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Abstract. 

The numerical solution of Volterra integral equations of the first kind can be achieved via 
product integration. This paper establishes the asymptotic error expansions of certain product 
integration rules. The rectangular rules are found to produce expansions containing all powers of h, 
and the midpoint product method is found to produce even powers of h. Extrapolation to the limit 
is then applied. 
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1. Introduction. 

In this paper we consider some product integration methods for the solution 
of the Volterra integral equation of the first kind 

(1.1) [Xk(x,t)y(t)dt = f (x) ,  0 < x <- a, 
3o 

where f ( x )  is defined on [0, a] and k(x, t) on the domain 0 _< t < x <_ a. 
We assume the following conditions are satisfied: 

C1. k ( x , x ) ~ O  for x e [O, a], 
C2. k(x, t) and Ok(x, t)/ax are continuous on 0 _ t _< x __ a, 
C3. f(O) = 0 and i f (x)  is continuously differentiable on 0 _< x < a. 

These conditions ensure the existence of a unique continuous solution to (1.1) 
(see B6cher [4]). Further i f f ( x ) e  Cool0, a] then y(t)e C°°[0, a] (McAlevey [22]). 

Direct methods are obtained by replacing the integral by a numerical 
quadrature formula. Several authors have investigated the problem and proposed 
various numerical schemes. Low order methods have been examined by Jones 
[16], Kobayasi [17] and Linz [18], [19]. High order block by block methods 
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have been investigated by De Hoog and Weiss E8], [9]. Brunner [5], [6] has 
studied the use of piecewise polynomial approximation. More recently linear 
multistep methods have been investigated by several authors: Gladwin and 
Jeltsch [13], Holyhead, McKee and Taylor [15], Holyhead and McKee [14], 
Taylor [24], Baker and Keech [3], Gladwin [11], [12], Andrade and McKee [2] 
and Wolkenfelt [25]. Product integration techniques have been examined by 
Anderseen and White [1] and Linz [20], [21]. Brunner [7] and Marchuk and 
Shaidurov [23] have used extrapolation techniques. 

In the present paper we establish asymptotic error expansions for certain 
product integration methods. Extrapolation to the limit is then applied. In 
section 2 we present the product quadrature rules. We establish in section 3 some 
basic results and convergence results for these product methods. Asymptotic error 
expansions are derived for these methods in section 4. We consider in section 5 
inexact moment integrals. Finally in sections 6 and 7 we discuss extrapolations 
and consider some numerical examples and their extrapolation tables. 

2. Product integration rules. 

The basic interval [0, a] is divided into n subintervals of equal step length h, 
where xi = ih, i = O, 1 . . . . .  n and nh = a. We replace y(t), xi -< t _< xi+ 1, by the 
approximation Yi+~, 0 < c~ _< 1. Thus (I.1) gives 

i = 0  \ d x ~  

n - I  

(2.2) ~ mi(x , )Yi+,  = f(x,)  
i = 0  

where mi(x , )  are the moment integrals. 
Linz [20] notes that using separate approximations for k(x,  t) and y(t)  is 

particularly useful when k(x,  t) varies rapidly, as seems to be the case in many 
practical applications. Setting 0~ = 0 defines the left rectangular product method, 

= 1 the right rectangular product method, while ~ = 1/2 gives the midpoint 
product method. 

3. Basic results and convergence. 

The establishment of convergence and the derivation of the asymptotic error 
expansions for the rules are easily established in subsequent sections of the paper 
with the aid of the following theory. 

Consider a class of quadrature formulae of the form: 

(3.1) t = f ( t ) d t  = Q ( h ) + E e ( h ) + R e ,  p where 
0 
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Q(h) is a linear quadrature rule of step length h, 
EQ(h) is a series of correcting terms, and 
Re. v is the remainder associated with the truncation of EQ(h) after the pth term. 

In this section we consider the rule 

n - 1  

(3.2) Q(h) = h ~, fi+,, where.f/+, =f (xo+( i+e)h ) ,  0 < ot <_ 1. 
i = 0  

Using the shift operator E defined by Ef(x)  = f ( x+h) ,  we have 

(3.3) Q(h) = h ~ (E" - l ) f o ;  

in particular we will consider the left and right rectangular rules, which occur 
when ~ = 0 and 1 respectively, and the midpoint rule when ~ = 1/2. 

The Euler-Maclaurin formula has the remainder 

?/ 
(3.4) R - B2,~h2,.+ lf¢2.,)(~) 

(2m)! 

where the highest derivative retained in the correction term is of order 
2m-3 ,  Xo < ~ < x,, and B2m is a Bernoulli number. 

For fixed h the remainder term will in general not tend to zero as m 
increases. However, for fixed m, there is in general a sufficiently small value of h 
for which the remainder term may be considered negligible. This justifies the use 
of this class of quadrature formulae, which are generally asymptotic, but provided 
h is sufficiently small, have the property that truncation at a sufficiently small 
term yields an error with the same order of magnitude as this term. We assume 
this holds for the integrals approximated in this paper. In the asymptotic 
expansions that follow the remainder term is omitted for brevity. 

Letting EQ(h) = I -  Q(h) we have 

0.5) EQ(h) = D-  I (E"-  1)fo - h  (E" -  1) A 

= h (hD) -1 E ~  1- ( f"-f°)" 

where the derivative operator D is defined by Df(x)  = f '(x).  With the aid of the 
expansions (see [10]) 

(3.6) 1 - - (hD)- i  1 l hD_ 1 1 5 5 
E - I  - 2  + 12 729haD3 + ~ h  D - . . .  

cosech(hD)= ( h D ) _ l _ ~ h D +  3~haD3 - _ _ 3 1  hSDS+... 
15,120 
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we obtain the asymptotic error expansions for the rules above. We assume f ( t )  
to be sufficiently smooth so that all derivatives under discussion exist. 

For  e = O, the left rectangular rule gives 

(3.7) EL(h) = [Llhf( t )]o"+ [L2h2df(t)/dt]~"+ [ g 3 h 4 d 3 f ( t ) / d t 3 ] o " +  . . . .  

with L~ constants (L1 = 1/2, L 2 = - 1 / 1 2  and L 3 = 1/720). 
The midpoint rule is obtained by setting ~ = t/2, giving 

(3.8) Eg(h) = [Mlh2df( t ) /d t]o"+[M2h4d3f( t ) /d t3]o"+[M3h6dy( t ) /d tS]o"+. . . ,  

with M~ constants. 
Finally e = 1, gives the right rectangular rule, 

(3.9) E.(h)  = [Rlhf( t )]o"+[R2hZdf( t ) /dt]o"+[R3h4d3f( t ) /dt3];"+ .... 

with Ri constants. 

DEFINITION 1. 

Let I1o, Y1,--., II, denote the approximations obtained by a given method for 
some fixed step length h (nh = a). Then the method is said to be convergent 
if and only if 

m a x  [ y ( x i ) -  ~[ --~ 0 
o.<_i <_n 

as h ~ 0, n ~ ,~, such that nh = a. 

DEFINITION 2. 
A methbd is said to be of order p, if p is the largest real number for which 

there exists a finite constant C such that 

I y ( x i ) - -  Yi[ <-- ChV f o r  i = O, t . . . .  , n 

for all h > 0. 
In the subsequent analysis of this section we assume: 

(i) Conditions C1, C2 and C3 of section 1 to be valid, 
(ii) k(x, t) has a convergent Taylor series in the second variable, 0 < t < x < a. 

To show convergence of the midpoint product method we set ~ = 1/2 in (2.2) 
and obtain 

n-1  
( 3 . 1 0 )  ~, mi(xn)Y i+l /2  = f ( x n ) .  

i = o  



PRODUCT INTEGRATION RULES FOR VOLTERRA INTEGRAL EQUATIONS .. .  239 

Expanding the moment integral about the point t = x~+1/2 gives 

(3.11) 
,~1 ( (h/2)2 (h/2)4o4, , 

h k(x,,xi+l/2)+ ~--. kO2(xn, xi+t/2)+ ~(--. K tXn, Xi+l/2)+ 
i = 0  

+...)I'i+ 1/2 = f (x,), 

where k°J(x,, xi+~) = [OSk(x,, t)/c3tJ]t = x~+,. 
Using previous results we have 

tl--1 

(3.12) h ~" k(x., x,+ 1/z)y(x,+ ,/2) = f ( x . ) -  [MlhZO(k(x,, t)y(t))/&]o" 
i = O  

-- [ M 2h* t}3 (k(x., t )y(t ) )/Ot3]o" - . . . . 

From equations (3.11) and (3.12) we derive 

h " ~ I (  (h/2) z 02 (h/2) 4 o, ) 
k(xn, Xi+l/2) + ~--. k (Xn, Xi+l/2)+ ~ f - - k  (Xn, Xi+l/2) +''" /~i+1/2 

i = O  • • 

(3.13) , -  t kO2(x,, xi+ 1/2)_ y(xi+ 1/2)) = h 2 [-MlO(k(x, , t )y( t)) /&]o.+h ~ 223 ' 
i = 0  

, -  1 kO,(x,, xi+ t/2) y(xi+ 1/2)) +.,. +h4 [-M2t?a(k(x,,t)y(t))/c?t3]o "+h Z 2"5' 
i = 0  

where ei+ 1 / 2  = Y(Xi+ 1/2)-- Y/+ 1/2" 
On the right-hand side of equation (3.13), each quadrature term is replaced 

by an integral minus error terms, and we obtain the following: 

(3.14) 

"-~i( (h/2)z (h/2)* 
h k(x.,xi+l/2)+ -~.  k°2(x.,xi+l/2)+ --~. k°*(x., 

i 

= h 2 [-MlO(k(x. , t)y(t))/&]o"+ 223! y(t)dt 

+ 

Xi+ l/2)"~ 

+ ' ' ' ~  gi+ 1/2 / 

h4 ( [ -  M2Oa(k(xn, t)y(t))/~ta]o"- [~3~. ~(k°2(xn, t)y(t))/O.t]i" 

fo o k°*(x,, t) ) + 245! y(t)dt + .. . .  

We note that teit2J ~ ch 2 and hence the method is convergent with order at 
least two as a result of the following lemma. 
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LEMMA. Let ei+ 1/2 be defined by 

, - 1 (  (h/2)2 (h/2)4 ) 
hi~=o k(xn'Xi+ l/z)+ ~v - - k °Z (xn 'X i+ l /2 )+  - 5--~k°4(xn, xi+ l /2)+. . ,  elf-l~2 

= h Z q l ( x , ) + O ( h  4) for n=203 , . . ,  where 

k(x, t) satisfies conditions CI and C2, 
k(x, t) has a convergent Taylor series in the second variable, 0 < t < x <__ a, 
ql(x) is differentiabIe on (0, a], 

and tel/2t < clh 2, cl a constant. 
Then te,+1/21 -< czh 2, )br n _>__ 1, where c2 is a constant, 

PROOF (McAlevey [22], see also Linz [20]). 
Similarly it may be shown that the rectangular product methods converge 

with order of at least one. 

4. Asymptotic error expansions. 

We now derive the asymptotic error expansion when (1.1) is approximated by 
the midpoint product rule. 

THEOREM 4.1. Let ei+ 1/2 be defined by the Jollowing equation: 

n-=~i ( (h/2)2 (h/2) 4 
h k(xn, xi+l/2)+ ~ - ( - - k °2 (xn ,  xi+u2)+ --5~. k°4(xn, 

i 
= h2ql(x , )+h4q2(x , )+h6q3(x . )+. . .  

where 

(i) q i (x)eC®[O,a] ,a  > O for i >_ 1, 
(ii) qi(O) = O, for  i > 1, 
(iii) k(x, t) satisfies conditions C1 and C2 of  section 1, 
(iv) k(x, t) has a convergent Taylor series in the second variable, 0 < t < x <_ a. 

(h/2)4,o4, . "~ ~(,~) 
hi= ° k(x , ,x i+t /2)+ 3. 

= h2q~m)(x,) + h4q~m)(x~) + h6q(am)(xn) + . . .  where 

acre) e~+ 1/2 el(xi+ 1/2) e2(xi+ 1/2) em(xi+ t:2) 
i+l/z = h2,. h2m-2 h2m-4 

Xi+ 1/2)+...)e.i+ 1/2 

Then 



PRODUCT INTEGRATION RULES FOR VOLTERRA INTEGRAL EQUATIONS . . .  241 

and the ep(t), 1 <_ p <_ m, are defined by 

fok(X,  = q•- 1)(x). t )ev(t )dt 

The q}P)(x), 1 _< p < m, j >_ 1, are defined by 

q}e)(x) = q~p~-ll)(.,c) + 

['¢ k °'2j(x, t) 
ep(t)dt. Jo 22~(2j + 1 )! 

where the Mj, j > 1 are constants, and q}°)(x) = qj(x). Moreover q}e)(0) = 0 and 
q}')(x ) ~ C~[0,  a].  

PROOF. The  case m = 1 : we have 

=o k(xo, x~+ ~/~)+ ~ k°~(x~, X~+l/2)+ -ST-. k°4(x~' x,+,2)+... ~+~/2 

(4.1) = h2ql(xn)+hgqz(Xn)+h6q3(xn) + . . . .  

and dividing by h 2 we get 

n - l (  . (h/2)2 (h/2)" ) 
h- '  E k(xn, xi+l/2)+~f-, k°2(xn, xi+l/2)+ ~f--. k°4(xn, xi+l/2) +... gi+1/2 

i = o  
(4.2) 

= ql(x.)+h2q:(x.)+h4qa(x.)+ . . . .  

Defining el (t) to be the solut ion of 

f f  k(x, t)e, (t)dt = ql (x), (4.3) 

we note,  that  under  the given condi t ions  for k(x,t) and ql(x), it follows that  
el(t) e C°°[0, a]. Discretising equat ion (4.3) gives 

n--1 

(4.4)  h E k(xn'xi+l/2)el(xi+l/2) = ql(xn) 
i=0  

-- ~ [Mih2iO 2i- l(k(xn, t)e,(t))/& 2i- 1)]o'. 
i=1 
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We thus have the following discretisation for el(t), 

n - l (  (h/2)2 o2 , (h/2)4 ) 
i=0 k°~'(xn, xi+ l/2)+.., el(xi+ t/2) h ~ k(x.,xi+l/z)+ ~ k  (x . ,x i+, /2)+~S~- " 

= q,(x.)+h 2 [-M,O(k(x. ,  t)e,(t))/&]o" +h Z k°:(x"" x'+1/2) el(xi+,/2) 
i=o 223! 

(4.5) [[ "-' k°~(x.,x~+,/2) e,(x,+,~) l +... + h  4 -MzaS(k(x,,t)e,(t))/&S]o.+h ~ 245 , 
i=0 

Rewriting (4.5) replacing summat ion  terms by an integral minus error terms gives 

h k(xn, Xi+ll2)+ --~. k°2(Xn, Xi+l/2)+ --~. K txmxi+l/2)+.., el(xi+u2) 
i=0 

i ('x° kO~(x., t) -I 
= ql(Xn)~-h2 [-M16~(k(xn't)el(t))/et]°"+ Jo 22-~i e,(t)dtJ 

(4.6) 

+ h~ [[ - M 2~3 (k(x., t )e , (t ) )/&S]o"- [2M--~3~.i- O(k°2 (x., t )e l (t ) )/ & li" 

f o : "  k°~(x"'t)el(t)dtl + .... 
+ 245! 

Subtract ing (4.6) from (4.2) gives 

(4.7) 

. -  1 ( (h/2) 2 , o2, , (h/2) 4 04 '~.<1~ 
h ~=o.k(x,,,x,+,/2)+ ~-ff-K tx,,,xi+,/2}+---5T~-k (x,,,x,+,/~)+...joi+,/z 

[ f: ] hZ x. el(t)dt = q2(x,) + [Md?(k(xn, t)el(t))/&]o - k°2(xn, t) 
223! 

h 4 [qa(x . )  + [M203(k(x.a t)el (t))/&3]o" + 

]. 1 + d(k°2(x,, t)ex(t))/& 2"5! o -  el(t)dt + .... 

= h2q~l)(x.) + h~'q~l)(x,) + h6q(31)(x.) + ... .  

The general term is given by 

q}l)(x) = qj+l(x)+ 220-0(20--0+ 1)! i=I 

×~2i-l(kO,2U-O(x,t)el(t))/~t2i-ltX fox kO' 2j(X' t) 
o - 22~(2j + 1)! 

edt)dt. 
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It follows from the smoothness conditions on qs(x), k(x,t) and el(t) that 
q~l~(x)eC®[O,a]. Moreover from their definition q~l)(0)=0, j >  1. This 
completes the proof for m = 1. 

The general case follows by a similar inductive argument. • 

COROLLARY. Since 

n--1 / (h/2)2 o2, (h/2)4,o4, ) 
h ~ k(xn, Xi+l /2) - f -~ l - f - -k  (Xn, Xi+I/2)"~-~.  K (Xn, Xi+l/2)"~-... /3}~)1/2 

i = 0  • • 

= h2q~m)(xn) + h4q~m)(x.) + h6qt3m)(xn) + . . .  

and noting le~')21 < Cl h2, c 1 a constant, it follows from the Lemma of section 3 
that ~.(m) < c2h 2 for n > 1, where c2 is a constant, that is '~n+ 1/2 - -  

en+ 1/2 el(Xn+ l/2) e2(Xn+ l/2) 1/2) 
h2ra h2m_ 2 h2m_ 4 . . .  - e , , , ( x , , +  < c2 h2. 

Hence it follows that 

gn+ 1/2 = h2el (xn+ 1/2) + h4e2(xn+ 1/2) + . . .  + h2%m(xn+ 1/2) + O( h2ra+ 2), 

where m is arbitrary. Thus we have en + 1/2 "~ ~h2Jej(x~ + 1/2). (Linz [20] established 
en+ 1/2 = h2el(x,+ 1/2)+ O(hS)). 

In like manner, asymptotic error expansions may be derived for the left 
and right rectangular product methods producing all powers of h. These 
results are summarised in the following theorem: 

THEOREM 4.2. I f  the same smoothness conditions hold for (1.1) as in Theorem 4.1 
then 

(i) 

(ii) 

for the left rectangular product rule en "" ~hJej(xn), 

for the right rectangular product rule en+ 1 ~ ~hJej(x,+ 1). 

(See McAlevey [22]). 

5. Inexact moments. 

In the preceding sections of this paper, we have assumed the moment integral 
has been exact. In the absence of exact moments, equation (2.2) is replaced by 

n-1 
(5.1) E thltx.)~ii+~ = f(x.)  

i = 0  
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where ffT,(x,) is the inexact moment integral, and ~+~ the approximating values 
generated by the rule. 

In practise the moment integral may be approximated by a quadrature rule 
of arbitrary order. Linz [20] has shown that when the midpoint product method 
has inexact moments, calculated by a rule of degree q then 

gn+l /2  = h2el(xn+t/z)+hqOl(xn+l/2) +... w h e r e  

~i+1/2 = Y(Xi+l/2)-- Y/+l/2-  

Clearly q is to be chosen as high as possible, to ensure it produces only higher 
order contributions to the asymptotic error expansion of g,+ 1/2. 

A general theory for an arbitrary quadrature rule is not presented here due to 
its cumbersome nature. Instead we consider an example, showing how an 
asymptotic error expansion may be generated for inexact moments. 

EXAMPLE. We consider the midpoint method (3.10) from a different viewpoint. 
We may regard the ordinary midpoint method as being the result of the 
midpoint product method with an inexact moment, namely hk(x,, x~+ 1/2). 

Using the result that the inexact moment may be expressed as the exact 
moment minus error terms, we have 

h 3 h 5 
hk(x., xi+ 11,2) = (hk(x., xi+ 1/2)+ 9 ~  k°Z(x"' xi+ 1/2)+ -2~-~. k°*(x., xi+ 

2 3 .  

- ([M,h2~3k(x,, t)/ot]x:+'+ [M2hac?3k(x,, t)/&3]Xx'+'+...). 

.2)+...) 

Thus (5.1) is replaced by 

h i~=i {k(x,, 1 / 2 ) + h 2 ( ~  -M1)k°2(x,,,xi÷lj2) (5.2) xi+ 

+h4 2 ! 223! M2 " n'xi+t/2) 

(2 1 M, M2 M3)kO6(xn, xi+l/2)+..}~i+ +h 6 6-7! 245! 2z3! ,/2 = f (x.). 

The asymptotic error expansion may now be established in the usual manner. 
However, the coefficients of the k °' 2-i(x,,, xi+l/2) are found to vanish (McAlevey 
[22]), and hence (5.2) reduces to 

n--1 
(5.3) h ~ k(x,,, x,+,12)~+ 1t2 = f(x,,). 

i = 0  
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Thus we have the following equation for ei÷ 1/2 

n - 1  

h ~, k(x,,  xi+ 1 /2 )~ i+  1/2 = - -  [MlhZc3(k(x,, t)y(t))/r~t]o" 
i = 0  

- [Mzh'~?3(k(x,, t)y(t))/•t3]o " -  . . . .  

Clearly this is the ordinary midpoint method. 

245 

6. Extrapolations to improve accuracy. 

The asymptotic error expansions derived provide a justification for the 
use of extrapolation to improve accuracy. Consider the midpoint method. 
Solutions are computed with step lengths h and 3h (to make the grid points 
coincide). Then at a particular point Yp we have 

(6.1) Yp(h) = y(x.  + 1/2) + h2el (x. + a/2) + O(h4), 

(6.2) Yp(3h) = y(x.+ 1/2)+ 9h2el(x,,+ l/2)+O(h'*). 

An improved solution is given by 

(6.3) Yp(3h, h) = 1/8(9 Yp(h)- Yp(3h)), 

where Yp(3h, h) = y(x,,+ 1/2) + O(h4). 

Similar results are obtained for the rectangular product rules. 

7. Numerical examples. 

We now solve numerically by the midpoint method, the left rectangular and 
the right rectangular methods the equation: 

fi (4 + x cos 49t)y(t)dt = 
X 

= 4 ( 1 - c o s  x )+  ~- {(1/50)(1-cos(50x))- t /48)(1-cos(48x))}.  

Solution : y(t) = sin t. 
Evaluation is ~it x = 1/6 with sin(l/6) = 0.16589 61327. 

In the extrapolation tables of this section, the ratio column contains the 
ratios of errors of consecutive column entries. 

In Table 1 we note h 2 and h 4 convergence. An extremely rapid improvement 
is achieved. (Note 3 2 =  9 and 3 4 =  81 are the limiting ratios since for the 
method a step length with a multiple of 3 is chosen.) Ratio columns then 
become swamped by rounding errors. 
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Table 1. Method is the midpoint product. The sequence of step lengths is 
(1/9, 1/81, 1/243, 1/729, 1/2187). 

ratio h 2 extrap ratio h 4 extrap 

.16442967 

.16564627 5.87 .16579835 

.16586647 8.42 .16589399 45.69 .16589519 

.16589281 8.93 .16589610 71.33 .16589613 

.16589576 8.97 .16589613 .16589613 

In Tables 2 and 3 we note h and h e convergence. The improvement due to 
extrapolation is not as rapid as in Table 1. 

Table 2. Method is the left rectangular product. Sequence of step lengths is 
(1/12, 1/24, 1/48, 1/96, 1/192, 1/384, 1/768). 

ratio h extrap ratio h 2 extrap 

,2067433O 
.18654631 1.98 .16634932 
A7613236 2.02 .16571841 .16550811 
.17101301 2.00 .16589366 .16595208 
.16845861 2.00 .16590421 .16590773 
.16717872 2.00 ,16589883 299 .16589704 
.16653779 2.00 .16589686 3.70 .16589620 

Table 3. Method is the right rectangular product. The sequence of step lengths is 
(1/12, 1/24, 1/48, 1/96, 1/192, 1/384, 1/768). 

ratio h extrap ratio h 2 extrap 

.12442305 

.14510974 2.01 .16579643 

.15553971 2.01 .16596968 ,16602743 

.16073706 2.00 .16593441 1.92 .16592265 

.16332220 2.00 .16590734 3.42 .16589832 

.16461063 2.00 .16589906 3.83 .16589630 

.16525375 2.00 .16589687 3.96 .16589614 

8. Concluding remarks. 

Many sophisticated high order methods have been suggested in the solution 
of the Volterra integral equation of the first kind. We have shown that under 
certain smoothness conditions low order product integration rules may be used 
to achieve solutions of arbitrarily high order. 
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