condition u = 0. In Sect. 3 we shall prove that this is not always the case, 
and condition (2.1) implies that if, for example, ~ > 0 at the boundary x = r then 
~(r t) = - ~ ,  i.e. Ux(X, t) ~ - o c  as x ~ ( ( t ) - .  

In this section we shall prove the following result. 

Theorem 2.2. Let hypothesis H be satisfied. Then Problem I possesses a unique 
solution. 

The existence proof is based on the viscosity method, i.e., we consider the 
approximate problem 

(I~) 
u t = r x in O 
u(=t=~(t),t)=O if - 1 < t < O  

u ( x , - 1 )  = Uo(X) if Ixl < ~(-1) ,  

where c > 0 and 
~s(P) = ~b(p) + r for p C R .  

Problem I~ is uniformly parabolic and we denote its unique smooth solution [19] in 
the set {(x,t)  : lx l  __< i f ( t ) , -1  ~ t < 0} by u~(x , t ) .  

In the following lemma's  we give some estimates for ue. 

L e m m a  2.3. Let  us denote the solution o f  Problem l~. Then: 
(i) 0_-<u~ < m a x u  o i n Q ;  
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(ii) for any compact subset K = [ - a ,  a] x [% T] of Q there exists a constant C 
such that a 

f r , t ) )~ds<=C for r _ < t _ < T ,  O < e ~  1. (2.2) 

--a 

Proof The first part follows at once from the maximum principle. 
To prove (2.2) we choose a constant b E (a, ff(T)), and a cut-off function 

X E C~~ b)) such that, for some L > 0, 

O <= X <= I and [x'l <= L in ( -b ,b) ,  X ~ I  in ( - a , a ) .  

First we show that for some C o > 0 and for all e 

/ ~p~(%x)~X 2 dx dt <= C o . 

Ko=I-b,b]x[--l,T] 
(2.3) 

We multiply the equation for u C by / /)e(Uex)xX 2 a n d  integrate by pans: 

, / , /  ~e(?Zex)2X2dxdt : -- f f ~e(Uex)Uext~ 2dxdt  
K o Ko 

- 2 / / z p e ( u ~ ) z p ~ ( % . ) . X X  ~ dx dt = I 1 -k 12. 
J ,i 
Ko 

(2.4) 

P 
Defining qJe(P) = f '~be(s)c/s, we have 

0 

b b 

I 1 = -- f gle(uex(x,T))x 2 dx -Jr-/" ff]~(Ulo(x))x2dx 

--b --b 
b 

<= -- / k~e(Uex(X , T))X 2 dx q- e I , 

--b 

(2.5) 

for some C 1 which does not depend on c. In addition we obtain from the inequalities 
of  Cauchy-Schwanz and Young that 

\ 1/2 
= 2 ~)e (Uex)2X 2 

KO K o 

- 2 ffJe (Uex)2X 2 . 
= 2  

Ko Ko 

(2.6) 
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It follows from [1, formula (4.1)] that, for all 0 < e =< 1, 

f / %x%(U~x) <<_ C2 
Ko 

for some C 2. Since, for some C 3 __> 1, 

~e(p) 2 = ~Qg) 2 § 2ep~3(p) § g2p 2 ~ C3(1 § p~/3(p)) § 6-p 2 ~ C3(1 § p~3e(p)), 

this implies that 
2 2 ~e(Uex) Xx <= L2C3( 2b § 62).  

Ko 

(2.7) 

Substituting (2.5), (2.6) and (2.7) into (2.4), we obtain (2.3). 
Finally we prove (2.2). In view of (2.3) there exists for any c C (0, 1] a time 

% C [ -  1, r ]  such that 

b 

J @e(Uex)2x(X, Te)X2(x)dx < Co 
= T + I  

-b  

(2.8) 

We multiply the equation for uex by @e(Uex)tX. 2 and integrate by parts over K~ = 
[-b,  b] • [%, t], where t E [r, T]: 

/ f  ~' 2 2 I f  ~.X2 0 <= ~(%~)~xt;~ = - r  
Ke Ke 

Ke 

(2.9) 

It follows from (2.8) that 

b 1/ 
I3 <= --~ %(%~)~(x , t )X2(z )dz  + - -  

b 

Co 
2(r  + 1) 

(2.10) 

From the Cauchy-Schwartz and Young inequalities we have that 

1 I I f f t 2 2 f f I I t 2 2 1141 <= -~ J J ~ (u~x )u~ tX  dxdt + 2 J J ~(U~x)~(U~x)xX~dxdt,  
K~ Ke 

(2.11) 

and, using (2.3) and the boundedness of  *b'~, we find that the latter term in (2.11) is 
uniformly bounded. Substituting (2.10) and (2.11) into (2.9), we obtain (2.2), and we 
have completed the proof of Lemma 2.3. 
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L e m m a  2.4. Let % be the solution of Problem 1~. T h e n  {~t/Y~(Ucx)}0<~<l is bounded 
1/2 1/4 

inClo ~'  (Q) and 
lim sup II~%~)l lz~)  < ~ (2.12) 

a-~0  

]'or all compact sets K C Q. 

Proof. From (2.2) and the imbedding H 1 ( i - a ,  a)) C_ Ct /2 ( [ -a ,  a]) we obtain the local 
uniform H61der continuity of g)e(%x) with respect to x. Since %(x,  t) = ~/~e(ue,~(x, t)) 
satisfies the parabolic equation 

/ 
v t = te (uc~)Vxx ,  (2.13) 

the coefficient of  which is uniformly bounded, the local H61der continuity with respect 
to t follows from [14]. 

It remains to prove (2.12). Arguing by contradiction we suppose that there exist 
a 5 > 0, a sequence {E,~} converging to 0 and points (x,~, t~,) -~ (x o, t o) as .n ~ ~ ,  
such that, for any ~, l,b~,~(%,~(x,~, t,,)) 1 > ~ +25 .  We restrict ourselves to the case 
in which 

t~,~(u~,~(x.,~,tn)) > t~ + 26. 

In view of the local equicontinuity of  r  this means that there exist N > 0 and 
a neighbourhood s of (x0, to) in Q such that 

~e~(u~,~,~:) > ~ + 5  in s for n >  N ,  

and hence 
u . . . .  > ~ l ( z / 2 ~  + 5) in s for n > N .  (2.14) 

Since ~/~l(g, oo+5)  ~ oc as c --~ 0, we obtain from (2.14) that sup u~,~ - i n f u e  ~ oc 
a'2 [2 r~ 

as n ----+ oo, which is a contradiction with Lemma 2.3(i). 
It turns out that the inequality in (2.12) is strict and that it holds in compact subsets 

of (2*. 

L e m m a  2.5. Let % be the solution of  Problem le. Then 

lim sup IIr < ~ (2.15) 
r  

for all compact subsets K C Q*. 

Proof Without loss of generality we may suppose that K is a rectangle of  the form 
K = [ -a ,a ]  • [ - 1 , T ] .  Let b c (a,~(T))  and K o = [-b,b] • [ - 1 , T ] .  Since 
u 0 E C 1 ( [ - ~ ( - 1 ) , ( ( - 1 ) ] ) ,  there exist constants r 0 E ( - 1 , T )  and 5 > 0 which 
do not depend on c such that 

]~b~(u~)l < ~b~ - 6  in [ - b , b ]  • [ - 1 , t o ] .  

Let A > ga~ be a constant to be chosen. By Lemma 2.4 there exists a constant 6" A > 0 
such that 

Ir  t < A if T o < t <= T, 0 < ~ < ~A, 
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and since the coefficient in (2.13) is uniformly bounded it follows from the maximum 
principle that there exists a constant B which does not depend on A such that 

Ir  < A - ~Se -'r176 cos if Ix] < b, 7-r =< t =< T, 0 < e =< CA" 

(2.16) 

Choosing A > ~b~ so small that the right-hand side of  (2.16) is strictly smaller 
than ~p~ in the set [ - a ,  a] • [%, T], we have completed the proof of (2.15). 

Lemma 2.5 implies that, locally in Q*, u~ satisfies an equation which is uniformly 
parabolic with respect to ~, and, from standard results on quasilinear uniformly 
parabolic equations, we obtain the following result. 

L e m m a  2.6. Let hypothesis H be satisfied and let ue denote the solution of Problem I c. 
Then there exist a sequence {c**} and a function u E C(Q*) N C2'1((~) such that 

u e ---+ u in C1o~(Q*) A C2olc(Q) as c n ---+ 0,  

and u satisfies u t = ~(Ux) ~ in Q and u ( x , - 1 )  = Uo(x) for Ixl < ~(-1) .  

To prove that u is a solution of Problem I, it remains to show that it satisfies the 
required properties at the lateral boundaries of Q. The following result will enable us 
to prove the uniform continuity of r  x) in QT for - 1  < T < 0. 

L e m m a  2.7. Let T E ( -  1,0). Let ~ E C(R) be defined by 

~ ( p ) =  ?~(p) if - r  < r < r 

Then the functions ~e(uex) are equicontinuous in 62T. In addition, for any % E 
( -1 ,  T), there exist constants c > 0 and /3 > 0 which do not depend on c such 
that 

+u~x(x, t) => /3 if Ix •  < c ,  T o _ < t - < T .  (2.17) 

Proof. We only consider the boundary x = ~(t). 
Let 0 < c o < ~(t). Defining 

: x - ~ ( t )  for - c  o ~ x - ~ ( t ) ~ O ,  - 1 - ~ t ~ T ,  

and denoting Tz~(~, t) =- u~(x, t) by u~(~, t) again, we find that u~ satisfies the equation 

u t = ~ ( u ~ ) ~ + ~ ' u  ~ in ( -Co,0)  x ( - 1 , T ] .  (2.18) 

First we prove (2.17). Since u 0 c C1 ( [ -~ ( -1 ) , f f ( - 1 ) ] ) ,  there exists a time 
T E (--1, T) such that u ~  in uniformly bounded in (-e0,  0) • ( - 1 ,  7-]. Without loss 
of generality we may assume that 7-o = 7-. By classical theory (the boundary point 
lemma), u~(0 ,  7-) is uniformly bounded away from zero, and, if we choose c 0 small 
enough, there exists a C o > 0 which does not depend on e, such that 

u ~ ( ~ , T ) < - C  o for - - c  0 < ~ < 0 .  (2.19) 
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In particular, u~(~,7-) >__ - C o ~  for - c  o __< ~ < 0, and since, for some C 1 > 0, 
u~(-co, t ) >= C 1 if t -< ~- -< T, it follows from (2.19) and the maximum principle 
applied to (2.18) that 

u~ > - C 2 ~  in [ -c0 ,0]  • [ r , T ] ,  

where we have set C 2 = rain{Co, Cl/co}. This implies that 

~ ( 0 ,  t ) __<-C  2 for 7 - _ < t _ < Z .  

The function u ~  satisfies the equation 

w t = ~ ( w ) ~  + r  

There exists a constant C 3 which does not depend on c such that 

u~(-Co,t)  <= C 3 for T _ < t _ < T ,  

and hence it follows from the maximum principle that 

'u~(~, t) =< ~(~, t) for - c  0 < ~ = < 0 ,  ~-=<t=<T., 

where ~ is the uniformly bounded (and hence classical!) solution of the problem 

{ w t = ~ ( w ) ~  + ~'w~ 

w(-co ,  t) = C 3 and w(0, t) = - C  2 
w(~, t) = u ~ ( ~ ,  7-) 

if - c 0 < ~ < 0 ,  ~c<t<=T 

if 7 - < t _ < T  

if - c 0 < ~ < 0 .  

We obtain (2.17) if we choose 0 < c < c o such that ~ __< 0 in [ - c ,  0] x [w,T]. 
Since u~ is strictly monotone near the boundary ~ = 0, we may introduce a new 

variable u, defined by 
= ~ ( ~ ,  t ) .  

We choose r > 0 such that u~( -c ,  0) > r for w _< t _< T and for all e, and we set 

K = { ( u , t ) 0  < u < r,~- < t < T } .  (2.20) 

We define the functions v~ E C2'l(K)• c l ' ~  c c C C2(R-) .  f~ C Cl([ ' r ,T])  and 
.% E C2((0, r]) N Cl(0,  r]) by 

m 

v~(u,t) =-- ~ (u~(~ , t ) )  for (u, t )  C K 

1 
c~( .s) -  ~/j~_l(s ) for .s < 0 

f~( t )=v~(r , t )  for ~ -<_ t_<T  

g~(u) = c~(v~(~t,7-)) for 0 <_ u -< r .  
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From a straightforward calculation (see [1]) we obtain that v~ satisfies 

{ c~(v) t =v~.~ in K 

v~(0, t ) =  - f f ' ( t )  for r < _ t  <_ T 

v (r , t )  = f~(t) for r _< t _< T 

Ce(V(U , r ) ) = g e ( U  , T)) for 0 _ < u  _< r .  

It follows from the equation and boundary conditions for v~,,~ and the maximum 
principle applied in K that v~, is uniformly bounded in K.  Using the equation for 
rE, this implies that the functions ce(ve) are uniformly continuous with respect to t 
(see also [1]), and thus the functions c~(v~) are equicontinuous in K.  Hence there 
exist a subsequence of the sequence {s,~} of Lemma 2.6, which we shall denote by 
{s,~} again, and a function 5 E C ( K )  such that 

c;,~(v~,~) --+ a in C ( K )  as s,, ---+ 0. (2.21) 

We observe that, as s ---+ 0, 

1 
c~(s)--+ c(s) = ~ i (s)  for  -Vboc < s < 0 

0 for 8 ~ --r 

(2.22) 

and it is natural to ask whether v~,~ converges to a function v which satisfies the 
equation 

c(v) t = v ~  in K .  (2.23) 

By (2.22), equation (2.23) is of elliptic-parabolic type, i.e., formally it is a parabolic 
equation in the set f2 in which -~/Joo < v < 0, while (2.23) reduces to the elliptic 
equation v ~  = 0 in K \ f2. These formal considerations lead to the following 
definitions of J? _C K, the free boundary x = c4t) which separates, at least if a( t)  > 0, 
the sets f2 and K \ ~ ,  and the function v : K --~ R: 

s'~ = {(u, t) E K : a(u, t) > o} 

a C t ) = i n f { u > 0 : a ( s , t ) > 0  for u < s < r } ,  ~ - - < t < - T  (2.24) 

v(u, t) = { c-1(5(u'  t)) if (u, t) C 32 (2.25) 
- ~ o - ( ' ( t ) ( u - c ~ ( t ) )  for 0 -<u -<c~( t )  if c ~ ( t ) > 0 .  

We observe that 0 __< c~(t) < r, a(c~(t),t) = 0 if c~(t) > 0, and, by (2.21) and the 
parabolicity of  the equation (2.23) in ~2, 

21 
v~n -~ v in Clo' c (Q) as n -~ oc .  (2.26) 

w 

In particular c(v) = a in K and, by (2.21), 

cen(v~,~) ~ c(v) E C ( K )  as n --* ~ .  (2.27) 
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It follows from (2.25) that v is uniformly Lipschitz continuous with respect to ~, 
and it is straightforward to show that v is a solution in the sense of distributions of 
the problem 

c(v)t = v ..... in K 

v,(0,  t ) = - r  for r _ < t _ < T  
(II) v ( r , t ) = f ( t )  for r _ < t  ~<T 

c ( v ( ' u , t ) ) = g ( u )  for 0 _ < ~ z - < r ,  

where the functions f and 9 are determined by the relations 

f~,~ -~ f in Cl([r,T]) as n --, oc 
2 g ~  --+ g in Cloc((O , r]) as rz--+ .co. 

Using the equicontinuity of c~(%) and arguing as in [1, kemma 4.3], we find that 
the functions ~e(%z(z , t ) )  are equicontinuous near the lateral boundary z = 4(t), 
and the proof of  Lemma 2.7 is complete. 

Remarks. (i) In general the function v defined by (2.25), does not satisfy the 
inequality v > -~Po~, from which it easily follows that the functions ~e(%x) are 
not equicontinuous up to the lateral boundaries. 

(ii) In Sect. 3 we shall give an interpretation of the following result, which we 
shall prove in the appendix: 

L e m m a  2.8. Let c~ be defined by (2.24). Then 

a r C({t ~ [r, T l : r  < 0}),  

and a is not necessarily continuous in t E [r, T] if ~'(t) = O. 

The next step is to prove that ~, has bounded variation up to the lateral boundaries. 

L e m m a  2.9. u E BV(QT)  n L'~(O, T; BV( ( - r  r for any T E ( -  1,0). 

It is sufficient to prove the result near the lateral boundaries. The proof is quite 
similar to lhe one of Lemma 4.1 in [1], and we omit it. We observe that it follows 
immediately from (2.17) that u E L~(O, T; BV( ( -~ ( t ) ,  r 

The existence proof is completed by the following result. 

L e m m a  2.10. Let u be defined by Lemma 2.6. Then u is a solution of Problem I. 

Proof. Lemma's  2.5, 2.6 and 2.7 imply that there exists a function ~ which is 
continuous in Q7' for any T E ( - 1 , 0 )  such that ~ = ~ ( % )  in QT. In view of 
Lemma's  2.6 and 2.9 it remains to show that the trace ft of  ~ satisfies condition (2.1). 

We consider only the boundary :c = ~(t). Lel t o E (--1,0). If  --~p~ < 

~(~(t0) ,t0) < ~P~, there exist c o > 0 and ct > 0 such that I~pe(uea:)l < ~p~ - ct 
in a neighboarhood of  t 0. Hence %~ is uniformly bounded in this neighbourhood 
and %,~ converges uniformly to u; in particular ~({(t), t) = 0 for a.e. t for which 

I~(r t0)l < ~ .  
To complete the proof we have to show that ~(~(~) ,  t) < 0 for a.e. t for which 

Iv3(r t)L = V,~. By (2.17), ~(~(t). t) < 0 for all t, and the result follows from the 
fact that ~aK(t), t) > 0 for a .e . t .  
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It remains to prove that the solution of Problem I is unique. For later purposes we 
shall prove a more general comparison principle for the following class of sub and 
supersolutions: 

Definition 2.11. A function u : Q* -~ R is a subsolution of Problem 1 if, for any 
T c ( - 1 , 0 ) ,  

(i) u E W, lo'ct(Q) N C(Q*) N BV(QT)," 
(ii) there exists a function ~ : Q ---* R which, for some 6 T > O, is continuous in 

the set 
{ ( x , t ) � 9  r or x > r  , 

such that 
~(x, t) = r t)) for a.e. (x, t) C Q ; 

(iii) for any nonnegative Lipschitz continuous function X : Q* --~ R with compact 
support in Q* 

r  r  

f u ( x ' T ) X ( x ' T ) d x <  f U o ( X ) X ( x , - 1 ) d x + / / ( u X t - ~ ( u x ) x x ) d x d t ,  

--  r  - -  r  - -  1)) Q T  

(2.28) 
and 

•  _-<0 and %@1 - ~ ) = 0  if x = :t:r fora.e t r ( - 1 , 0 ) ,  (2.29) 

where ft denotes the trace of the function u at the lateral boundaries x = +r  of Q. 

A supersolution of Problem I is defined similarly, with the reversed inequality in 
(2.28) and with (2.29) replaced by 

: t : ( z _ ~ > = O a n d ~ z _ ( l ~ l - ~ ) = O  ~ f x = + r  f o r a . e t E ( - 1 , O )  (2.30) 

(we have used the notations a+ = max{a,  0} and a = - rain{a, 0} for a E R). 

Observe that a solution of Problem I (according to Definition 2.1) is both a 
subsolution and a supersolution of  Problem I, and the uniqueness of the solution 
of  Problem I is a consequence of the following comparison principle: 

T h e o r e m  2.12. Let hypothesis H be satisfied, and let u and v be, respectively, a 
subsolution and a supersolution of Problem I. Then 

u<=v a.e. in Q.  

Proof. Let T r ( -  1,0), and let 6 c (0, ~6T). We define the function X6 E W I '~(QT) 

[ ~ ( x  + r  - 6) 

1 
X6(X, t) = 1 

( r  - 6 - x)  

0 

by 

if - ( ( t ) + 6 _ < z _ < - r  

if - r  

if ~ ( t ) - 2 6 _ < z _ < r  

if Ix • r  _-< 6 
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for - 1  < t < T.  Let  r E ( - 1 , T ) ,  let e > 0 be small  enough,  and let 
g ~  C C 1 ( [ -  1, TI )  satisfy 9~s - 1 in [ r  + g, T],  9~e -~ 0 in [ -  1,7-], 0 < 9~-~ < 1 in 
(7-, 7. + e) and 0 =< 9're =< 2 / e  in ( - l ,  T].  Subst i tut ing the function ;g = (u-v)+x59~-e 
into the integral  inequal i t ies  (2.28) for u and v respect ively ,  subtract ing the two 
inequali t ies,  and letting e ---+ 0, we obtain 

r 

/ 
--~'(T) 

< 

(u - v)2+(z, T)X~(x, T) dz 

r 

f (u - v)2+(x, r)Xe(x, r) dx 
-r 

II(I I 4- ~ ( (U  -- U)2Xe)t "4- ~ (U  -- V)2X6t 

{~>-} 

- ( u  - V ) x ( ~ ( u  x)  - ~(Vx) )X  e - ( ' ~ ( % )  ~ ( V x ) ) ( u  - v ) X e x ~  
/ 

where we have set {u > v} = {(x,  t) r Q r  : t > r ,  u(z, t) > v(z, t )},  and where we 
have used the convergence  

r 

Or ((r) 

as e -+ 0, since u and v are cont inuous and bounded  functions in Q*.  Since x~t < 0 
and (p - q)(~b(p) - ~b(q)) > 0 for  p, q E R, we find that 

r 

(u - v)2+ (x, r))r T) dx 

-r 
r 

<= -21 . /  (u - v)2+(x, r)Xs(x, r) dx 

-r 
7' -<(t)+26 r 

r -r r 

where ~ and ~,, indicate the function ~ in Defini t ion 2.1 corresponding to, 
respect ively ,  u and v. Let t ing first 7. -+ - 1  and then 6 -+  0, this leads to 

r T ' /  / -~ (u - v)2+(x, T) dx =< [(~2 - ~ ) ) + ( ~  - ~J' )]~=r162 dt. 

((T) 0 

(2.31) 
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It remains to show that the right-hand side of (2.3t) is nonpositive, i.e., that for 
a.e. t E ( - 1 , T ) ,  

(~, ,  - O,~)(((t), t) < 0 if  (~ - O)(~(t), t) > 0 (2.32) 

and 
(~u  - ~ v ) ( - ~ ( t ) , t )  --> 0 if ( f i -  0 ) ( - ( ( t ) , t )  > 0 .  

We only prove (2.32): if ~2(~(t)) > 0, it follows from (2.29) that ~ ( ~ ( t ) ,  t) = - 0 ~  
and thus ( ~  - 0v)(~(t),  t) _-< 0; if g(~(t)) _<_ 0, we may assume that/?(~(t)) < 0 and 
hence, by (2.30), 0~({(t),  t) = ~ ,  which implies that (~** - 0~)((( t) ,  t) < 0. 

3 Discont inuit ies  at the lateral b o u n d a r i e s  

We introduce a family of  travelling wave solutions of (1.3), which we shall use 
to prove that the solution of Problem I does not necessarily satisfy the boundary 
condition at x = • In particular we are interested in travelling waves with 
unbounded gradient. 

Choosing c > 0 and setting rl = x - ct, we look for the solution v(rl; c) E C2(R +) 
of the problem 

f O(v ' ) '  + c v  I = 0  in R +  
(TWr 

v(O + ) = 0 ,  v'(O + ) = + ~ .  

We observe that if vO/) is a solution of Problem TW 1, then vOI; c), defined by 

1 
vOl; c) = - v (c r l ) ,  rl > O, 

C 

is a solution of Problem TWo. 
In order to solve Problem TW l, we integrate twice: 

~ ( V  1) -~- V = 07~o ~ v! = ff)--l(~/)oo 1 V), 71 > O ,  

and thus the function v defined by 

rOD 

/ O _ l ( ~ o  ~ _ s ) d S  = rh 

0 

r / > 0  (3.1) 

is the unique solution of Problem TW t. We notice that v(+cxO = ~b~. 
For any c > 0 and A __> 0 we define 

l 
vOI; c, A )  = a + -v(c~/), v! > O. 

C 

Hence v(rl; c, A) satisfies 

{ O ( v ' ) ' + c v ' = 0  in R + 

v(0 + ) = A ,  v ' (0  + ) = + o c ,  v(+cx~) = A + 0 ~  
C 

(3.2) 
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We use the travelling waves to prove the main result of  this section. 

T he o re m 3.1. Let ~ and ~ satisfy hypotheses H1 and H2. Then there exist initial 
functions u o satisfying hypothesis H3 such that the solution u of Problem I satisfies 
for some 1 < t o < t~ < 0  

l i m i n f u ( x , t ) > 0  if t o < t < t  I.  
x-~ir 

Proof. Let C > 0 be a constant to be determined, and let u 0 satisfy hypothesis H3 
such that 

U o ( x ) > C c o s  ( 7rx ) i f , x , < ~ ( - ~ ) .  
2 ~ ( - ~ )  

Since ~,' is uniformly bounded, it follows from the comparison principle (Theorem 

2.12), applied in the s e t K =  [ ~ ( - ~ ) , C ( - ~ ) ]  • [ - 1 ,  - ~ ] ,  that for some B > 0, 

which does not depend on C, 

u(x,  t) > Ce -13r cos for (x, t) r K ,  

whence, in particular, 

u(0.  t ) > C e  B/2 for - 1 < t < - !  , - - 2 " 

We set 

A = Ce  - u / 2  ~'o~ 
C 

and we choose C so large that A > 0. Let v0/; c, A) be defined by (3.2) and let 

C( -  1) + C(--~) 
x~ = - 2 

w(x,  t) = v((x  - Xo) - c(t + 1); c, A) 

r = s u p { - 1  < t < 0 " - @ s ) < x  0 + c ( s + l )  for - l _ _ < s < t } .  

We observe t h a t - r  0 < - r  ~ ) , and ,  since - r  !)2 = x 0  + c ( l - 2 ) "  
1 we h a v e - I  < - r  = < - g .  

Since 

w(0, t) < v (+ec ;  c, A) = A + ~oc = c e - B / 2  < u(0, t) for -- 1 < t < 1 
c = - - 2 '  

it follows from the comparison principle (Theorem 2.12) applied in the set {(x, t )  : 
x o + c( t  + 1) _< x -< 0 , - 1  _< t -< r } ,  that if u 0 satisfies 

lto(X ) >W(x ,O)  for X 0 < X ~ O, 
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then 
U ( X , T ) > W ( X , T )  for - - ~ ( t ) < x _ _ < 0 .  

Hence lim inf u(x,  7-) >= A > 0. 

Choosing x 0 slightly smaller, one proves in a similar way that u 0 can be chosen 
such that l iminf  u(x , t )  > 0 for t E [to,T], with t o < 7-. 

x---*-~(t) 
Finally we consider the regularity of u near the lateral boundaries. 

The o r em 3.2. Let hypothesis H be satisfied and let u be a solution of  Problem I. Then 
the functions 

u(~(t) , t )  and u ( -~ ( t )  +,t) 

are continuous at t o E ( - l , 0 )  if ~'(to) < O. If  ~(to) = 0, these functions are not 
necessarily continuous at t o . 

Pro@ We restrict ourselves to the function u (~ ( t ) - ,  t). Then it follows from the proof 
of  Lemma 2.7 that u ( @ t ) - ,  t) = ct(t), where ct(t) is defined by (2.24), and Theorem 
3.2 is a consequence of Lemma 2.8. 

4 Theorem A 

In this section we consider the case in which ~ satisfies 

0 

l 

(4.l) 

In order to prove Theorem A, we introduce the new variables (see also [18]) 

I; 
Y -  r for Ixl < r  - 1  < t < 0  

T =  1 ds for - l _ < t < 0  
- 1  r  - ' 

(4.2) 

i.e. - 1  = y < 1 and 0 =< r < +oc .  Thus t = t(T) is a function of T, and we shall 
denote the functions Tz(y, 7-) =_ u(x,  t) and u0(Y) ~ Uo('~:) by, respectively, u(y, T) and 
Uo(Y). Hence u satisfies the equation 

( u ) = 0  in D = ( - I , 1 ) •  +, 

where we have set 

= - - y ~ ( t ( r ) ) % .  

Y 

(4.3) 

We shall construct a supersolution of the form 

~ ( y , T ) = ( ( t ( T ) ) g ( y ) + f ( T ) ,  
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where 9 C C2( [ -1 ,  1]) and f E WL'~ +) are functions to be determined; in 
particular we require that g satisfies 

{ ~ ( ~ )  > 0 a.e. in D 

~(y ,O)  > Uo(y) for lyl < 1 
i2(-4-1,7-) >= 0 for T > 0. 

Hence, by the comparison principle, 

u < <(t(T))g(y)  + f ( T )  in D .  

To determine 9 and f ,  we calculate 

(~) = ~<'(g - Y9') + f '  - ~ (9 ' ) '  a.e. in D .  

Let a E (0, ~b~) and let 9 be defined by 

- ~(9 ' ) '  = a for lyl < 1 

9(+1) =o ,  
l 

i.e., g(y)  = - f ~  l ( - - a s ) d s .  Substituting g into 
Y 

constant C > 0 
(~)>C(('+f'+ct in D. 

(4.4) 

Z (~) we obtain that for some 

oc  0 
p P 

/I((t(T))l<(t(T))dT-= - / ( ( t )d t  = <(-1) < ~o, 
*J  , l  

0 - 1  

it follows immediately from the definition of f that 

f(~-) ~ 0 as ~- ~ oc ,  (4.5) 

and that, if r = 0 as t --~ 0, there exists a T, > 0 such that 

f ( 7 ) - ~ O  for 7_>_T 1. (4.6) 

Clearly (1.5) follows from (4.4) and (4.5), while (1.6) is a consequence of  (4.4) and 
(4.6), and so we have proved Theorem A. 

Since 

It remains to determine f(T). In order to satisfy the inequalities at the parabolic 
boundary of D,  we require that 

f ( 0 ) =  max u0(9) and f > 0  in R +.  

In view of the condition that % (~) => 0 in D, this leads to a function f defined by: 

{ if f ( r )  = 0 and 
i f ( r )  = 0 Cr162  + c~ > 0 

-- C<(t(T))<'(t(~-)) - (~ otherwise 

f(0)  = max uo(y ) .  -l_<V<l 
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5 Theorem B 

In this section we consider the case in which 

0 /1 
~(t)dt < oc  (5 .1)  

--1 

and we construct solutions which do not vanish at the vertex of Q. Theorem B is an 
immediate consequence of the following lemma: 

L e m m a  5.1. Let hypothesis H and condition (5.1) be satisfied, and let c and a o be 
constants satisfying 

0 

f 1 d~, (5.2) c > ~  and % > e  ~(t) 
-1 

x ] 
= ~-(- 1) J " + a~ 

0 + 

then the solution u o f  Problem I satisfies 

J~o~ I~[ < ~ ( ~ ) ,  (5.3) 
C 

1 
u(0, t )>=a  o - e  ( ( t )  dt > 0  for  all t E  [ - 1 , 0 ) .  (5.4) 

[ 

ProoJ: We define for any (x, t) E Q* such that ]z I < ~ ~(t) 
C 

[ /(  ] u(z, t )  ~ - I  _ cs _ ~ ds + f ( t )  (5.5) 

0 +~ 

where f E C ' ( [ - 1 , 0 ) )  is a positive and nonincreasing function to be determined. Let 
a~2 be the subset of  the set of  definition of u in which u is strictly positive. Since ~ is 
nonincreasing with respect to t, it follows that there exists a continuous nonincreasing 
function ~, which satisfies hypothesis H2, such that 

= {(x,t) ~ Q* :lzl < ~(0}. 

Hence we obtain from the comparison principle (Theorem 2.12) in .(2 that if _u satisfies 

~(_U_u) = _u t -- ~(U_x) ~ =<- 0 in ~2, (5.5) 

then 
u _ > u  in .(2 (5.7) 

(we observe that _u satisfies (2.29) if x = • 
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From (5.5) we find that in s 

~(u_) = f ' ( t )  + r  s(~ 1), _ ds + ~ = ~(t~)' 

0 

and thus (5.6) is satisfied if we define f ( t )  by 

t 

f ( t )  = a o -  c J  1-~-ds. 
r 

1 

Hence we obtain (5.7), which, in view of the definition of u, yields (5.4). 

6 Theorem C 

In this section we shall prove Theorem C. By the comparison principle (Theorem 
2.12), it is sufficient to consider the case in which 

~(~) = c4-2~ (c > o).  (6. l) 

Introducing the new variables 

X 
Y -- ~ - t '  r = - log( -~) ,  

we obtain the following equation for g(y, r) =_ u(x, t): 

ft, = e_l/2~ ~(el/2~ ~y)y l - R +. �9 - 5 ! l u y  in ( - c , c )  x 

Hence the function 

v(y,T)  = el/2Tg(y,7) in (--c,c) X R + (6.2) 

satisfies the equation 

1 1 v~ = ~ ( v u ) y - ~ y v y + ~ v  in ( - c , c )  x R  +. (6.3) 

An important role will be played by the steady state problem con'esponding to 
(6.3): 

j ' ~ , ( ~ , ) , _  � 8 9  = 0  in ( - c , c )  
(III c) 

L ~( •  _-> 0 and - ~ ( •  = •162 if cp(• > 0. 

We shall call ~ E C 2 ( ( - c , c ) )  O C([-c ,  c]) a positive solution of Problem III~ if 
> 0 in ( - c ,  c) and if ~ satisfies the equation and boundary conditions (where ~r 

indicates the one-sided limit ~ ' ( c - ) )  of  Problem I. 
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The proof of Theorem C consists of several lemma's .  First we consider the 
linearized steady state problem. 

L e m m a  6.1. For any e > 0 the eigenvalue problem 

~ ' (O)gf  - ~y~' = -Ag~ in ( - c ,  e) (r~) 
t ~( ~:c) = 0 

has a principal eigenvalue A~ and a positive eigenfunction ~c C C2( [ - c ,  c]), which is 
decreasing and concave in (0, c). In addition A~ satisfies 

and 

O < Q  < e  2 :=~ Acj >Ac2 > 0 ,  (6.4) 

f ~ 

i v  as c-+ oo 
Ac -+ 

as e ~ 0 +. (6.5) 

1 
In particular there exists a unique c o such that Aco = ~ and 

{, > 2  ~f0 < c <  c0 
•c 1 (6.6) 

< 2  if e > e o "  

Proof. Rewriting the equation in divergence form as 

~t(O)(e-y2/(4~t(O))~t) ! ~- --,~e Y2/(4"U(0))(/9 in ( - -e ,e ) ,  

it follows from standard theory that A c exists and that 

} = min e -y2/(4~/(0)) ~ 2d �9 . A c ~t(O) ~ [ ( ~ )  y, [e-Y2/(4~l/(~ = 1  (6.7) 
~~176 [ L L 

In particular the minimum in (6.7) is attained in a positive eigenfunction ~ ,  and (6.4) 
and (6.5) are simple consequences of (6.7). 

The existence of c o follows at once from (6.4), (6.5) and the continuous dependence 
of A c on c. The monotonicity and concavity of G. are an immediate consequence of 
the equation and the positivity of  ~c. 

As a first consequence of Lemma 6.1 we obtain the following result about 
Problem I: 

L e m m a  6.2. Let H1 be satisfied and let r and c o be given by (6.1) and (6.6). I f  

C~CO~ 

then there exist initial functions u o satisfying H3 such that the corresponding solutions 
o f  Problem I vanish as (x, t) ~ (0, 0). 
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Proof. Let 6 > -~b'(0) be a constant to be determined, and let ,k ~ and ~c,6 denote, 
respectively, the principal eigenvalue and a positive eigenfunction of Problem Lc in 

which ~b~(O) is replaced by ~b'(O) + 6. By (6.6) A~ > ~, and hence we may choose 

6 > 0 so small that 
1 

A~,_~ > ~. 

Choosing a > 0 so small that 

/ 1 ( a ~ _ 6 ( y ) )  => ~p ' (0 ) -  6 in ( - c , c ) ,  

we find that ~ , _ ~  satisfies 

- ~ y a ~  + 2 a ~ =  (~-A~_6)a~=<0 in ( - c ; c ) .  

Hence, in view of the transformation (6.2), the function :5, defined by 

~ ( x , t ) = a x / - ~ - t ~ : , _ 6 ( ~ - - ~ )  for (x , t )  E Q * ,  

is a supersolution of Problem I if u 0 satisfies 

Uo(X ) < a ~ , _ e ( x )  for Ix[ < c.  

Since ~(x, t) ---+ 0 as (x, t) --+ (0, 0), it follows from the comparison principle that the 
solution with initial function u 0 vanishes at (0, 0). 

L e m m a  6.3. Let H1 be satisfied and let r and % be given by (6.1) and (6 .6) . / fc  > c o, 
then there exists u o satisfying H3 such that the solution u of Problem I satisfies 

u(x, t) -+ 0 as (x, t) ---+ (0, O) (6.8) 

if and only if 
Problem 111,: has a positive solution. (6.9) 

I 1 1 1 Proof. By Lemma 6.1 )~c < ~ and thus we have that Ac, 6 < E -  ~(~ - A ~ )  for 

6 > 0 small enough, where Ac,6 and the corresponding positive eigenfunction ~c,~ 
are defined as in the proof of Lemma 6.2. 

Let # > 0 be a constant to be determined below. Hence there exist arbitrarily 
1 1 1 small constants a > 0 and 6 > 0 such that )~c,~ < ~ - E (~ - "~) and 

l-p<<_ ~'(a~c'6) < 1 in ( - c , c ) .  (6.10) 
~ ' (0 )  + 6 - 

It follows from the second inequality in (6.10) that ~c,6 satisfies 

~ ' ( a ~ ' ) a ~ "  1 , 1 1 - T y a ~  + E a ~ >  (~ - -Ac ,~ )a  F > O  in (--c,c) .  (6.11) 

By the comparison principle we may restrict ourselves to solutions of Problem I with 
initial functions 

U 0 -~- a~c,6 
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and to steady-state solutions (in the (y, r )  variables) ~ which satisfy 

~o _> aq%,6 in ( - c , c ) ,  

with a arbitrarily small. Because of (6.11), the function v(y,r),  corresponding to 
the solution u(x, t) of Problem I, is nondecreasing with respect to r ,  and we may 
distinguish two cases: 

w(y) = lim v(y,r)  < oc for y E ( -c ,c)  (6.12) 
T ' - ~  O 0  

and 
lim v ( y , r ) = c c  for some y C ( - c , c ) .  

' 7 - - - - + O O  

We claim that, for a and 6 sufficiently small, (6.12) implies that 

(6.13) 

w is a positive solution of Problem III~, (6.14) 

and (6.13) implies that 
l imsup u(x, t )  > 0.  (6.15) 

(z,t)--~(0,0) 

Obviously (6.13) implies that Problem IIIr does not have a positive solution larger 
than a~o~, ~, while it follows from (6.12) that u(x, t) ~ 0 as (x, t) ~ (0, 0). Hence 
the proof of  Lemma 6.3 is complete if we prove (6.14) and (6.15). 

First we prove the following monotonicity property of vy: 

v y ( y , r  2 ) < % ( y , r l )  for O<_r  I < r 2 ,  O < y _ < c .  (6.16) 

Setting z = ~(vy), z satisfies 

l 

z(O, r) = 0 
1 _ %(c,r)- ~c~ l(z(c,r)) = 0 if  z(c, 7) > - ~  

in (0, c) • R + 

for r > 0  

for r > 0 .  

We claim that, for a and (5 small enough, at r = 0 

1 r 1 6 2  5y% <_ 0 in (O,c). 

Indeed, setting ~ = ~c,6 and A = A,:,6, we have that 

~'(0) + 6 ( 1 , ,'~ 
a~'(ap') ~'(a~')~(acf)" - ~y~(ap  ) ) 

2 (r162 
= a~n(a~') r +r + r + 

, , / l  
+g)  ( a p ) ~  ~ -  A ) ~ '  

<- 0 in (0, c) 

1) 1 //1 , 
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for a and 6 small enough, where we have used (6.10) (with p sufficiently small) 
1 1 1 and the inequalities A,.,6 < ~ - g(2 - 1~.), I'~"(~')l < aC, y in (O,c) for some 

C 1 > o, and ~ '  <__ - C 2 y  in (0, c) for some C 2 > 0. Hence it follows from the 
comparison principle that ~(vv ) is nonincreasing with respect to 7- in (0, c), as long 
as ~'(vy(c, ~-)) > - ~ .  If there exists T > 0 such that ~(vy (c ,  T)) = - ~ ,  then the 
monotonicity of  '~(vy) in the interval (T, oc) follows from the fact that then (~(vy) 
satisfies the Dirichlet boundary condition ~(~(vy) = ~o~ on {c} x (T, oc). Thus we 
have proved (6.16). 

Next we claim that the function w, defined by (6.12), is concave. Arguing by 
contradiction, we suppose that there exist - c  < y~ < Y2 < Y3 < c such that 

w(y 2) < w(y 1)+ 
w(Y3) - w(Y l )  (Y2 - Y l ) .  

Y3 - Yl 

Let c > 0 be so small that 

w(Y2) < w ( y  l)  - 5 + 
w(Y 3) w(Yl)  (Y2 - YL)" (6.17) 

Y3 - Yl 

Then there exists 7-o > 0 such that 

?)(YI'7-0) ~ w ( y l )  - -  E a n d  v(y3,r0) ~ W ( y 3 )  --  ~ ,  (6.18) 

and, in the set (Yl, Y3) • (7-0, oc), v(y, Y) is a supersolution of the Cauchy-Dirichlet 
problem 

{ % = ~ , ( q ~ ) y  in (Yl, Y3) • (7-0, ~ )  

q(Yl,  7-) = v(Yl ,  7-O) for 7- > 7-0 

q(Y3, 7-) = v(Y3, TO) for T > 7-0 

q(y, 70) = v(y ,  7-O) for Yl < Y < Y3, 

i.e. v(y,7-) is larger than the corresponding solution q(y,7-) in (Yl, Y3) x (7-o, oc). 
The derivative qv is bounded, since it is bounded on the parabolic boundary of 
(Yl, Y3) x (7-o, oc). This implies that the problem for q is uniformly parabolic and, 
by standard theory, q(y, 7-) converges to the unique steady state 

U(Y 3, T O ) - -  V ( y l ,  ~ 7-0) 
~](Y) = V(YI,TO) + (Y -- Yl) 

Y3 - Yl 

as 7- --~ oc. By (6.17) and (6.18), w(Y2) < ~/(Y2), and hence there exists 7-1 > 7-o such 
that 

w(Y2) < q(Y2, TI) < V(Y2, 7-0, 

and, since w(y 2) _-> v(y2,7-) for all 7-, we have found a contradiction. Thus w is 
concave in ( - c ,  c). 

From the concavity of  w it follows that w'  is locally bounded in ( - c ,  c), and since 
v v is monotone with respect to 7- in (0, c) and, by symmetry, in ( - c ,  0), it follows that 
vu is uniformly bounded in sets of the form ( - c  + c, c - c) • R +. Thus, by classical 

theory, w satisfies the equation ~(w' ) '  I , 1 - 5 y w  + 5w = 0 in ( - c ,  c), and it follows 
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easily that w satisfies w~(c ) = - o c  if w ( c - )  > 0. Hence w is a positive steady state 
and we have proved (6.14). 

Finally we prove (6.15). The set in which v(y, 7-) tends to infinity as ?- ~ oc is a 
nonempty connected interval I and we may define Yo E [0, c] by I = [-Y0, Y0]" We 
claim that Y0 --- c. 

Arguing by contradiction, we define 

w ( y ) =  lira v(y, 7-) for y0 < y = < c .  
T---+ OO 

Arguing as in the proof of  (6.14), it follows that w is concave in (yo, C) and 
w(g~) = oc. But such a function w does not exist and we have found a contradiction. 

Hence v(y, T) ~ oc as ~- --~ oc for lyl < c, which implies that, for any lyl < c, 

~(y / v ~ ,  t ) 
+ o c  as t - - ~ 0  , 

and it is not difficult to show that there exists t o ~ ( - 1 , 0 )  such that condition (5.3) 
is satisfied by u(x, to), with t = - 1  replaced by t = t o (in particular condition (5.2) 
becomes a 0 > C v / ~ 0  for some C > 0). Finally (6.15) follows from Lemma 5.1. 

L e m m a  6.4. Let ~ satisfy hypothesis H1. Then there exists c* >= c o such that Problem 
III~ does not have positive solutions for c > c*, and such that, if c* > c 0, Problem 
Il l  c has positive solutions for c o < c < c*. 

Proof. In view of the comparison principle and Lemma 6.3, it is sufficient to show 
that for c large enough Problem IIIe does not possess positive solutions. 

Let # be a nonnegative constant such that 

~ ' ( p ) < ~ ' ( O ) + p  if p > O ,  

and let A~,u and ~ , u ( y )  be defined as in the proof of  Lemma 6.2. By Lemma 6.1, 

1 Ae,~ < 

for c large enough, and we claim that for such values of c Problem III c does not 
possess positive solutions. 

We argue by contradiction and suppose that ~ is a positive solution. Let A > 0 
be defined by 

A = max{a  > 0 : acpe,~ < ~ in ( - c ,  c)} .  

Setting 
l t ~_ 1 ~ ( ~ )  = r  - ~y~ ~ ,  

we have ,)5(Apc,~ ) > 0 in ( - c ,  c), and it follows from the maximum principle and 
the boundary point lemma that there exists r > 0 such that 

- Ar => c ~ , p  in ( - c , c ) .  

The positivity of e is a contradiction with the definition of A. 
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Substituting # = 0 in the proof of Lemma 6.4 we find a class of  functions '~ for 
which the constants c* and c o coincide: 

Coro l l a ry  6.5. Let ~ satisjS, hypothesis H1 and let c o and c* be defined by Lemma's  
6.1 and 6.4. If  

~//(p) < ~ ' (0)  for p > 0,  

then c* = c o. 

Proof o f  Theorem C. Theorem C is a consequence of  the Lemma ' s  6.2, 6.3 and 6.4. 

To conclude this section we prove that c* and c o do not coincide for all functions 

L e m m a  6.6. There exist functions ~/~ which satisfy hypothesis HI  and for  which 
c* > c o (more precisely, for  any constant c there exists a function ~/~ satisfying H l 
for  which c* > c). 

ProoJ: Let ~ ' (0 )  be given and let c > c 0. We define the function 9 c C ( [ - c ,  c]) by 

v ( y )  ~--- o~(L  2 - (lyl- y o ) 2 )  , 

where c~, L > 0 and Y0 < 0. Choosing L = c - Y0 we have that 9 ( •  = 0, ~? > 0 in 
( - c ,  e), and, for 0 < y < c, 

( 9 ) ~ ( 9 ' ) '  ~ - '  ~- . . .  - ~yv + ~v 

I 2 
= -2c~b ' ( -2c~(y  - Yo)) + ay(y  - Yo) + ~c~(L - (y - yo) 2) 

1 2 
< c , ( - 2 ~ ' (  2c4y Yo)) + (Yo + L ) L  + ~(L - Y~o)). 

We observe that I - 2oe(y - Y0)l belongs to the interval 

I,~ = [2alyol,  2 a L l ,  

and hence Z (9) < 0 in (0, c) if ~b satisfies the condition 

I 2 
2@'(s) > (Y0 + L)L  + 5(L - y2) for tPl E I , .  

Since ~'(0 +) = 2oey o < 0, the function 

, / ~ 9 ( ~ / , / 7 b  

is a supersolution of  Problem I if  

u o < 9  in ( -c ,c ) .  

Hence, by the comparison principle, u(x, t) ---+ 0 as (x, t) ~ (0, 0), and thus c =< c*. 
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Appendix: Proof of Lemma 2.8 

The elliptic-parabolic Problem II has been extensively studied by Hulshof e.a. [3, 
10, 15 -  17] in the case in which c is uniformly Lipschitz continuous. Most of the 
results carry over to the more general case in which c ' ( - ~ )  is not necessarily finite. 
In particular Problem II has a unique weak solution, which satisfies a comparison 
principle [17] (below we shall use the comparison principle several times and for its 
precise form we refer to [17]; important is the fact that at the initial time the value 
of  c(v) is important for the comparison principle, rather than the value of v itself). 

The properties of the interface z = c~(t) were studied in [15,16]. In particular it 
can be deduced from [16, Theorem 1.1(i)] that a is not necessarily continuous at 
points at which (" vanishes. It remains to prove that 

-~ ' ( to)  > 0 ~ a(t)  is continuous at t 0. (A.1) 

Hulshof has proved (A.1) in the case in which c is Lipschitz continuous. His 
proof yields in addition a modulus of continuity of a. Below we shall indicate a 
simplification of  his proof, which allows us to work with general functions c, but 
which does not provide a modulus of continuity. 

Proof of  (A.1). Following [15, Lemma 1 ], we have immediately from the continuity 
of  c(v) that 

lim sup c~(t) _< a(t0).  
~---+ t~ 0 

In particular c~ is continuous at t o if ct(t0) = 0. 
So let c~(t 0) > 0. First we prove that 

lim infer(t) ->_ a(to).  (A.2) 
t---+ t,0~ 

Let c > 0 be arbitrary and let ?5 0 > 0 be such that 

- r  => ~0 > 0 (A.3) 

in a neighbourhood of t 0. Then the function 

~ ( u )  = - ~  + e + ~o(U - a(to)) 

is a supersolution of Problem II in [0, a(t0)] • [t 0, re] for t~ - t o small enough, and 
hence, by the comparison principle, ~:(ve(u)) => e(v(u, t)) in this set. In particular 

ct(t)__>a(~o)-e/(5o for t o < t  < t ~  

and (A.2) follows. 
It remains to show that 

First we shall prove that 

lim infa( t )  => a(t0).  (A.4) 
t~---+ t o 

lim infa( t )  = lira sup a( t ) .  (A.5) 
~--+~O t ~+~fl- 
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We set 
b 0 = lira sup a ( t ) .  

t ~ t  0 

Let t,~ --~ t o as n -+ oc such that a(t,~) -+ b o. Since c(v) is continuous,  for any c > 0 
there exists  a t ime t~ E [m, to) such that 

v(bo, t ) < - ~ / J ~ + ~  for t~ < t < t  o.  

If  we define 

~ ( u ) = - ~ p o ~ + ~ + ~ 0 ( u - b o )  for O _ < u _ < b o ,  

there exists  n e C N such that 

c ( v ( u , t ~ ) )  < c(~?(u)) for 0 < u < b o. 

Hence it fol lows from the compar ison  pr inciple  that 

c(v(u(t))) < c(~(u)) in [0, bo] x [ t ~ , t o ] ;  

in par t icular  a(t)  > b o - c6 o in (t~, to), and, since e is arbitrary,  (A.5) fol lows.  
F rom (A.5) it fol lows that l im a ( t )  exists,  and to comple te  the proof  of  (A.4),  

t - + t  O 

we have to show that 
lira ct(t) _> a ( t o ) .  (A.6)  

�9 . , t - + t  0 

Arguing  by contradict ion,  we suppose that 

a 0 = l im c4t)  < c~(t0). 
t - + t  O 

l 

Let d o = 7(a  o 4- a ( to)  ) and 

v ( u ) = - ~ b o o  < 6 ( u - d o )  for  d 0 _ _ < u ~ r ,  

where 6 > 0 and where r is defined by (2.20). By  the definit ion of  a o and d o, there 
exists t 1 E [v, to) such that 

v(do) = - ~  < v(do, t) for  ti  __< t =< t o . 

Using the continui ty of c(v), we may choose  6 > 0 so smal l  that 

v(r)  < v(r , t )  for t 1 <__t =<to,  

and 
c(v(u))  =< c(v(u,  t i ) )  for d o _< u -< r .  

Hence,  by the compar i son  principle,  

c(v(u)) < c(v(u, t)) in [do, r]  • [ t l ,  to] ; 

in par t icular  c~(t0) __< d 0, and we have found a contradict ion.  
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