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1 Introduction and results 

We consider the Schr6dinger differential expression 

T =  - ( 1 7 - i b )  2+ V 

over R", where the functions V:R"- - .  R and b = ( b l  . . . . .  b,): R " ~  R" are 
assumed to satisfy 

~'j6 { 1 , . . .  , n}:bj6 L<loc(R"), V ' b e  Lz,loc(R") , 

V~ L2,lor V_ ~ K(R") + O(Ix12) (A) 

Here V" b is meant in the distributional sense, V_:= max{0, -- V} denotes the 
negative part of Vand is decomposed as V1 + V2 with V1 in the Kato  class K(R") 
(see e.g. Cycon et al. [CFKS, Definition 1.10]) and (1 + l" I)-/V2 bounded, where 
we may assume V1, 1/2 > 0. 

Under these conditions, T I C ff(R") defines an essentially self-adjoint operator 
in L2(R"). For V_ = VI this is claimed by Simon in [Si3, Theorem B.13.4], where 
Leinfelder and Simader [LS] is given as a reference for a proof. However, their 
Theorem 4 does not cover the situation given by (A) completely, since they have to 
assume V1 to be A-bounded. Therefore we will sketch a proof of essential self- 
adjointness on their line in Sect. 2.4. 
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The self-adjoint operator defined as the closure of T I C;'~(R ") will be called 
T again. The goal of this note is to provide a complete characterization of the 
spectrum of Tin terms of weak eigensolutions, i.e. functions u e Lz.lo~(R") satisfying 

for some ). ~ R. (We then write Tu = 2u.) We will show that the spectrum is the 
closure of the set of those real numbers for which there is a polynomially bounded 
eigensolution. More precisely, our principal result reads as follows. 

Main Theorem. Let  b and Vsatisfy (A). Assume in addition that Ix[ 2 V2(X ) ~ 0, as 
IX[--* CO. Then 

a(T)  = {2c  R; ~s > 0 3u + 0,(1 + I ' l)  - S u e  L~,~(R"): Tu = 2u} . 

The Main Theorem is an immediate consequence of the following two asser- 
tions which will be proved in Chap. 3. 

Proposition 1. Let b and V satisfy (A). Then 

o ( T )  c { 2 e R ;  3s > 0 ~u 4:0,(1 + I.t)-~u E L~(R' ) :  Tu = 2u} . 

Proposition 2, Let b and V satisfy the assumptions of the Main Theorem. Then 

{2 e R; 3s > 0 3u =# 0,(1 + i" t) -su 6 L.,,(R"): Tu = ,tu} c a ( T ) .  

Our proof of these two propositions will actually only cover the case n > 3, 
because of citations from other work, where this restriction is made for conveni- 
ence. However, all what is needed here also holds for n = 1 and n = 2. 

The spectrum of Schr6dinger operators T consists of those energy levels, e.g. for 
systems of atomic or molecular particles, which are physically permissible, while 
bounded eigensolutions represent states where the particles live somewhere, 
though not necessarily localizable. The truth of the statement of our Main The- 
orem with "polynomial boundedness" replaced by "boundedness", i.e. s = 0, is thus 
a familiar assumption in Quantum Mechanics. To our knowledge, it is an open 
mathematical problem, whether Proposition 1 and therefore the Main Theorem 
should hold with s --- 0 (see the discussion on p. 509 of [Si3]). 

We want to point out that our result is optimal in several respects: 
(i) The assumption of essential self-adjointness on C; ' (R")  is basic for the 

treated question. It shows that weak solutions as defined above make sense and it 
implies the desirable fact that a weak solution of Tu = )~u is an eigenfunction of T if 
and only if u e L2(R"). 

(ii) Once essential self-adjointness on C ~ ( R ' )  is required for 
T = - ( V -  ib) 2 + V, assumption (A) will be difficult to beat (despite for patho- 
logical situations): bj E La, loc(Rn), ~7. b ~ L2,~oc(R") and V e Lz,loc(R n) are necessary 
for C;~ ") c D(T).  For the global behavior of V_ like O(Ix] ') ,  ~ = 2 is known to 
be the borderline for essential self-adjointness. Finally the Kato class has turned 
out to be the biggest "nice" class describing local singularities. Of course, it 
contains physical N-body potentials. 

(iii) The additional assumption txl - z  V2(x ) --~ 0 in Proposition 2 can not be 
dropped, i.e. weakened to boundedness of Ix I-2 Vz(x) as in (A). At least in the case 
n = 1 this follows from an example of Halvorsen [Ha]. His example actually treats 
the analogous question for operators on the half-line, but is easily seen to imply 
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a similar example on the whole line. The discussion of this example in Hinz [Hi2, 
Chap. 5] shows that for n > 2 the question is open if the condition I x I - 2 V2 (x) ---* 0 
can be dropped in Proposition 2, and consequently in the Main Theorem. 

The mathematical history of both problems contained in Propositions 1 and 2, 
respectively, started in the early 50s with the same person, Eh. Eh. Shnol', but 
followed quite different tracks thereafter. 

Proposition 2, with b = 0 and V continuous with I x I-  2 V_ (.~) ~ 0, was proved 
by Shnol' in 1953 [Shl, Theorem 1]. The later development concentrated on 
weakening the local assumptions on V. Hinz, based on Shnol's method, showed 
that continuity of V can be replaced by a local Stummel condition [Hil, Corollary 
3], while Simon [Si2, Theorem 1.2], employing semigroup techniques, needs only 
a local Kato condition, but has to assume V_ to belong to the global Kato class. In 
[Si3] he reconsiders Shnol's method (second proof of Theorem C.4.1; cf. [CFKS, 
Theorem 2.9]), which is in fact strong enough, as pointed out in [Hi2, Corollary 
4.7], to recover Shnol"s result assuming only V_ e K~o~ and j x I- 2 V_ (X) ~ 0, but 
with no restrictions on V+ := V + V_ at all. 

Its basic idea, namely to construct a kind of singular sequence by cutting off the 
given polynomially bounded eigensolution outside balls with increasing diameters, 
will also be employed in our proof of Proposition 2 in Sect. 3.2. We are able to 
allow for non-vanishing b by the observation that relative form boundedness with 
respect to - A implies relative form boundedness with respect to - ( V -  ib) 2 and 
with the aid of an interpolation lemma which guarantees square-integrable first 
derivatives for locally bounded weak solutions. These tools are provided in Chap. 
2 (Lemmas 2.3 and 2.2, respectively). 

In our proof of Proposition 1 in Sect. 3.1 we will use results on the existence of 
expansions in generalized eigenfunctions for Schr6dinger operators. A history of 
this subject, which actually started in 1954 with a result on the half-line of Shnol' 
[Sh2, Theorem 1], can be found in Simon's account on eigenfunction expansions 
[Si3, C.5]. The latter also contains a proof of Proposition 1 for b = 0, V~ Kjoc and 
v _  ~ K + O(Ixl), Results for non-zero b e C 1 and V_ = O(Ixl 2) under stronger 
regularity assumptions on V (Stummel condition) were given by Stolz [Stl,  Satz 
1.4], see also [St2]. 

Whereas former proofs of eigenfunction expansion theorems showed that 
generalized eigenfunctions belong to polynomially weighted L2-spaces, a different 
method of proof given in Poerschke et al. [PSW] in addition yields a priori 
information on the gradients of generalized eigenfunctions. Theorem 3.1 and 
Corollary 3.2 show how to apply this to Schr6dinger operators with b and 
V satisfying (A). Since we are interested in singular magnetic potentials b, we will 
need these gradient properties in our proof of Proposition 1 in order to apply 
Kato's inequality. We provide an appropriate version of the latter in Sect. 2.1. 
From this we find local boundedness of weak solutions and finally are able to 
transform L2-bounds on eigensolutions into pointwise bounds with the help of 
a mean value inequality [Hi2, Corollary 2.14]. 

2 Tools 

In this chapter we provide some regularity properties of the operator T and its 
eigensolutions, which are of some interest on their own and will be the main 
ingredients for the proofs of Propositions 1 and 2 in Chap. 3. 
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2.1 Kato'  s inequality 

Kato introduced his famous inequality in [K2] to put aside the positive part V+ of 
the potential in the question of self-adjointness of Schr6dinger operators T. 
Compare [Hi2], where it has been made the base for local bounds on eigenfunc- 
tions u. This is also the way we use it here, but since our magnetic terms bj are not 
in C ~, as assumed by Kato, we have to strengthen the assumptions on u in 
demanding some Lp-property of Vu. 

If fact, Kato's inequality allows some singularity of b without strenghtening the 
assumptions on u, compare Simon [Sill ,  but this does not cover bs as in (A). 
Actually, this was the reason that Leinfelder and Simader [-LS] had to use new 
methods in their proof of essential self-adjointness for operators including such 
magnetic potentials. 

In our applications, however, we will have sufficient a priori information about 
u to use the following version of Kato's inequality. 

Lemma 2.1. Let  b satisfy (A). Then for any u ~ Lz,loc(R n) with Vu ~ L~,lo~(Rn ) and 
( V - ib)Zu ~ LI, Lot(R"): 

A lu[ > re[(sgn u ) ( V -  ib)2u] 

holds in the sense of  distributions. Here 

f O , i f  u(x) = O ; 
(sgn u)(x) = ~ x )  i fu(x)  + 0 

~lu(x)t' 

Proof  We refer to Reed and Simon [RS, p. 189f]. Since they assume bj ~ C 1, we 
have to replace their lemma by the remark that our assumptions imply 

( V -  ib)Zu : Au - i (V .b )u  - 2ib. Vu - IblZu 

in the distributional sense, thus showing that Au e Ll,loc(R n) and hence 

( V -  ib)2ua ~ ( V -  ib)Zu in Ll,lo~(R"), 

uo being the mollified u. The rest of the proof is identical to the one given in [RS]. 

2.2 L2-property of  gradients 

Once local boundedness of eigensolutions is established, it will be necessary to have 
some information about their first derivatives. Lemma 3 of [H i l l  implies that 
Vu ~ Lz,loc(Rn), if u ~ L~,loc(R") and Au ~ Ll,loc(R"). This holds true if we replace 
A by ( V -  ib) 2 under the weakest possible assumptions on b. 

Lemma 2.2. Let  b: R" ~ R" with b j ~ L z ,  loc(R ~) for  any j ~ { 1  . . . . .  n} and 
V. b 6 LLjoc(R"). I f  u ~ Lo~,loc(R") and ( V -  ib)Zu ~ Ll,lo~(R"), then Vu ~ L2,1o~(R"). 

Proof  In view of Weidmann [W, Theorem 4.25], it suffices to prove (cf. [Hil ,  
p. 175]) 

VR>O:: tcR>OVeE:]O,  1]: ~ [Vu~(x)]2dX<CR; 
B(O;R) 
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here u~ denotes the mollified u. We have for any x: 

(( V -  ib) 2 u)~(x) = A (u~)(x) - i(( V. b)u)~(x) + 2i ~, t?j((bju)~)(x) - (1 b [2 u)~(x). 
j = l  

With ~ a smooth function with support in B(0; 2R) and ~ = 1 in B(0; R), we may 
write 

- ~ ( ( V -  ib)Zu)~( = ~ [ V(u~)12~ + y ~  Vu~. V( + i ~ ( ( V . b ) u ) ~ (  

+ ~([b]Zu)~( - 2i ~ ~r 
j = l  

Considering only the real part of this equation and making use of 

reyu~Vu~" V~ = - �89 2 A~ 

and 

we arrive at 

B(O;R) 

21~gj(u~)(bju)~l ~ �89 10ju~lZ~ + 2 y I(bju)~12ff, 

I Vu~l m ~ ~1Vu~lm~ 

1 ~.  (mR)" II u II~ II A~ IJ =< Ilu IIo~ rl(V-ib)~uH1 + 2 n  

+ IlulF~ II V'blll + Ilull~ IIIblll~ + 2nl/uN~ IIIb1112 

+ 2  Ilull~llutlmHbjll211~fill~ + ~1Vu~12~, 
j = l  

where I1" II1, If" 112, and I1" IIo~ denote the norms in L1, L2, and Lo~ of B(0; 2R + 1), 
respectively. [] 

2.3. Relative form boundedness 

Let V+ ~ Ll,~oc(R") be non-negative and bj~ L2,1oc(R") be real-valued for any 
j e {l . . . . .  n}. We define Dj:= 0j - ibj. Then the quadratic form qo with domain 

D(qo) = { f ~  L2(R"); V~+/2f~ L2(R"), Vj ~ {1 . . . . .  n}: D j f ~  L2(R")} 

and given by 

qo( f  g)= ~ (Djf  Djg) + (V 1/2r+ j, Vl+/2g) 
j = l  

is closed and positive. Let To be the self-adjoint operator associated with qo. Then 
form boundedness with respect to - A  implies form boundedness with respect 
to To. 

Lemma 2.3. Let V1 ~ Ll,loc(R") be relatively form bounded with respect to - A with 
relative bound O. Then V1 is also relatively form bounded with respect to To with 
relative bound O. 
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Proof. Since C~(R") is a form core of TOILS, Theorem t], it suffices to show that  

V ~ > O q c > O V ~ o E C ~ ( R n ) : l ( ~ , V l q g ) l < = l l l l ( V - i b ) ( p l l l 2  +cllq)ll  2 . (1) 

By assumption we have for the mollified I q~L: 

I(l~oG vl  I~01~)1 <~111(V(I ~0101 II 2 -t-c II Itpl~ II z , 

such that, since [~ol �9 W2~(R"), 

I(~ ,  v l~o ) [  -<_ zHI v(L ~L)I II 2 + c H ~o kl 2 . (2) 

With 

2l~olOjl~o[ = 0j(l~ol 2) = q3~j~o + ~pc3j~ = q3o~o + q~D~o = 2re(~Dj~p),  

we get 

I~ol I vf(pll < Iq~ll(V- ib)~ol. 

From this it is immediate that (cf. Eastham and Kalf [-EK, p. 239]) 

I Vl~ll < I ( V - i b ) q ~ l ;  (3) 

in fact, if ~(x) = 0, then the right hand side equals [ V~o [, and (3) follows from 
Gilbarg and Trudinger [GT, Lemma 7.6] in that  case. 

Inserting (3) into (2) yields (1). F3 

Lemma 2.3 allows to associate a self-adjoint operator T~ with form domain 
Q(TI)  = Q ( T o ) =  D(qo) to the form qL(f, g ) =  qo(f, ,q ) -  ~fVtg .  The following 
property of the domain of T~ will be useful later. 

W 2 R" Lemma2.4 .  L e t g � 9 1 4 9  ~( ). T h e n t ~ g ~ D ( T l ) a n d  

Ta(tpg) = ~ T l g  - -  ( A l ~ ) g  - 2 ( V ~ ) . ( V -  ib)g . (4) 

Proof. The first representation theorem for quadratic forms (see Kato  [K 1, p. 322]) 
says that 

O(T1) = { f e  Q(T~); ~h ~ Lz(R")Vcp �9 Q(T1): (h, ~p) -= qt( f ,  qg)} , (5) 

and in this case T l f  = h. Since Og �9 Q(Ta) = D( V -  ib) ~ D(Vt+/2), we deduce for 
q) �9 Q(T1): 

q~I~,g, ~o) = S t Y -  i b l i~ ,g ) . (V-  ibl~o + j" ~,~IV+ - V~)q, 

= ~ ( V -  i b ) g . ( V -  ib)(~q)) + ~ ( V +  - V1)t~o 

+ ~ ( V ~ ) g . ( V -  ib)~o - ~ ( V -  ib)g.(V~)(fi  

= ( r l ~ ,  ~q)) - ~(A~,)~o - 2 ~ t V -  ib)~.  i t7~t~ 

= ( ~ T , g  - (At~)g - 2 ( V ~ ) . ( V -  ib)g, (p), 

and (4) follows from (5). [] 
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2.4 Essential se!f-adjointness 

The goal of this section is the following. 

Theorem 2.5. Let b and V satisfy (A). Then - ( 1 7 -  ib) 2 + V is essentially self- 
adjoint on C~(R"). 

For b = 0, this result has been obtained in [Hi2, Theorem 3.4] for the even 
larger class of potentials V6 L2,1oc(R") with V 6 K(~+I.I)-,(R"). The proof there 
consists in a reduction to the case V_ = V~ e K(R") by cutting off V_ outside 
compact sets. This reduction carries over to the case of non-vanishing b with minor 
modifications, using the fact that (local) form boundedness with respect to - A 
implies (local) form boundedness with respect to - ( 1 7 -  ib) 2 as in the proof of 
Lemma 2.3. 

So we are left with proving Theorem 2.5 for V_ = V~ e K(R"). This in turn 
can be done as with Corollary 3.3 in [Hi2], provided that b 6 C a, since then 
Kato 's  inequality holds for u, Au e LI,~o~(R"), and local boundedness of eigensolu- 
tions can be established as in [Hi2, Chap. 2]. (Boundedness from below of 
T is again a consequence of Lemma 2.3.) For general b, however, we have 
to adopt the method of Leinfelder and Simader, that is we prove, with T1 as 
in Sect. 2.3: 

Lemma 2.6. C~(R  ") is a core for  T1. 

The proof of this lemma may be taken from the proof of Theorem 2 in [LS] 
(which shows Lemma 2.6 in the V~ = 0 case), after the following two facts have 
been established: 

(i) Let m ~ R such that T~ + m > 1. Then 

~ : =  {qm; cp ~ C~'(R"), u 6 (T1 + m) -1 (L2(R") ~ L~ (R"))} 

is a core for T~. 
(ii) ~ c L~(R")c~ W22(R ") n W4~(R"), 
So it remains to prove (i) and (ii). 

Proof  of(i). This is shown as in the proof of (3.16) of [LS], taking into account 
Lemma 2.4. 

The more complicated proof of (ii) will be prepared by two lemmas. 

Lemma 2.7. Let b, --* b in L2,1oc(R"), V+ > 0, V+ ~ LI.loo(R'), V1 > 0 relatively 
Jbrmbounded with respect to - A with relative bound O. Let  T1 (resp. T,, ~ ) be defined 
by usin9 b, V+ and V1 (resp. b,, V+ and V1) as in Sect, 2.3. Then T,,1 -~ T1 in the 
sense o f  stron9 resolvent convergence. 

Proos Here the proof of [LS, (3.17)] can be mimicked, noting that the additional 
term arising from V1 can be absorbed in the argument there by using its relative 
form boundedness. [] 

Lemma 2.8. Let m ~ R, u e D(T~) and f := (T~ + m)u 6 L~,loc(R"), with T1 as in 
Lemma 2.6. Then u e L-~,joc(R'), and local L~j-bounds for u are independent orb and 
(V+ - V1 + m)+. 
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Proof. F r o m  u ~ D ( T ~ ) c  Q(T1) it follows that  ( V - i b ) u e L z ( R " ) .  Using also 
bu~ LLIoc(R"), one gets Vu ~ L~,~or L e m m a  2.1 applies, giving 

A lu[ > re[ (sgn u ) ( V -  ib)Zu] 

= r e [ ( s g n u ) ( f -  (V+ - Vt + m)u)]  

> - [ f l -  (V+ -- V1 + m)_lu[ ,  

i.e. A t u [ + Q I u I + I f l ->-- 0 with Q --- ( V+ - V1 + m)_ ~ K (R"). N o w  L e m m a  2.4 of 
[Hi2]  in connect ion with the method  of the p roof  of Theorem 2.1 of [Hi2]  yields 
u ~ L~,~o~(R") with bounds  independent  of b and (V+ - V~ + m)+. [] 

The proof of (ii) is now very similar to that of  [LS, L e m m a  9]. Nevertheless,  we 
prefer to give some details. 

By mollifying b we find b. s C  ~ such that  b. ~ b in L4,1o~(R") and 
V- b. ~ V- b in L2,~or Let T., t be defined as in L e m m a  2.7. Then  the proof  of 
L e m m a  2.3 shows that there is an m > 0 such tha t  TI + m > 1 and  T.,1 + m > 1 
for every n. 

N o w  let ~p ~ C ~ ( R " )  and u ~ (T1 + m)-X(L2(R ") ~ L~(R")) .  Then  
u ~ L~.~o~(R") by L e m m a  2.8, i.e. ~pu ~ L~(R")  proving the first of the three asser- 
tions in (ii). 

By L e m m a  2.7 (cf. [W, Theorem 9.15], which extends to z = - m) 

Un:=(Tn, 1 + m ) - l ( T 1  +m)u  -* u in L2(R") .  (6) 

Fur the rmore  

Ilu. II < II(T1 + m)ull, (7) 

and L e m m a  2.8 yields u. ~ L~,~oc(R") and 

II ~ u .  II~ < Ca < 0o (8) 

with C1 independent  of n. We also have 

I I ( V -  ib.)u.ll 2 = ((:to,1 + m)u. ,u . )  - ~(V+ - V1 + m)]u~ 2 

< ((T1 + re)u, u.) + IValu.] 2 

< ((Ta + re)u, u.) + �89 I [ ( V -  ib.)u, ll 2 + Czllu.  II 2 , 

with Cz independent  of n. Using (7) one gets 

I I ( V -  ib.)u.[I < C3 II(T1 + m)u[I . 

Let v . : =  ~pu., then  by L e m m a  2.4 v . ~  D(T.,1) and 

T.,~v. = ~pT.,xu. + 2 g q ) . ( V -  ib.)u. + (A~p)u. 

and therefore 

11Tn,~Vnll ~ It~p]I~([I(Tn, 1 + rn)unl] + m[[Unl[) 

+ 2 I1 Vcp 1[ | I1( V - ib.)u. ]1 + 11A ~p [1 ~ [[ Un I] 

< II(TI + m)u II ((m + 1)II e I1~o + 2C3 II Ve  It| + II A e  II| -----: a .  
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From v, ~ D(T, ,O we have ( V -  ib,)v, ~ Lz(R"), so I7v, ~ L2(R") by b,,v, ~ L2(R"). 
This means that T,, ~v, can be computed as a distribution (compare with (3.13) of 
[LS])  to give 

T,,.~v, = - Av, + 2ib,.  Vv, + ( iV .b ,  + Ib, I 2 + V+ - Vt)v,,, 

proving v, ~ WZ(R ") (use (8)). As in the proof of [LS, Lemma 8] one gets 

[IAv, ll <21[T , , lv ,  ll +d l lv ,  ll~ < 2 a + d C 1 <  oe . 

Now the proof of (pu e WzZ(R ") is completed as the proof of [LS, Lemma 9] by 
using (6). 

The remaining assertion (pu e WI(R ") follows from cpu ~ L~(R") c~ W2(R ") by 
[LS, Lemma 7]. [] 

3 Proof of the Main Theorem 

As obvious from the introduction, the proof of our Main Theorem is decomposed 
in a natural way into showing Propositions 1 and 2 separately. This will be 
achieved in the following two sections. 

3,1 Proof o f  Proposition 1 

The key in the proof of Proposition 1 is to use results of [PSW] on the existence of 
expansions in generalized eigenfunctions. To this end we prove the following 
theorem, where T1 is defined as in Sect. 2.3. (Note that V~ e K(R") is relatively form 
bounded with respect to - A with relative bound 0.) From Theorem 2.5 we know 
that, under the assumptions of Proposition 1, T and T1 are essentially self-adjoint 
on C~(R"). For any real s let ks:= (1 + I. ]Z)s/2 on R". 

Theorem 3.1. Let z ~ p(T).  Then k - s ( T - -  z) -~ and T l k _ ~ ( T -  z) -~ are Hilbert- 
Schmidt operators if s > 0 and ( ~ N are sufficiently large. 

Before we present the proof of this theorem, we will show how it can be used to 
prove Proposition 1 readily. 

Corollary 3.2. Let b and V satisfy (A). Then 

a ( T )  c {2 6 R; 3s > 0 ~u ~ ksL2(Rn)\ {0}, Vu 6 L~,~oc(R"): Tu = )~u} . 

Proo f  An application of Theorems 1 and 2 of [PSW] using Theorem 3,1 shows the 
existence of an expansion in generalized eigenfunctions u ~ k~D(TI ) corresponding 
to T. In particular this means that a non-trivial solution u ~ k~D(T1) of Tu = 2u 
exists for almost every 2 with respect to a spectral measure for T. The set of these 2s 
being relatively dense in a(T) ,  we get 

a(T)  ~ {2 6 R; 3s > 0 3u ~ k~D(T1)\{O}: Tu = 2 u } .  

Since the form domain of T1 is given by 

Q ( T , ) - -  { f 6  Lz(R"); V~+/2f~ L2(R"), Vj ~ { 1 , . . . ,  n}: Dsf~  L2(R ' )} ,  
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we have in particular 

D(T1) = Q(T1) c D ( V -  ib) = W~,,oc(R"), 

the last inclusion following from bj ~ L,,loc(R~). [] 

Proof of  Proposition 1. By Corollary 3.2 it remains to show that (1 + ] .  I)-~u e 
L2(R") with Vu e LLloc(R ~) and Tu = 2u implies (1 + I" L) -~'u ~ Lo~(R~) for some 
s' > 0. As mentioned before, this can be done directly by the methods of [Hi2], 
provided b e C ~. In our general case, however, we are obliged to use Kato's 
inequality in the version of Lemma 2.1, which is possible since 
( V -  ib)Zu = ( V -  2)u ~ Ll,lo~(R"). We get 

A luL > re[(sgn u ) ( V -  ib)Zu] =- re[(sgn u ) ( V -  )0u] 

= ( v -  ,~)luL >_- - ( v -  ,~ ) -  l u l  �9 

With p:= ( V -  ~)_ e K~o~(R") and v := lul we are in the situation of [Hi2, The- 
orem 2.1], whence u e Loo,~o~(R"). Now Lemma 2.2 may be employed, which 
guarantees Vu E Lz,lor and consequently tu l e  W~,lodR") [GT, L.7.6]. Since 
V_ e K dR") + O (1 x 12) c K{I + I. I)-' dR") by [Hi2, Proposition 1.5], the mean value 
inequality [Hi2, Corollary 2.14] applies, and we arrive at 

~C > 0 V X ~ R n ;  ]R(X)[ 2 ~ c(1 -J7 IXI)  n ~ ]u(y)12dy . 
B(x;1) 

n 
From this (1 + l" ])-~'u e L~(R") follows with s' = s + ~. D 

The rest of this section is devoted to the proof of Theorem 3.1, which will be 
achieved in a series of lemmas. At first it will be sufficient to assume bj e L2, ~or 
j e {1, . . . ,  n}, and V+ e Ll,loc(R"). Let the self-adjoint operator To be defined as 
in Sect. 2.3. 

Lemma 3.3, (To + 1) - t  is bounded as an operator from Lz(R") into L~(R") for  real 
n 

d > do, where do is the smallest integer which is bigger than ~. 

Proof. From Lemma 6 of [LS] we have for e v e r y f e  L2(R") 

] ( T o + l ) - l f [  < ( - A  + 1) - 1 I f [  

pointwise a.e. with respect to Lebesgue-measure. Iterating this we get 

I (To+ 1 ) - e f l < ( - A + l ) - t l f L  forevery d e N .  

The lemma follows from this and the boundedness of( - A + 1) -~ from Lz(R") to 
n 

L~(R") for d > ~. The latter is a consequence of the fact that ( - A + 1) - /  is 

a convolution with an L2-function. [~ 

n 
We note that the assertion of Lemma 3.3 could be shown for every real ( > 

using results on Lp-boundedness of ( - A + 1) -~ and Lp-interpolation. This would 
be necessary for finding optimal values for d in Theorem 3.l. We are not interested 
in this here. 
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In the sequel B v denotes the p-th Schatten class of operators in L2(R"), i.e, 
the set of those compact  operators  on L2(R"), whose singular values form an 
#p-sequence. B2 is the class of Hilbert-Schmidt operators;  by B~ we denote the set 
of compact  operators. 

n 
Lemma 3.4. For any real s > ~ and real { > (o we have k-s (To + 1)-:  e Bz. I f  

n 2 
p 6 (2, o9 ] then k_~(To + 1)-:  ~ Bp for any s > - and : > - :o. 

P P 

Proof  For  : > :0 Lemma 3.3 and the Dunford-Pett is  theorem [CFKS,  p. 24] 
say that  (To + 1) - /  is an integral operator  with kernel K ( x , y )  such that 

~l K(x,  y)12 dy < ~ .  So k_~(x)K(x,  y) ~ L2(dx x dy) for s > 2 '  yielding the SUpx 

first statement of Lemma 3.4. 
F rom this we get that  k_~(To  + 1) -~2 is compact  for arbitrary e~ > 0 and 

e2 > 0 by writing it as a norm limit of compact  operators (decompose by multiply- 
ing from the left with characteristic functions of large balls resp. their complements,  
and from the right with appropriate  spectral projections corresponding to To). The 
remaining statement for p ~ (2, Go) follows from the p = 2 and p = ~ cases by 

n 
interpolation in Bp-spaces: Let So > ~, ex > 0 and ~2 > 0. Define 

F(z) = k_~,_~l~o_~,)(To + 1) -~: ~:o-~:) . 

Then for,s g ~ L2(R") we see that z ~ ( f  F(z)g) is analytic in 0 < re z < 1 and 
cont inuous in 0 < rez < 1. Fur thermore  F(iy) ~ B~:, and F(1 + iy) ~ B2 for any 
y ~ R. N o w  Theorem 2.9 of [Si4] together with Proposi t ion 8 on p, 44 of [RS] 

n 2 
shows that F(z) ~ B2/r~ for any z with 0 < re z < 1. Given s > -  and [ > - fo we 

P P 
may arrange So, el and e,2 in a way to conclude k-~(To + 1) - / ~ B p .  [] 

Lemma 3.5. For every m > - infa(T1)  

n 
k_s(T 1 + m ) - I / 2 E B p  for p > 4 ( o , S > - ,  (9) 

P 

and for every z ~ p(T1) 

n 
k_~(T~ - z)-  L ~ Bp for  p > 2:o,  s > - .  (10) 

P 

Proof  By Lemma 2.3, To and T1 have equal form domains,  so 
(T o q- 1)1/2(T1 + m) -1/2 is bounded and (9) follows from Lemma 3.4. 

By the H61der-property of Br-spaces we get f rom this 

k_ ,  (Tx + m ) - l k - s e B p  
n 

fo rp  > 2 :o ,S  > - - .  (11) 
2p 

In the following lemma we will show that  

[k_~,(T~ + m) -1 ]  = - (T  1 + m) - t { (A k _~)  + 2 ( V k _ s ) ' ( V -  ib )} (T  1 + m) 1 (12) 
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for every a > 0, where [ . , .  ] denotes the commutator.  From this we find 

k-zs(Ti + m) - i  = k - s (T i  + m ) - a k - s  - k-s(Ta + m ) - l ( A k - s ) ( T 1  + m) - i  

-- 2k-~(Tt  + m ) - ~ ( ~ _ , ) . ( g  - ib)(T~ + m) -1 . (13) 

By D(T1) c Q(To) c D( 17-  ib) we get boundedness of(  17-  ib)(T1 + m)- 1. Using 
(11) to treat the remaining terms on the right hand side of (13) we arrive at (10) 
in the case z = -  m; this extends to generaI z by the boundedness of 
(Tl + m)(rL -- z) -1. [] 

Lemma 3.6. (12) holds for every s > O. 

Proof  We have to show that for 9 �9 D(T1) a n d f E  D(T1) 

((Tt + m)g, k - s f )  - (k-s9,  (TI + re) f )  

= - (g, ( A k - s ) f +  2(Vk_s). ( 17-  i b ) f ) ,  (14) 

since from this we get the result by choosing f = ( T i  +m)- l fo  and 
g = (T1 + rn)- lyo wherefo E L2 and go �9 L2 are arbitrary. The choice ~b = k_, in 
Lemma 2.4 shows that k_,~f~ D(T1 ) and 

r l k _ ~ f  = k _ s r ~ f  - (Ak_~) f  - 2(Vk_~)-(17-  ib) f  . (15) 

This implies (14). []  

Lemma 3.7. Assume that b and V satisfy (A). Then for every s > 2 and z �9 p(H) the 
operators T~ k_ , (  r - z)-  t and ( 0 ~ - ib j )k_ , (  T - z)-1,  j �9 { 1 . . . .  , n} are bounded 
(in particular, s > 2 and f � 9  D(T)  implies k _ s f � 9  D(T1)). 

Proof  Boundedness of ( O j - i b j ) k _ ~ ( T - z )  -1 follows from boundedness of 
( O r -  ib~)(T~ + m)-1 and boundedness of T l k - A T -  z) - i  

To prove boundedness of T l k - A T -  z) -1 we will show that for some C > 0 

II T l k - S t l  < C( l lT f t l  + Itf[t) for every f s  C ~ ( R " ) .  

The result then follows from the essential self-adjointness of T on C ;o (R"). Bound- 
edness of k_s, k - s V 2  and Ak_s implies 

I [ k _ ~ T ~ f -  (Ak_~)f[] = [[k_~Tf+ k _ s V z f  - (Ak - s ) f l [  

__< C([[ TIN + [ I f  H). 

Taking into account (15) it remains to prove a similar estimate for 
(17k_~). (17- ib)fi Let r > 1, then 

I] k_~T f  I] z + l] k _ , f  II 2 > 2re(k_~ Tf, k _ ~ f )  

= 2 re { ( ( I7 -  i b } f ( V -  ib)k_ 2.f) + (Vk  ,f,, k _ , f ) }  

> 2re { I1 k_, (  V -  i b ) f  It 2 + 2(k_.( 17- ib).s (17k _~),/) 

- ( V ~ k _ , f  k_, . f )  - (V2k_ , . f  k _ , . f ) } .  (16) 
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L e m m a  2.3 shows that  

[ ( V i k - r f  k - r f ) [  < �88 [ [ ( V -  ib)k_rf[I 2 + C1 ]1 k - r i l l  2 

_-< �89 1[ k-r (  V -  i b ) f  [[2 _}_ 21 [[( Vk_~) f  [[2 _[.. C1 ]1 k_r f  It 2 

< �89 II k_~( V - ib) f  II 2 + C2 II f II 2.  

[V~/2k- , t  < C3 yields ]( V2k- r f ,  k_~f)[ < C3 II f II 2. Finally 

1 2 ( k _ r ( V - i b ) f , ( V k _ , ) f ) [  < �88 I l k - ~ ( V -  ib) f l[ 2 + C4 [[ f [I 2 

Insert ing everything into (16) we arrive at 

I[ k_~Tf  l[ 2 + I[ k - , I  [I z => 1 11 k_~( V -  i b ) f  II 2 - Cs II f II 2 �9 

F r o m  this we find I l k - r ( 1 7 - i b ) f ] [  < C6(I] Till + II f I[)- Now I Vk-sI < C k - s - 1  
gives the desired est imate for (17k-s). ( 1 7 -  ib) f  [] 

L e m m a  3.8. Let  z ~ p( T). Then 
n 

(i) k _ s ( T - z ) - l e B p f o r p >  2 # o , S > - +  2, 
P 

n 
(ii) (~?j -- ib~)k_s(T - z ) -  1 ~ Bpfor p > 4(0, s > - + 2, j e {1 . . . . .  n}, 

P 
n 

(iii) k-s(Oj - ibj)(T - z) -~ ~ Bpfor p > 4(0, s > - + 2, j  e {1 . . . .  , n}. 
P 

Proof  (i) follows from 

k - s ( T -  z) -1 = k (s 2)(T1 --F m)- l (T1  + m ) k _ z ( T -  z) -1 

by using Lemmas  3.5 and 3.7. 
( (? j -  ibj)(T1 + m) -~/2 is bounded,  so for (ii) it is enough to consider 

(T1 + m) l /2k - s (T  - z) -1 = (T1 + m)-l /2(T1 + m ) k - c ~ - 2 ) k - 2 ( T -  z) -1 

= (T1 + m)-  1/2{k_(,_2)(T1 + m) - (Ak-(~-2)) 

- 2 (17k- (s -2) ) ' (17-  i b ) } k _ 2 ( T -  z) -1 

and (ii) follows f rom this by Lemmas  3.5 and 3.7. 
Finally (iii) follows f rom 

k_s(c~j - ibj)( T -  z) -1 = (r - ibj)k_s( T -  z) -1 - ( c~ jk_s ) (T -  z) -1 , 

which is immediate  on the dense set ( T -  z ) C ~ ( R ' )  and extends to the closure. 
[] 

To  complete  the proo Io f  Theorem 3.1, we observe that  for s > 0 and z e p (T)  

[k - s ,  ( T -  z ) - ' ]  = ( r -  z ) - l {  - ( ~ k - s ) ( r -  z) -1 

- 2(17k_s) . (17-  i b ) (T - -  z) -1 } . (17) 

This follows from [k - s ,  ( T -  z) -1 ]  = ( T -  z ) - l [ T  - z, k - s ] ( T -  z) -1 and the 
explicit form of [ T -  z, k_ , ]  on- C ~ ( R ' ) .  
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Let s = sl + s2, s1 > 0, S 2 > 0. By (17) we have 

k _ ~ ( T -  z) -2 = k _ ~ ( T -  z ) - l  { k _ ~ ( T  - z) -1 - ( A k _ ~ ) ( T -  z) -2 

- 2 ( V k _ ~ O . ( V -  i b ) ( T -  z) -2} . 

N o w  Lemma 3.8 and the H61der-property of Bp show 

4,do n 
k _ ~ ( T - z ) - 2 E B p ,  p >  ~ - , s > - +  4 .  

P 

In  a similar way we get 

n 
(Oj - ib;)k_~(T - Z) -2 ff Bp, p > 2#0, s > - + 4 

P 

and as in Lemma 3.8 

n 
k_~(O~ - i b j ) ( T -  2") -2 ~ Bp, p > 2#o, s > + 4 .  

P 

It is obvious how this procedure extends to successively higher powers of the 
resolvent. After a finite number  of  iterations we get that  for s and { sufficiently large 
k _ ~ ( T -  z) -~ ~ B2, i,e. the first assertion of Theorem 3.1, and also 

k_s(~ j - i b j ) ( T -  z) - / ~  B 2 for j ~ {1 . . . . .  n} . (18) 

F rom (17) we deduce 

T l k _ ~ ( T -  z) -'~ = T l k - s , ( T -  z ) - l { k - ~ ( T  - z) -f+~ -- ( A k _ ~ ) ( T -  z) - /  

- 2 ( V k _ ~ ) . ( V -  i b ) ( T -  z) - /}  . 

The second assertion of  Theorem 3.1 now follows from the first assertion, (18) and 
Lemma 3.7. [] 

3.2 Proof  of  Proposition 2 

In preparat ion for the proof  of Proposi t ion 2 we need a little 1emma. 

Lemma 3.9. Let  b and V satisfy (A). Let u ~ L:~,loo(R") be a solution of  Tu = 2u. 
Then zJ(lUI 2) = 2 ( V -  2)lul 2 + 2 1 ( V -  ib)ul  2. 

Proof  The assumptions on u imply Vu e Lz.loc(R") (Lemma 2.2). A straightforward 
calculation shows for every real-valued q~ e C~(R"):  

~ ( V -  ib)Zuutq~ = - ~ ~ ( V -  ib)2ut~p - 2 ~ . ( V -  i b ) u ' ( V -  ib)utqo + S ffutAq~ . 

Since ( V -  ib)2ut -..* ( V -  ib)2u in La,lor n) (cf. the proof  of  Lemma 2.1), u~ ~ u, 
gut --', Vu, and but --* bu in L2,1oc(R"), we arrive at 

S [ulZAtP = 2reS (V- ib )2uu~p  + 2 ~ I ( V -  ib)ulZq~ 

= 2 ~ ( V -  )v)lul2q0 + 2 ( I (V- ib )u l2~o  �9 
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Proof of  Proposition 2. Let u 4= 0 with (1 + ] . l ) - S u ~ L ~ ( R  ") for some s > 0 be 
a solution of Tu = 2u. We have to show that  2 ~ (r(T). We may assume u r L2(R"), 
since otherwise 2 ~ %(T), and we are done. 

Fo r  every R > 1 we will construct  a wR ~ D(T) with ]FWg II = 1, such that  
va 

WR--* O, as R--* oo, and lim i n f R ~  I [ (T-2)WR[[  = 0. F rom this our  result 

follows; in fact we have 2 E ae(T) by Theorem 7.24 in [W] .  
We choose O e C~(R)  with 0 < O < 1, Off) = 1 for r < 0, and O(r) = 0 for 

r > 1. We define for all R > 1: 

V x ~ R " : O R ( x ) =  6 ) ( I x ' - R )  , -R- and //R : =  O R U. 

By L e m m a  2.2, u e L~,~o~(R") c~ W21 loc(R ") and we may  write for ~0 e C~'J(R"): 

S URT~p = S 2URq) + y (V--  2)UOR(p -- y a( V-- ib)2(ORq)) 

+ I~AOg~o + 25~170R" V(p - 2 iS~b.  VOR~O 

= I2Ug~p -- I~AOR~O -- 2 I ( V - - i b ) u "  17OR(P, 

whence UR e D(T) and ( T -  2)uR = - UAOR -- 2( 17-- ib)u. VOR. Therefore 

II (T - 2)uR l[ 2 < 21l uAOR II 2 + 8 II( 17- ib)u. 170R II 2 

< 2 51u121AOR12 + 8 S t(17- ib)u121VORI 2. (19) 

By L e m m a  3.9 

f f I (V- ib)uI2IVORI2<�89 +2)lulZ117Ogl z, (20) 

where by assumpt ion  V_ = V1 + V2 with 0 __< V1 ~ K(R")  and 0 __< (1 + 1"1) -2 V2 
bounded  and vanishing at infinity. F r o m  L e m m a  2.3 we have relative form 
boundedness  of  V1 with respect to - (17-  ib) 2, i.e. 

V1 > 0 3c(t) > 0 V(p e C~(R"):  ~ r I l q)12 < t .( l( V-- ib)qo I 2 + c(1) f 1(/012 . 

By regularization we m a y  apply  this to q~:=U(C'~jOR)e W ~ ( R " ) n L 4 ( R " ) ,  
j e {1 . . . . .  n}, and get 

V, lul21 170RI 2 < t ~ $1(17-ib)(u(~3jOR))l z + c(t) ~ 5[u(c?jOR)l 2 
j = l  j = l  

< 2t~ ] ( V -  ib)u] 2 ] 17OR12 -+- 2t ~ ~ ]uIZI(~k~jOR] 2 "F" C(1) I ]b/] 2 ] 17OR12 �9 
j , k = l  

Insert ing this into (20), choosing ~ = �88 and rearranging terms, we obtain 

] ( V - i b ) u ] 2 l  170Rl 2 

~ I u I E  {A(I170RI2)+ ~ lakajOgl2 + 2(c(�88 V2+ 2 ) lVOg l2} .  
j , k = l  
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O b s e r v i n g  the def in i t ion  o f  OR, (19) yields 

~ c > 0 V R _ > _  1: 

c(1 ) I1 ( T -  ;OuR II 2 < ~ 5  + sup ] g2(x)l  [. lu(y)lZdy. (21) 
R < Ixl < 2R R < lYl < 2R 

U R w 
We define wR:= . So wR e D(T),  I[ wR II = 1, and wR --' 0, because for every 

II uR II 

q~ e C~(R")  we have (wR, ( p ) -  (u, (p) for R large enough, and IlURII ~ 00, as 
11 uR II 

R ~ oo, since u r L2(R"). Finally, f rom (21), we get 

c( ) ll(T-)OwRII 2 ~  1 +  sup IVz(x)] 
R < Ixl < 2R 

Since 

1 
R2 sup ] V2(X)[ < 4 sup - -  

R < Ixl _-< 2R R < Ixl 

we are left with showing that  

I V2(x)l 
Ixl 2 

(, Lu(y)lZdy 
R <_ ]Yf < 2 R  

[. lu(y)12 dy 
[yl < R 

- o 0 ,  a s R - - *  o0 , 

S lu(Y)12dY 
lira inf R~IyI~2R < oo . 

R ~  ~ [u(y)12 dy 
ly]-<R 

But this is done precisely as in [Hil,  p. 181] by proving that for any R > 1" 

]" [u(y)[2dy 

inf  r--<lyl--<2r + 1 ~ 22u , 

r~R j - l u ( y ) l  2 &  
ty[ ~ r 

n 
as soon as (l + ]. ])-"u ~ L2(R"), i.e., for/~ > s + - .  

2 
This completes  the p roof  of Proposi t ion 2. [] 
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