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Abstract. 

B-consistency and B-convergence of linearly implicit one step methods with respect to a class 
of arbitrarily stiff semi-linear problems are considered. Order conditions are derived, An algorithm 
for constructing methods of order > I is shown and examples are given, By suitable modifications 
of the methods the occurring order reduction is decreased. 

AMS categories: 65L05, 65L07. 

1. Introduction. 

We consider the initial value problem 

y' = f ( t ,  y)  

y( to)  = Yo, f :  [to, t~] x R" ~ R". 

In classical concepts of consistency and convergence the Lipschitz constant 
of f is used to derive bounds for the local and global error. For stiff systems 
this Lipschitz constant is very large and the bounds become unrealistic in the 
smooth phase. On the other hand the accuracy of a numerical method is often 
worse than expected when the order of consistency is taken into account, and 
the method suffers from order reduction (see Verwer [17]). To derive realistic 
bounds for the error in the smooth phase Frank, Schneid and Ueberhuber 
(see e.g. [6]) developed the concept of B-consistency and B-convergence. Here 
the bounds do not depend on the classical Lipschitz constant but only on the 
one-sided Lipschitz constant of the system, which may be of moderate size for 

arbitrarily stiff systems. 
In several papers (see e.g. [5], [4]) order results for implicit Runge-Kutta 

methods are proved. 
This paper deals with the B-consistency and B-convergence of linearly implicit 

one step methods. In the last years these methods have been frequently used 
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for the solution of stiff systems (see [11], [12], [15]). Because of the lack of 
B-stability we cannot expect positive B-convergence results for general nonlinear 
problems. We therefore will consider semi-linear problems 

(1.1) y' = f ( t ,  y) :=  Ty+g(t, y)+r(t) 

with 

(1.2) 1. (Tw, w) <<_/211wll 2, /~ -< 0 for all w e R "  

2. t[q(t,u)-g(t,v)]i < Lllu-vlt for all t e[ to ,  t~], u, v e R "  

3. [Idig(t, y(t))/dt~ll < M for all t ~ [to, tel, i = 1 . . . .  , PO, 

where (- , - )  is some inner product and I]II the corresponding norm. We will 
denote this class of problems by F. 

The problems may be arbitrarily stiff, with no bound for the Lipschitz constant 
of f. On the other hand they satisfy a one-sided Lipschitz condition with 
constant ~ + L. 

Problems of class (1.1) arise e.g. by discretization in space of an initial- 
boundary value problem for a parabolic differential equation of semi-linear type 

(1.3) t3--U-U = 3 t  i,k=l ~' ~i (b ik (X)Oxk f  q - q ( t ' X ' u ) ' '  ~U~ x e G ,  0 < t < t ~ < m _ _  

u(x,t) = tp(x,t), xE~G, O < t <_ t e 
u(x,  O) = Uo(X), x ~ G,  

where the matrix blk is uniformly positive definite and G is a spatial domain in R ~ 
(ct = 1, 2 or 3) with boundary OG. The vector r(t) arises from the time-dependent 
boundary conditions. Note that [tr(t)II tends to infinity if the parameter of space 
discretization tends to zero. The model problem of Prothero and Robinson [13] 
also belongs to class (1.1). 

We will derive conditions for linearly implicit one-step methods to be 
B-consistent and B-convergent of order q on F. These conditions enable us to 
construct B-convergent methods of order q > t in a simple way. 

It will be shown that in general an order reduction oecurs. By a modification 
of the linearly implicit methods we will decrease this order reduction. The 
modification essentially depends on the class (1.1), (1.2), especially on the 
function r(t). Finally we give some B-convergence results for a slightly more 
general class of problems. 

In the proofs of our theorems we will use the following result for rational 
matrix functions of Hairer, Bader and Lubich [7] : 

THEOREM 1.1. Let R(z) be a rational function and let the matrix A satisfy 
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<Aw, w) <_ #llwll z for all w e R" for some inner product. Then we have in the 
corresponding operator norm 

IIR(A)[[-< sup IR(z)i. 
Rez _ # 

REMARK 1.1. 1. The class (1.1) without condition 3 of (1.2) was also considered 
by Hundsdorfer [10]. He shows, without consideration of B-consistency, that 
the linearly implicit methods of Van der Houwen [8, p. 44] under some natural 
assumptions are B-convergent of order 1. An order q > t of B-convergence is 
proved only for the special case g(t, y) = 0 (see (1.1)). 

2. The assumption tt-< 0 allows to simplify the proofs. Analogous results, 
however, will hold for # > 0 too. 

2. Linearly implicit one-step methods. 

Numerical results have shown that linearly implicit one-step methods are very 
efficient for the solution of stiff systems, if the Jacobian does not change very 
rapidly. These methods insert the Jacobian, or an approximation, directly into the 
integration formulae. Thus, while retaining favourable stability properties, in 
contrast to implicit Runge-Kutta methods only linear systems of algebraic 
equations have to be solved. In their general form linearly implicit one-step 
methods (also called linearly implicit Runge-Kutta methods) are given by 

(2.1) ~m+"(1) 1 = u,. 

i - 1  

u~)+l = R~)(c,hT)u,,+h ~ Au(hT)[ f~-Tu~+I] ,  i = 2 . . . . .  s 
j = l  

u,.+l = R~+ ')(h T)um + h ~ B;(h T ) [ f j -  T u(j).,+ l J1 
j = l  

with fj  = f(tm+c~h, u ~ l  ). 
R~)(z) is a rational approximation to exp(z), z--. 0, while A u and B; are 

rational functions (coefficients of the method), c~ real parameters (cl = 0) and T 
is an arbitrary (n, n)-matrix (usually an approximation to f,(t,,, u,,)). 

REMARK 2.1: There are two important classes of (2.1) which have been 
studied extensively in the last time 

a) ROW- or W-methods (see [111, [12], [t4]). With 

I ° J 
A.zl 0 

A : =  

LA:sl " "" As.s-1 0 

B " =  ( B  1 . . . .  , Bs) T, T" = diag(T .. . . .  T) 

f :=  (fl . . . . .  f~)r 
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they are given by 

(2.2) 

with 

A = a ( F - h T a )  - I  

B = b ( F -  hTa)- 1 

i - 1  

R(~)(cihT) = I +hT  ~, A 0 
j : l  

R~o~+t)(hT) = l + h T  ~ Bj 
1 = 1  

a : =  
a2il 0 F : =  -h721T 

LasxI . . .  a~,~_lI 0 -h7~lT 

l - h T T  

- h G , ~ - I T  l - h y T  

b : = (bl . . . . .  b y .  Further aij, b j, 7ij, 7 are real parameters, which determine the 
method. 

b) Adaptive Runge-Kutta methods (see [15], [16]). 
Here R~)(z) are arbitrary rational approximations to exp(z) and 

A,j(z) = E ""+°")l(c~z)c[+ 1~t5, 
l=O 

Qs+ i 

J" l + 1 ~,~ ]l~lj , 
/ = 0  

with 2 ~  ) e R a n d  R~)(z)  - R t d ) ( z ) -  1 
Z 

(2.3) (i) 1Rz(z)- 1 R t + i ( z ) -  , 1=  1,2 ..... ~i. 
Z 

Because ROW-methods require T = f,(tm, u,,) we will in the following consider 
especially W- and adaptive RK-methods. 

REMARK 2.2. We will characterize the method (2.1) by the following parameter 
scheme 

C2 

¢s 

A 2 1  

A,i . . .  A s ,  s - 1  

B i  . . . B ~ _ I  B~ 
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Furthermore we will use the following abbreviations and notations: 

gJ : =  g(tm+cjh'u~t)" Yq) : =  S--tiY(t) t=t. 
d ~ dlg(t ,  y ( t ) )  

r (0 • = ~ r(t)  g~O : = 
t = t,,, dtl t = t,,, 

p : conventional order of consistency, 
Pi: conventional stage order. 

For our investigations we assume 
(A1) The approximation order r i of R~t(z) ,  i =  2 . . . . .  s + l ,  to" exp(z) is 

sufficiently high (ri > Pi). 
(A2) R~)(z)  has no pole for Rez _< 0 and [R~)(oe)j < oe. 
(A3) [zAo(z) l  , [zBj(z)[ are uniformly bounded for Re z < 0. 

REMARK 2.3. For adaptive RK-methods (A3) holds if (A2) holds (see [15]). 
For W-methods ~ > 0 is sufficient for (A2) and (A3). 

3. B-consistency and B-convergence for the class F. 

For a linearly implicit one-step method we will derive B-consistency and 
B-convergence results on class F. We assume that the matrix T of (2.1) is equal 
to the matrix T of (1.1). 

In the following definitions the constants 7~, Y, fi, ho, Co have to be 
independent of l lrl l ,  r( t )  and derivatives of r(t), but they may depend on p, 
L, M, to, te and on derivatives of the exact solution. 

DEFINITION 3.1. A linearly implicit one-step method has the B-stage order q~ on 
F at the ith stage, if 

I l y ( t m + c i h ) - u ~ ) + l l [  <_ ~ih q~+l for u,, = y(t , , ) ,  h < ho. 

It is B-consistent of order q if 

[ L y ( t m + h ) - u m + l l ]  <__ yh q+~ for um= y(tm), h <_ ho. 

DEFINITION 3.2. A linearly implicit one-step method is B-convergent of order q 

on F if 

I l y ( t , , ) - u m l l < _ f l h  ~ for Uo = y o ,  h<_ho, t0--<tm<--te. 



B-CONVERGENCE RESULTS FOR LINEARLY IMPLICIT ONE STEP METHODS 269 

DEFINITION 3.3. (see [3]). 
A linearly implicit one-step method is C-stable on F if for any two numerical 

solutions of (1.1) 

Ilu~+t-v,~+dl ~ (l+Coh)llu,,,-v,,,ll holds for all 0 < h <__ ho. 

The order of B-consistency and B-convergence is therefore independent of the 
stiffness of the problem. In [3] the following theorem has been proved" 

THEOREM 3.1. Let a method be B-consistent of  order q and C-stable on a given 
problem class. Then it is B-convergent of  order q on this class. 

REMARK 3.1. Theorem 3.1. does not yield the best possible B-convergence result. 
The order of B-convergence may well be q +  1 rather than q (see [1], [17] and 
also Theorem 3.5. of this paper). 

For linearly implicit one-step methods with (A2) and (A3) one immediately 
proves the 

THEOREM 3.2. Let R~oS+l'(z) be A-acceptable. Then the method (2.1) is C-stable 
on F. 

In the following we will derive conditions for B-consistency. The B-convergence 
follows from Theorem 3.1 and 3.2. Further, we present a simple algorithm for 
constructing B-convergent methods of order q > 1 on F. 

Because of ,,(1, " m + ~  :=  um we set q~ = ~ and introduce the following index-sets 

(3.1) K , : =  {jt l - < j _ < i - l ,  Aij(z ) ~ 0 } ,  i =  2 .....  s 

K~+ 1 := {jll < - j < - s ,  Bj(z):# 0}. 

THEOREM 3.3. Let ql  1' = min qj (qj" B-stage order at the j-stage) and let 
j e K i  

i - I  

~+1o,, (ciz) (3.2) ~, Air}  = c~ "'~1+1 
j = l  

for I = 0, 1, ---, ~i~t2~, where the Rt~ 1 are defined by (2.3). Then the method (2.1) has 
at the ith stage the B-stage order qi = min(q!X) + 1, q!2)). 

PROOF. From (1.1), (1.2) it follows 

' t  r (tin + cjh) = y ( m + Cfl) -- Ty  (t,, + cjh) - g (t,, + cjh, y (tin + cjh) ) 

and with the assumptions of the theorem for j ~ Ki 



270 K. STREHMEL AND R. WEINER 

IIg(tm +cjh, u~)+ , )-g(t , .+cjh, y(tm +c3h))tt < LItu~)+ 1 -y ( t . ,+  cjh)l[ 

<- Lyjh ql'+Z =~ O(h q') for 

We get 

i 1 
(3.3) U~+l = Roy+h ~ A;j[gj+r(t,,+cjh)] 

j = l  

h -< ho. 

i - i  

= Roy+h ~ Aij[y '( tm+cjh)-Ty(tm+cjh)]+O(h q'+L) 
j = l  

= --~0 q' t --~0 q' 1 q~ ~ ( i ~ _ ~ l )  t ~. (c,h)ty (') - ~ (cih)tY(t)+ Roy + ~, h t +1 Aijc ~ 
= t= l=o • \ j =  t 

, (y(t+ 1)_ Ty(l))+O(hq,+l) 

I q~l ht )y(t) = y ( t m + c i h ) + ( R o - I - c i h T R 1 ) y +  ~. c l ( - I + l R ~ - c i h T R l + l  
= 

+O(hqi+l). 

With (2.3) we get finally 

u~)+ 1 = y(tm + clh) + O(h qi+ 1). III 

COROLLARY 3.1. Let qtl) = 

(3.4) 

min q; and let 
j 6 K ~ + I  

i Bjc} = RI~++,I)(z) 
j = l  

for  I = 0, . . . ,  q(2k Then method (2.1) is B-consistent of order q = min(qm + t, q t2)) 
on F. 

REMARK 3.2. For Theorem 3.3. and Corollary 3.1. assumption (3) of (1.2) is not 
necessary. 

Theorem 3.3. and Corollary 3.1. allow to construct B-consistent linearly implicit 
one-step methods. 

REMARK 3.3. Method (2.1) is translation invariant, iff (3.2) and (3.4) hold for 
l = 0. (For translation invariance see [2], [9]). Thus, our constructed B-consistent 
methods are translation invariant. 

1-stage formula: Because of cl = 0 (3.4) can only hold for l = 0. The method 

(3.5) R1 
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of order  p = 1 is B-consistent (q = 0). However ,  it is B-convergent  of order  1 

(see Hundsdorfer  [10]). 

2-staoe formulas." a) F r o m  (3.4) we have the condit ions 

B1 + B2 = R(I 3) 

c2B2 = R~3L 

The methods of order  p = 2 

(3.6) c---L--2 t[ c2R~2~ 1 R~3) 1 R~23 ~ 
3 ' -  

have the B-consistency order  q = 1. 

b) For  a 2-stage W-method of  order  p = 2 (i.e. azl = c2, bzcz = ½, b 1 +b 2 = 1, 
b2~21 = - ~ ,  see [7])  we obtain from (2.2) 

A21 = a21(1 -Tz )  -1, R~o2)(c2z) = (1 + (c2 - ~)z)/(1 - ~ z )  

R~o3~(z) = 1 + (1 - 2y)z + ( ½ - 2 7  +72)z  2 
(1 -~ ,z )  2 

BI = bl z b2 
l_ r~+(½-r ) ( l_~z)2 ,  B2 - 1-~z" 

From (3.2), (3.4) we have 

A21 = c2 B2 = 1 ½-y2z  
1-7z' c2 (1-yz) TM 

One immediately sees that  only 7 =  0 or 7 = ½ is possible. For  7 = 0 the 

method  is not  A-stable. With 7 = ½ we get a W-method  of B-consistency order  
q = l :  

1 
(3.7) 721 = --C2, b2 = 2c 2 bt 1 - b  2. 

This method  is A-stable but  not  s trongly A-stable. 

3-stageformalas: Let  us require second order  B-consistency. Condi t ions (3.2) 
and (3.4) yield 

(3.8a) A21 = c2R(12), A31 + A 3 2  = c3R(13), A32c 2 = c2R~ ~) 

B1 + B2 + Ba = g~ *), B2c2 + Bac3 = R~24), Bzc 2 + B3c2a = R~ *). 
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Because -m"~2~+ 1 is only of B-stage order q2 = 0 it is also required that 

(3.8b) B 2 = 0. 

Under consideration of (3.2) we obtain from (3.8) 

t +(1 -c3/2)z+~-(1 -c3)z 2 
R~o41(z) = 

1 --c3z/2 

and because of assumption (A2) we get c3 = 1. 
Therefore the 3-stage linearly implicit method 

C2 
(3.9,) 1 

ceR~ 2) 

R ? ) - c j " R ~  3' c f  lR~ 3) 

R~4)- R~ 4~ 0 R~*' 

with the stability function R~o4~(z)= ( l + z / 2 ) / ( 1 - z / 2 )  has the B-consistency 

order q = 2. 

4-stage formulas:  From (3.2) and (3.4) we find that with our construction 
princ!ple only q = 2 is possible. This implies that the coefficients Azl, A31, A32 
and B1, Bz, B3 and B4 are uniquely determined by c2, c3 and c, (c3 4: c,). 
The coefficients A,~, A42 and A43 are not uniquely determined; they only have 
to fulfil 

A41 + A42 + A43 = c4R~t *~ 

A42c2 + A43c3 = c2R(24)" 

One family of methods of B-consistency order q = 2 is given by 

(3.10) 

with 

C2 

£3 

¢4 

c2R~ "~ 

c3R? ~ _ cg R~3, c__~ R(2a , 
C2 ¢2 

\c2 c3 / c2 c3 

Bt B2 B3 B4 

c . Rt25) - Rta s) R~ ~) - c3R~ 5) 

B 3 -  c3(c4-c3)' B, = c4(c4-c3)'  
B 2 = O, BI = R ~ S ) - B a - B , .  
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These linearly implicit methods have the B-consistency order q = 2. Note that 
for adaptive RK-methods the stability functions R~ I can be chosen arbitrarily 
(under consideration of the assumptions (A1) and (A2)). From the order con- 
ditions in [15] it follows that the conventional order p is at least 3. For the 
special choice 

e2 =c3  =½ a n d c 4 - -  1, 

we have a method of order p = 4 which for T = 0 is reduced to the explicit 
England method. 

In the same manner one can construct methods of higher order (e.g. q = 3, 
s = 7). To have a B-consistency order q the number of stages has to be greater 
than for the same conventional order p. For special problems of class F we can 
derive better results. 

3.1. The case r(t) = O. 
We consider 

(3.11) y ' =  T y + g ( t , y ) .  

THEOREM 3.4. Let q!l) = rain j e t  ' qj and let (3.2) hold for t = 0 . . . . .  q!2). Then the 
linearly implicit method (2.1) has at the ith stage the B-stage order 

qi = min(q! 1), q~2))+ 1. 

PROOF. The beginning of the proof is analogous to that of Theorem 3.3. From 
(3.3) with (2.3) we then have 

• 1 hq,+l cq,+lR~+l_ AO¢:~, Tytq,)+O(hq,+l ) u ~  , = y(tm + cih) + q~t j =1 

1 A -q'~" (q,+l) _fq,),_,~,,_q+l) 
,f 

= y(tm+cih)+ -l~h°'+lq,! cq'+lR~/+ - J=, o~j )~y  - y  )-t-t~tn' 

and with (1.2) we get 

U~J+ I = y(tm + cih) + O(h q'+ l). • 

COROLLARY 3.2. Let qO~ = minjer.+,q j and let (3.4) hold for I =  0 . . . . .  q(2). Then 
method (2.1) is B-consistent of  order q = min(q tl), q{2))-t-1. 

EXAMPLE: For method (3.5) condition (3.4) must only hold for I = 0. For (3.11) 
the method has B-consistency order 1. 
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Analogously we find that the methods (3.6), (3.7), (3.10) havc B-consistency 
order q = 2; 2; 3, respectively. 

3.2. The case g(t, y) = O. 
We consider 

(3.12) y ' =  Ty+r( t ) .  

The S-stability model problem of Prothero and Robinson [13] belongs to this 
class. Such problems also arise by discretization in space of problems (1.3) with 
q( t , x ,u )  =- O. 

THEOREM 3.5. Let R~+l)(z) be A-acceptable and let (3.4) hold Jbr 1 = 0, . . . ,q.  
Then it jbllows : 

a) The method is B-consistent of  order q. 

b) I f  in addition 

(3.13) D(z) = (R{~+l)(z)) -1 - ~ Blc~ +1 
j = l  

is uniformly bounded for z e (2- then the method is B-convergent of  order q + 1. 

PROOF. The property a) follows from Corollary 3.1., because the last stage is 
independent of the internal values u~+ ~, i = 2 ..... s, To see that b) holds we 
consider 

era+ 1 :=  Ura+l--y(tm+l) = U.,+l--Vm+x +V.,+l--Y(tm+l) ,  eO = O, 

where Vm+l is a numerical solution with v,~ = y(t,~). We have 

u,~+l-vm+ l = R~d+l)(hT)em 

] y('+ 1 ha+lhrk--,+2 - i B:c~ +~ t)+O(ha+Z)" vm+ l - y(tm+ l) = (q + 1)-------- ~ 
• j = l  

Now we consider 

with 

A = 

~m+l :=  e,,+l +hq+lAY(a+l)(tm+h) 

(q+l)t (R(1 ~+ X)(hT))- 1 ( R ~ ) ( h T ) -  
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With our assumptions we get 

~ m + l  = 8m+ l + O ( h e +  l )  • 

On the other hand we obtain 

~,,+ 1 = R(o s+ 1)gin + hq+ ~(A - R~o ~+ ~)A + h TR~ s+ ~)A )y tq+ ~ + O(h '~+ 2) 

and from (2.3) we get 

~m+l = R~+l~m+O(hq+2).  

After simple manipulations we get 

~,,,+1 = O(h q+ l) and finally e,,+l = O(hq+ l )  • 

REMARK 3.4. Our proof uses the idea of considering ~m+l of Hundsdorfer [10], 
where an analogous version of result b) is proved. Our formulation, however, 
allows a simple derivation of corresponding methods. 

EXAMPLE: Method (3.6) is B-consistent of order 1. With 

l + ( 1 - 2 7 ) z + ( ½ - 2 ? + ) ' 2 ) z 2  and 7 > ¼, 
R~°a~(z) = (1 -~z)  2 

we have 

[R?)(z)]_,  [R(a3)(z)_ c22B2(z) ] = 2~'(1 - V)-  c2/2 + 72(c2 - 1 )z 
1 + (½- 2y)z 

This expression is uniformly bounded and by Theorem 3.5. the method is B- 
convergent of order 2 for (3.12). For ~ = ¼ we get: 

C2 
[R?I(z)] - l[R~3)(z)-c~B2(z)] = ~ -  ~- +~6(c2-1)z.  

Therefore the method is B-convergent of order q = 2 for c2 = 1. 

4. Modifications of linearly implicit one-step methods. 

Here we will modify method (2.1) in order to get for (1.1) the same B- 
consistency results as for (3.11). With the assumptions of Theorem 3.4. we have 

• I .,+I/,+l.,,) ~-I A.c~,~ u~'+1 = y(t.+qh)+ ~iv.n ~c, t~#,+l- #=,Z ,J~ } x 

X (y(q,+l) glq,) r(q,)).FO(hq,+l ) 
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One immediately sees, if we add 

~x i /Xq,+l- Aidcj r(q') 
qi ! j=l  

then the method has the B-stage order q~. 
For the modified linearly implicit one*step method 

i-1 
(4.1) u~+l = R~(cihT)u,.+h Y. A i iE f i -Tu~+,]+  

j=l  

+ - -  ' IR~:+I- Ai j~ j ) ,  ' 
qi! j=l 

u=+~ = R(d+t}(hT)u~+h ~ Bj(fs-Tu~)+,)+ 
j=I 

-}- q~ hq+l.  ~ ' 'q+l "-- ~ (R(s+ 1) j = 1 "ta3"cJ--D'~q~l"{q)]. 

we have 

THEOREM 4.1. a) Let q~l)= minj~K,q ~ and let (3.2) hold for l = 0  . . . . .  ql 2). 
Then at the ith stage the modified method (4.1) has the B-stage order 
qi = min(ql 1), q}2))+ 1 on F. 

b) Let q{1) = minjeK~+,q j and let (3.4) hold for I = O,... ,q {2). Then (4.1) is 
B-consistent of order q = min(q (1), q(2))+ 1 on f'. 

The same order results are obtained by another modification, where the 

function r(t) is treated separately: 

i~..1 q, /_~ 
(4.2) u~+l = R~)u,, +h AiJgJ-t- 2 tt.i ,,t~l''d+lD(i)J 1",1 + lr(lt 

j= l  /=0 • 

u,.+l = R(o~+l)u,.+h ~ Bsgs+ ~ ~hl+lR~V1 l~r(O. 
j= l  I=0 

THEOREM 4.2. For (4.2) the results of" Theorem 4.1. hold. 

PROOF. u m + l = R o u m + h i B j y j + ~ h t + l R t + l  r(O 
j= l  l=0 

_ hl+l hq+l ( s q-gq+lr(q} ) -1-0(hq+2) 
= Rou,. + ;~,i ~--f-. Rz+ l(gt') +rm)+ --~. \S~= l BSC'gtq) 
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- ht+l hq+l 
= Roy+ i~=i ~ Rz+I(Y "+ ~)- Ty"')+ ~ Rq+ :~q~+O(h ~+1) 
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hq+ 1 
= y(tm+h)+ ~. Rq+l(Ty~q)+r~q~)+O(h q+l) 

hq+ 1 
= y ( t , . +  h ) +  -~. Rq+ l ( y  ~q+ 1)_g~q))+O(hq+ 1) 

= y(tm+h)+O(hq+l). 

The proof for.u~+ 1 is analogous. • 
One immediately sees that the modification has no influence on the C-stability 

of the method. A linearly implicit method (4.1) or (4.2) with B-consistency 
order q and an A-acceptable stability function R~d+~)(z) is therefore B- 
convergent of order q. 

The modifications require the evaluation of derivatives of r(t). 
On the other hand with fewer stages the same order q as for (2.1) is achieved 

which reduces the number of function evaluations and the number of back- 
substitutions. These modifications are particularly advantageous for semi- 
discretized problems (1.3) where almost all components of r(t) are zero (for one 
dimensional problems only the first and the last components of r(t) are not zero). 

EXAMPLES: 1. The modified version of (3.5) with q = 1 is B-consistent and 
B-convergent of order 1. The modified versions of (3.6) with q2 = 1, q = 2 and 
of (3.10) with q~ = 1, q3 = q4 = 2, q = 3 are B-consistent and B-convergent 
of order 2 and 3, respectively. 

. The modified W-method 

h 
(l-½hT)k~ = f,,+ ~r. 

(I-½hT)k2 = g(tm+c2h, u,~+c2hkl)+fm-gm +~hrml , +~hl 2C2rm,, 

urn+ 1 =um+h 1 -  k l + ~ k  2 

is of B-consistency and B-convergence order 2. 

5. Some generalizations. 

We consider the slightly more general class FT of problems 

y '= A(t)y+g(t,y)+r(t) 
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and.assume that (1.2) holds (with T := A(t)). We consider the modified method 
(3.5) with T = A(t",): 

(5.2) um+ 1 = Ro(hT)u", + hRI(hT)( fm --  Turn) + h2R2(A' ( t" , )u" ,  +r'(tm)). 

THEOREM 5.1. Method (5.2) is B-consistent of  order ! on FT .  

PROOF. With (2.3) we have 

urn+ ~ = um + hRl f" ,  + hZRz(A'(t",)u", + r'(t",)) 

= y + h y ' + h Z R 2 ( y " - 9  ') = y( tm+h)+O(h2) .  • 

To show C-stability and consequently B-convergence we need an additional 
assumption. 

THEOREM 5.2. Let Ro(z) be A-acceptable and let IlA-l(t)A'(t)H be uniformly 

bounded on F T  for all t ~ [to, tel. Then (5.2) is C-stable on FT .  

PROOF. 

u", + ,  - -  w" ,  + ,  = R e [ u , ,  - w " , ]  + h R ,  [,q(t",, u",)-  q(t",, w",)] + h Z R z A ' ( t m ) ( u " ,  - win). 

With (1.2) and (2.3) we obtain 

Itu",+t-w=+~ll- [ l + hLIIRll l  + hllR , - f l l l l A -  ~ Z'll]ilu", - w=ll 

< (1 +Coh)llu",-w",[I. • 

REMARK 5.1. The modification (5.2) requires the evaluation of A'(t). This 
additional effort may be justified if A(t) = a(t) .  B, where a(t): [to, re] --' R and B 
is a constant (n, n)-matrix. Such problems arise by semidiscretization of 

(5.3) 0~ = i,k=l ~xg bik(x) +q( t , x ,u ) ,  a(t) > O, 

with time dependent Dirichlet boundary conditions. The condition for C- 
stability then reads ta'(t)/a(t)t uniformly bounded. 

The following example illustrates the advantage of the modified method (5.2) 

y2J  - - 2  . v 2 - v d t ) J  + L v i ( t ) J  ' v2(t) = l - e - '  

t e [0.5, 2]. 
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The initial values correspond to the exact solution 

yl(t) = 1 +e- '  +exp(-t2/2e,)+exp(--t2/e) 

Y2 (t) = 1 + e- t  + exp( - t2/2e) + 2 exp( - t2/e). 

Table 5.1. shows the Euclidean norm of the absolute error at the endpoint 
err(l/20) obtained with constant stepsize h = 1/20 and err(I/40) with h = 1/40 
for various e. Further, it shows the numerically obtained order of B-convergence 

err(l/20) 
q = log2 err(1/40~" 

Table 5.1. Results for methods (3.5) and the modified method (5.2) 

1 1 + z/2 t 1 + z/2 
(3.5) with Ro = (3.5), Ro = (5.2), R 0 = - - - -  (5.2), Ro = 

1 --Z 1 - z / 2  1 - - z  I - - z /2  

err(l/20) err(l/40) q err(I/20) err(l/40) q err(l/20) err(I/40) q err(I/20) err(l/40) q 

10-:  9,8 E - 3  4.9 E - 3  1,0 4.8 g - - 3  2.4 E - 3  t,0 2.3 E- -4  5.7 E - 5  2,01 1.2 E - 4  3,0 E - 5  2.0 

10 -4 9 , 8 E - 3  4 . 9 E - 3  1.0 1 . 6 E - 2  8 . 7 E - 3  0.88 2 . 4 E - 4  6 . 0 E - 5  2.0 1 . 8 E - 3  4 , 7 E - 4  1.94 

10 -6 9,8 E - 3  4.9 E--3 1,0 1.7 E - 2  8.2 E - 3  1,05 2.4 E - 4  6.0 E - 5  2.0 1.9 E - 3  4.9 E - 4  1.96 

10 -a 9.8 E ' - 3  4.9 E - 3  1.0 1.7 E - 2  8.3 E - 3  1.03 2.4 E - 4  6.0 E - 5  2.0 1.9 E - 3  4.9 E - 4  1.96 

For this example method (3.5) has the B-convergence order q = 1. For the 
modified method (5.2) one shows analogously to Theorem 3.5. that the order 
of B-convergence is q = 2 if 

D(z) = (R(I ~+ 1)(z))- IR(3~+ 1)(z) 

is uniformly bounded for z ~ C- .  For Ro(z) = (1 +z/2)/(l -z /2)  we have D(z) = ½ 
which implies B-convergence of order 2. For  Ro(z)= 1 / ( l - z )  we obtain 
D(z) = (l+z)/z, which is unbounded for z ~ 0 ;  the order of B-convergence 
is 1. For  the given stepsizes, however, D(z) is bounded so that numerically we 
also obtain q = 2. 

Note, that the accuracy of our modified methods is clearly superior. 
Modifications of higher order require higher derivatives of A(t). For problems 

of type (5.3), however, they may be useful. 

THEOREM 5.3. The method 

(5.4) u(21 R(02)u,,+c2hR~2)[9 ] 2h2R(22)[A,um+r,] ,~+1 = + r  + c  

= R )um + X + R?¥] + 

+ h 2 [R(23)(A'Um + r') + c~ IR~3)(A'u(m2)+, - A'Um)] + ½haR(a3)(A"u m + r") 
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with A' := A'(t,~) is B-consistent of" order q = 2 on FT .  

THEOREM 5.4. Let R~03)(z) be A-acceptable and let [[A-l(diA)/dt~)l[, i =  1, 2 be 

unijormly bounded jbr  all t ~ [to, re]. Then (5.4) is C-stable on FT .  

The proofs of Theorems 5.3. and 5.4. are analogous to those of Theorems 5.1. 
and 5.2. [] 

6. Conclusions. 

Our investigations have shown that linearly implicit one step methods with 
respect to B-convergence properties are suitable for semi-linear problems (1.1), 
(1.2). The methods suffer from order reduction but by the modifications (4.1), 
(4.2) this order reduction can be decreased or completely avoided, The 
modification of linearly implicit one step methods also permits B-convergence 
results of order > 1 for a slightly more general class of problems. 
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