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COMPUTER CARTOGRAPHY 

POINT-IN-POLYGON PROGRAMS 

S T I G  N O R D B E C K  and  BESI'GT R Y S T E D T  

Abstract .  

The  official s tat is t ics  and  census repor ts  g ive  figures only for admin i s t r a t ive  
uni ts .  The  boundaries  of these  uni ts  are  of ten changed  and  hence i t  is v e r y  diffi- 
cul t  to  compare  s tat is t ics  f rom two different  periods.  However ,  an  admin i s t r a t ive  
uni t  can a lways  be  app rox ima ted  by  a polygon.  Rea l  es ta te  d a t a  are  assigned to  
a cent ra l  po in t  for which  t h e  coordinates  are  known.  A compute r  can de te rmine  
whe the r  a poin t  belongs to  a polygon or  no t  b y  means  of a special p rogram.  D a t a  
for all  real  es ta te  cent ra l  po in ts  belonging to t he  ac tual  polygon are  added.  ]In this  
w a y  i t  will  be possible to  compute  da t a  for a rb i t r a ry  polygons,  for ins tance  ad- 
min i s t r a t ive  uni ts  which do no t  exis t  any  longer,  by  assigning real  es ta te  d a t a  to  
t h e  cent ra l  points.  

K e y  words:  Cartography,  computer ,  polygon.  

Contents .  
1. The  Swedish real  es ta te  register  and  the  coord ina te  m e t h o d  . . . . . . . . . . . . . .  39 
2. Comput ing  da t a  for squares  by  means  of coordinates.  The  p rogram N O R K .  40 
3. The  procedure R E C T A N G L E  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 
4. T h e  c i rcumscr ibed circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 
5. The  intersect ion be tween  the  polygon P and  a s t ra ight  line t h rough  the  

po in t  Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45 
6. The  sign of t he  dis tance be tween  the  poin t  Q and  the  sides P~,P~,+I of the  

polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 
7. The  sum of t he  angles in t he  po in t  Q in t h e  t r iangles  P~P~+IQ . . . . . . . . . . .  47 
8. The  sum of t he  areas  of the  t r iangles  P~P~+IQ . . . . . . . . . . . . . . . . . . . . . . . . .  48 
9. The  or ienta t ion  theorem for convex  polygons . . . . . . . . . . . . . . . . . . . . . . . . . .  48 

10. The  poin t - in-polygon procedure  N O R P C O N V E X  . . . . . . . . . . . . . . . . . . . . . . .  51 
11. The  or ien ta t ion  theorem and  concave  polygons . . . . . . . . . . . . . . . . . . . . . . . . .  51 
12. Concave  polygons and the  enlarged or ien ta t ion  theorem . . . . . . . . . . . . . . . . .  53 
13. A ma thema t i ca l  proof of t he  enlarged or ien ta t ion  theorem . . . . . . . . . . . . . . .  54 
14. The  procedure  N O R P  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56 
15. Circles and  the  procedure  N O R I  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 
16. Appl ica t ions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 
17. Summaxy  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

1. T h e  S w e d i s h  real  e s ta te  reg i s t er  and the coord inate  m e t h o d .  

T h e  S w e d i s h  " F a s t i g h e t s r e g i s t e r u t r e d n i n g e n " ,  a c o m m i t t e e  a p p o i n t e d  

t o  p e r f o r m  a r e v i s i o n  o f  t h e  r e a l  e s t a t e  r e g i s t r a t i o n  i n  S w e d e n ,  d e l i v e r e d  
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its report to the Swedish Government October i0, 1966. Among other 
reforms of the real estate register the committee proposes [2] that  
the location of every real estate property be given in the official real 
estate register by  means of coordinates for some central point suggested 
to be the center of the house in case of a small estate with one house 
situated near the center of the largest circle inscribed in the real estate 
polygon [4, 5]. The coordinates of this latter point are given in two main 
cases, first if there is no house on the estate, and second as supplemen- 
ta ry  information to the house coordinates if the distance between the 
house and the central point is larger than 100 meters. 

The Swedish land use map in scale I : 10000 and its parallel coordinate 
system covering the whole of Sweden are supposed to be used when the 
real estate coordinates are determined. Local maps in a larger scale 
(1:2000) available for towns and other larger agglomerations may  also 
be used, but  then the transformation between the coordinate systems 
must  be very easy to perform. 

A coordinate registration of real estates will determine the positions of 
many data, not only those included in the real estate register but  also all 
data  in other registers associated with it. 

The techniques described here to locate areal data  to central points, 
and to determine the coordinates of these points is in Sweden known as 
the coordinate method. The coordinates are used in two different ways. 
I t  is easy to find the map sheet tha t  an estate belongs to by  means of its 
coordinates. The real estate coordinates make it possible for a computer 
to deal with areal data according to their location which is the most 
important  reason to establish the Swedish real estate coordinate register. 

2. Computing data for squares by means of coordinates. 
The program NORK. 

The ALGOL program N O R K  is the simplest of the programs dealing 
with the point-in-polygon problem. In this case the polygons are squares, 
all equal in size and organized in a regular quadratic grid net. They are 
not  allowed to overlap and they must  cover the whole area under con- 
sideration (figure 1). N O R K  is also the simplest of all mapping programs 
and the result is a common square net map (figure 1). More complicated 
mapping programs allow overlapping and require a triangular grid net. 
[1, 4]. 

procedure NO.RK(xO, yO, l, w, h, map); 
integer x0, yO, l, w, h; 
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array map;  
begin integer r, c; 

real x, y, data; 
for r :=  0 step 1 until l do 
for c :=  0 step 1 until w do map[r, c] :=  O; 
New Point: 
x : = read; if x > 10 7 then go  to End;  
y : =  read; d a t a : =  read; 
r := ent ier((y-yO)/h);  c :=  ent ier((x-xO)/h);  
i f  0 < r ^ r  <= l ^ O  <= c ^ c  <= w then 
map[r, c] : = map[r, c] + data; 
go to N e w  Point;  
End:  

end N O R K  ; 

The procedure NORK includes the following parameters: 
(x0, y0) are the coordinates of the origin, which is the lower left corner 

of the map, and 1 is the length of the map. Hence, the number of rows 
is equal to (l + 1). 

The width of the map is denoted by w and the number of columns 
is equal to (w+ 1). Further, h is the size of the sides of the squares and 
also the distance between two consecutive grid points, since the squares 
do not overlap. 

Input  data are x, y and data, x, y being the coordinates of a real estate 
unit, and data, for instance, denoting population, information belonging 
to the real estate or information about persons living there. I t  can also 
be concerned with the real estate itself such as land use, size, value etc. 
The value of x must be less than 10 7, a n  exit from the procedure oc- 
curring otherwise. 

The computer determines the row number (r) by taking the integer 
part  of ( y - yO) /h .  The column number (c) is calculated in the same way 
from ( x - xO) /h .  The point (x, y) belongs to the map area if 0 ___ r _< 1 and 
0___c_< w. Now data is added to cell number (r, c) in the array map. 
The computer then proceeds to the next point and deals with it in the 
same way and so on until the mapping is finished. 

Figure 1 is a square net map over a small urban place, Hyltebruk, 
situated in the westernmost part  of Sin&land, Sweden [3]. I t  shows the 
number of inhabitants per hectare in 1960. I t  may be observed how easy 
it is to get numerical information out of a square net map compared with 
a dot map, which is the most common kind of distribution map. 
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F i g u r e  1. A p o p u l a t i o n  m a p  (coordinate  m a p )  ove r  a n  a r ea  a r o u n d  H y l t e b r u k ,  a sma l l  
t o w n  in  t h e  w e s t e r n m o s t  p a r t  of Sm~land ,  Sweden.  The  m a p  shows  t h e  n u m b e r  of inhab i t -  

a n t s  pe r  h e c t a r e  (2.471 acres) in  1960. 

3. The procedure RECTANGLE. 

A polygon is defined by its vertices with known coordinates. By 
determining a starting point (PI) and a direction, in this case counter- 
clockwise, and by enumerating the vertices accordingly, the polygon can 
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be defined as the area situated to the left of all connecting lines between 
two consecutive vertices. The vertices of the polygon will be designated 
P1,P~,P3 . . . . .  P~_I,P,~ where Pn is equal to P1. Thus the polygon has 
n -  1 vertices. 

The x-coordinate for the extreme left (west) vertex of the polygon is 
denoted by W. In the same way and with obvious notations we define 
E, N, and S. As is evident from figure 2 the polygon in question is si- 

N 

I t 

w 

$ 

F igu re  2. All  po in t s  ou t s ide  tile r ec tang le  (E, S), (E, N), (W, N), (W, S) are  also o u ~ i d e  

t h e  po lygon.  E=Xmax, W = x m l n ,  N=ym~.~, a n d  S=Ymln-  {x, y) are  t h e  coord ina te s  for  the 
ver t ices  of t h e  polygon.  

tuated wholly and entirely within the rectangle (W,S), (E, S), (E,N), 
and (W,N). This rectangle is one of the rectangles circumscribed round 
the polygon. A point Q with coordinates (x,y) does not belong to the 
polygon if x < W or x > E or if y < S or y > _h r. By means of the procedure 
RECTANGLE the coordinates of the circumscribed rectangle round the 
polygon are computed and further it  is determined whether the point Q 
belongs to this rectangle or not. 

Boolean procedure RECTANGLE(x, y, n, P) ; value x, y, n;  
real x, y; integer n; array P ;  
begin integer i; 

real W, S, E, N, px, /nj; 
W := E :-- P[1, 1]; N := S := P[1, 2]; 
for i :=  2 step 1 until n - 1  do 
begin px :=  P[i, 1]; py := P[i, 2]; 
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if  p x  < W then W := p x  e l se  if p x  > E then E :=  p x  ; 

if  p y  < S then S : =  TY e l se  if p y  > N then  N : =  p y  
end;  

R E C T A N G L E : =  W < x ^ x < E ^ S < y A y < N 

end R E C T A N G L E ;  

The procedure RECTANGLE is also used when there is a whole set of 
polygons (P,), for instance blocks in a town, and the problem is to 
determine whether a point belongs to one of these polygons P,  or not. 
The computer starts by calculating a rectangle circumscribed around all 
the polygons (see figure 3). In  this case the vertices of all the polygons 
are treated as if they belonged to one and only one polygon. The x- 
coordinate of the westernmost vertex of the westernmost polygon is 
designated W m i n ,  and E m a x ,  S m i n ,  and N m a x  are defined in a similar 
way. Obviously, a point Q ( x , y )  does not belong to an), polygon P,  if 
x < W m i n  or x > E m a x  or if y < S m i n  or y > N m a x .  If the point Q belongs 
to the rectangle the individual polygons and their circumscribed rect- 
angles are then treated one at  a time. 

N max 

I 1 
1 I 

Z / ' I / ~ E max 

Wmin 

f I 

S rnin 

~igure 3. A rectangle is circumscribed a set  of polygons. A point outside this rectangle 
does not belong to any one of the polygons. 
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4. The circumscribed circle. 

Instead of using the circumscribed rectangle and the procedure 
RECTANGLE we may use the smallest circle circumscribing the polygon 
and the procedure CIRCUM CIRCLE. The circle is determined by  the 
location of its center (CP) and the length of its radius (R). I t  is clear 
tha t  the point Q lies outside the polygon P if the distance between Q 
and the center CP is greater than the length of the radius R. 

The computer starts by  calculating the length of the longest diagonal 
of the polygon which is then taken as diameter in a circle offering the 
first approximation of the circumscribed circle. This approximation is 
identical with the smallest circumscribed circle if all the vertices lie 
inside it. If  this is not  true the most remote vertex outside the circle is 
chosen to form a triangle, and a new circle passing through the three 
vertices of the triangle is constructed. This is the second approximation 
of the circumscribed circle. If it is not the right one the polygon corner 
lying farthest away from the circle is chosen and three new triangles are 
created. I t  is determined if any one of these triangles is the correct one. 
If not, the procedure is repeated, possibly by  going back taking another 
of the first three triangles, but  usually the iteration is finished well 
before that  stage. 

The procedure CIRCUM CIRCLE has some disadvantages compared 
with RECTANGLE. The determination of the circumscribed circle in 
most cases takes more time than the construction of the rectangle. The 
procedure RECTANGLE also generally excludes more points than 
CIRCUM CIRCLE. Of course, using both these procedures would exclude 
more points than using just  one. However, the gain is very small and it 
can even be a loss since the use of the combination of the two procedures 
sometimes takes more time than it saves. I t  is therefore bet ter  to work 
with a point-in-polygon program directly after the procedure RECT- 
ANGLE has been passed. 

5. The intersection between the polygon P and a straight line through 
the point Q. 

An arbitrary line through the point Q (cf. figure 4) intersects the sides 
of the polygon an odd number of times to the left (or to the right) of 
Q if this point lies inside the polygon. The coordinates of the point Q 
are designated (xO,yO). As a rule, the polygon is intersected by  the line 
y = y0 parallel to the x-axis. I t  must be observed that  the coordinates of 
the point Q are here designated (xO, yO) and not (x,y) as in section 3. 

The intersection theorem is valid for all polygons, convex as well as 
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F igu re  4. A p o i n t  Q is s i t u a t e d  ins ide  a po lygon  if a s t r a i gh t  l ine t h r o u g h  i t  in te r sec t s  t h e  

sides of t h e  po lygon  a n  odd  n u m b e r  of t i m e s  to t h e  lef t  or  to t h e  r igh t  of t he  point .  The  
p o i n t  Q1 belongs  to t h e  po lygon  (3 in te r sec t ions  to t h e  lef t  a n d  5 to t h e  r ight)  while  Q2 
does n o t  (2 in te r sec t ions  to  t h e  r ight ) .  

concave.  All inner angles of the  vert ices are less t h a n  180 ° in a convex 
polygon.  I t  follows t hen  t h a t  there  is a t  least  one inner  angle grea ter  
t h a n  180 ° in a concave polygon as is shown in figure 4. I t  m a y  be sup- 
posed t h a t  this  theorem is v e r y  valuable  since i t  is val id for  all polygons.  
I t  was used in a procedure  N O R P 1  published in 1962 [4, 5]. However ,  
i t  was soon discovered t h a t  i t  had  some grea t  disadvantages.  F o r  example,  
no one of the  sides of the  polygon was allowed to  be parallel  to  the  x-axis, 
and  the  point  Q could not  lie on the  sides or thei r  extensions.  Of course, 
i t  would be possible to  take  care of all these special cases b u t  the  program 
would become too compl ica ted  and  too slow. I t  is more  economical  
to  use ano the r  point- in-polygon p rogram t h a n  t h a t  based upon the  inter-  
section theorem.  

6. The s ign of the distance between the point Q and the s ides P,P,+z 
of the polygon. 

As is ev ident  f rom figure 5 the  poin t  Q lies inside the  convex  polygon 
P if for  all sides P,P,+I the  dis tance be tween Q and  the  side P,P,+z has 

P3 / ~  p. p~ 

F i g u r e  5. A p o i n t  Q lies ins ide  a c o n v e x  po lygon  if t h e  d i s t ance  b e t w e e n  Q a n d  t h e  side 
P~Pv+z h a s  t h e  s a m e  s ign  as  t h e  d i s t ance  b e t w e e n  Q a n d  v e r t e x  P~+2" ~ = 1 ,  2, 3 , . . . ,  

n - -  1. T h i s  t h e o r e m  is n o t  va l id  for  concave  polygons. 



COMPUTER CARTOGI~APHY - POINT-IN-POLYGON PROGRAMS 47 

the same sign as the distance between the vertex P~+2 and the side. The 
signs of these distances are determined by  inserting the coordinates of 
the point Q(x,y) and of the vertex P,+2(x,+~,y,+2) into the equation of 
the side written in normal form. 

This theorem is not valid for concave polygons. The point Q does 
belong to the polygon to the right in figure 5 but  the sign of the distance 
between the vertex P~ and the side P~P~ is different from the sign of the 
distance between Q and P~P3. 

7. The sum of the angles in the point Q in the triangles P~P,,+IQ" 
The polygon P has n -  1 vertices and n -  1 sides. I t  is divided into n -  1 

triangles by  the connecting lines between Q and the vertices. Q belongs 
to the polygon if the sum of the n - 1  angles in Q is equal to 360 °. The 
point Q does not belong to the polygon if this sum is equal to 0% (See 
figure 6). All angles in Q are counted with the proper sign. 

5 P~ A 

/ \ k  t "/ .  \ / "-, / ..,~P3 

Figure 6. A polygon is divided into n - - 1  triangles by  the  cormocting lines between the 
point  Q and  the vertices. Q belongs to the  polygon if the  s u m  of the  angles is equal  to 360 °. 
The point  also lies inside the  convex polygon if the  sum of the  areas of the  triangles is 

equal  to the  area of the polygor~. 

Considerable rounding errors can be accepted when the angles are de- 
termined except when the point Q lies near a side P~P~+z or its extension. 

A computer can determine whether an angle in Q is greater, equal to 
or less than 0 ° by  investigating the sign of the area (the orientation) of 
the triangle under consideration. The point Q belongs to the side P~P,+I 
or its extension if this area is equal to zero. 

The greatest disadvantage with a program depending on this theorem 
is tha t  it is quite slow due to the fact that  the computation of the angles 
is very time-consuming. The program also includes a procedure which 
calculates the area and the orientation of every triangle, and this proee- 
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dure can also be used as an independent point-in-polygon program (see 
the procedure NORPCONVEX). 

8. The sum of the areas of the  t r i a n g l e s  P~P~+IQ" 

The polygon P is divided into n -  1 triangles by the connecting lines 
between the vertices of the polygon and the point Q. As is evident from 
figure 6 the point belongs to a convex polygon if the sum of the areas 
of the triangles is equal to the area of the polygon. The areas must be 
taken with their absolute values, the theorem otherwise being valid for 
all points and all polygons independent of the location of the point Q 
outside or inside of the polygon. I t  should be observed tha t  the point-in- 
polygon theorem on the sum of the area of the triangles is not valid for 
concave polygons. 

One advantage of this theorem is tha t  it is very easy to calculate the 
areas of the polygon and the triangles by means of the determinant for- 
mula without any serious round-off errors. The area of the polygon is 
designated T~ where n is equal to the number of vertices of the polygon 
plus 1. The determinant formula is stated as follows: 

2 T ~  = ( P 1 , P ~ , P a  . . . . .  P n _ l ,  P n )  = ! x l  X2 X3 " ' '  Xn I = 
l Y l  Y2 Ya Y~ J 

= x ly2  + x~Ya + x3Y4 + • • • + x n - l Y n  - 

- (ylx2 --]- y~x a + yax4 + . . .  + yn - lXn )  

Thus, the area of a polygon is equal to the sum of 2 (n -1 )  simple 
products between the x-coordinate and the y-coordinate of two conse- 
cutive vertices [5]. This formula is also used when the orientations of the 
polygon and the triangles are to be determined. 

9. T h e  o r i e n t a t i o n  t h e o r e m  for  c o n v e x  p o l y g o n s .  

All point-in-polygon theorems described here have serious disadvan- 
tages. Most of them are not valid for concave polygons. I t  is not possible 
in any case to establish tha t  a point does or does not belong to the polygon 
until the computer has dealt with all the sides. There are several special 
cases such as a point being situated on a side or its extensions. These 
disadvantages have the effect tha t  a program using one of these theorems 
will be complicated and rather stow. 

The connection lines between a point Q and the vertices divide a 
triangle into three other triangles as is seen in figure 7. The vertices of 
this triangle are given in a counter-clockwise order. The orientation of 
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y 
9.. o\ \ / ..;o 

P, ~ P, P, ~ P, 

Figure 7. A point Q lles inside the convex polygon P if the triangles _P~r~+IQ all have 
the  same orientation as the polygon. 

the triangle is positive if the area is greater than zero when calculated by  
means of the determinant formula. 

The lines QP1, QP~ and QPa divide the triangle PzP~Pa into three 
other triangles PzP~Q, P2P3Q and P3PzQ (see figure 7). The connecting 
lines between a point Q in the same way divide the polygon PIP2Pa... 
P,_zP~ (where P~ = P 0  into n -  1 triangles P,P,+zQ, v = 1, 2, 3, . . . ,  n -  2, 
n - 1 .  The orientation theorem states that  the point Q belongs to the 
convex polygon P if the triangles P,P,+zQ all have the same orientation 
as the polygon. As is evident from figure 7 the orientations of the new 
triangles are determined by  the orientation of the side P~ ,+I -  

The orientation point-in-polygon theorem also states tha t  a point Q 
does not lie inside the convex polygon if one of the triangles has an 
opposite orientation compared with the polygon (see figure 8). The 
orientation of the triangle PaPIQ is negative while the given triangle is 
positively oriented. I t  follows then that  Q is situated outside the triangle. 

I t  could not  be decided whether the point lies outside the triangle 
until the side (and the triangle) number 3 had been used in the calculation 

Figur~ 8. A point Q does not  belong to the convex polygon P if one of the triangles 
PrP~+IQ has an opposite orientation compared with the polygon. 

BIT 7 - -  4 
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in this example. However, a point Q situated outside the polygon in 
most cases is eliminated earlier. Let  us assume that  there are many 
points Q in the example in figure 8 and that  they are uniformly distrib- 
uted over the area around the triangle. The probability tha t  a point Q 
lying outside the polygon will be eliminated by  means of side number 1 
(PIP2) is as high as 0.5. That  means that  5 points out of 10 will be elimi- 
nated in this ease. On the conditions which are valid in the example of 
figure 8, about  4 points out  of 10 will be eliminated by  side number 2. 
The probability that  Q is situated as in figure 8 and that  it is not  elimi- 
nated until side number 3 is not more than 0.1. 

The more sides there are in a polygon the tess is the probabili ty that  
a point Q lying outside the polygon will not be eliminated until we reach 
the last side. A very rough estimate shows that  50% of the points Q will 
be eliminated by  side 1, 60-90% b y  sides 1 and 2 together, 70-95% by 
sides 1, 2 and 3, 80-100% by  sides 1, 2, 3 and 4. The elimination percent- 
ages depend on the angles between side number 1 and the other sides. 
The larger the outer angle between side 1 and an other side, the more 
points Q are eliminated. If  this outer angle is greater than 180 °, almost 
100% of the points will be eliminated. In this case the extension of the 
side number v intersects the extension of side 1 to the left of vertex P1. 
The direction left is explained by  the fact that  the vertex P2 lies to the 
right of P1. 

The orientation theorem also takes care of the case when the point Q 
lies on a side or its extension. The sign of the triangle P~P,+x@ will then 
be equal to zero. The point Q belongs to the extensions of the side if the 
sign of x -  x, is equal to the sign of x - x,+x. In  this case it is also true that  
the point Q belongs to another triangle having opposite orientation com- 
pared with the polygon. 

The orientation "point-in-polygon theorem" has many advantages 
compared with the other theorems presented in this paper. A procedure 
using this theorem automatically takes care of all special cases. I t  is 
not surprising that  it is much faster than any other procedure which 
depends on some of the other theorems. The best way of determining the 
direction of the distance between the point Q and the sides P,P,+I is to 
use the orientation theorem. The point Q does not belong to the polygon 
if one of the angles of the triangles surrounding @ is negative. This can 
be determined by  means of the sign of the sine of the angle here designated 
A. This is best done by  using the formula sinA = 2T/(r,r,+x) where T is 
the area of the actual triangle, r~ and r,+ x are the positive distances from 
Q to P,  and P,+I respectively. The sign of sinA obviously is identical 
with the sign of the area of the triangle T. The areas of the polygon 
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and  the  tr iangles ought  to  be calculated b y  use of the  de t e rminan t  
fo rmula  [4]. Hence,  all these theorems  depend upon the  or ien ta t ion  
theorem.  Of course, this  basic theorem ough t  to  be used independen t ly  
because the  compound  theorems are more  complicated and  less effective. 

10. The  p o i n t - i n - p o l y g o n  procedure  NORPCONVEX. 

The  point- in-polygon procedure  I ~ 0 R P C O N V E X  is based on the  ori- 
en ta t ion  theorem.  I t  determines  whe ther  a point  lies outside a polygon ( - 1) 
or whe ther  i t  is s i tua ted  inside the  polygon ( + 1) or whe ther  i t  belongs to  
one of the  sides (0). The  following paramete r s  are included:  n which as 
usual  means  t h a t  t he  polygon has  n - 1  vert ices;  P ,  a two-dimensional  
a r r ay  which consists of the  coordinates  of the  polygon vertices.  I n p u t  
da t a  are x and y, the  coordinates  of the  ac tua l  point  Q. The  area of the  
t r iangle  PtPt+IQ is deno ted  by  a. 

integer  procedure  NORPCOIYVEX(n ,  x, y, P) ;  value n, x, y;  
integer  n;  real x, y;  a r r ay  P ;  
begin integer  i ;  real  a; 

for i :=  1 step 1 until  n - 1  do 
begin  a := P[i, 1] × P [ i + I ,  2 ] + P [ i +  1, 1 ] × y + x × P [ i ,  2 ] - P [ i +  1, 1] 

×P[i, 2 ] - x x P [ i +  l, 2 ] - P [ i ,  1 ] × y ;  
i f a  < O then go  to  O U T  else  if a = O t h e n  
begin if s ign(x -P[ i ,  1]) = s i g n ( x - P [ i +  1, 1]) then  go  to OUT 

else  go to ON 
end 

end;  
I N :  N O R P C O N V E X  := 1; go to E N D ;  
0 UT: NORPCON V E X  : = - 1 ; go  to E N D ;  
ON: N O R P C O N V E X  : = 0; 
E N D :  
end NORPCON V E X ;  

11. The  or ienta t ion  t h e o r e m  and concave  p o l y g o n s .  

A concave polygon can always be divided into two or more  convex 
polygons.  I t  is t rue  t h a t  if a point  belongs to one of these convex poly- 
gons, i t  also belongs to  the  concave polygon.  Hence,  the  procedure  
N O R P C O N V E X  can be used even  when i t  is to  be de te rmined  whe the r  
or no t  a poin t  lies inside a concave polygon.  However ,  i t  can be quite" 
compl ica ted  for the  compute r  to  divide the  concave polygon into convex 
polygons.  
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As is evident from figure 9 the concave polygon can always be made 
convex by  including the outer triangles of the concave vertices. The com- 
puter  starts by  determining if the polygon is concave or convex by  aid of 
the procedure CONVEX. 

/ t I I I  

F 

F i g u r e  9. A concave  po lygon  c a n  a lways  be  m a d e  c o n v e x  b y  inc lud ing  t r i ang les  a r o u n d  

t h e  concave  ver t ices .  

Boolean procedure CONVEX(n,  P);  integer n; array P ;  
begin integer i; 

for i :=  1 step 1 until n -  1 do 
if P[i, 1] x P[i + 1, 2] + P[i + 1, 1] × P[i + 2, 2] + P[i + 2, 1] x P[i, 2] - 
P [ i +  1, 1] xP[ i ,  2 ] - P [ / + 2 ,  1] × P [ i +  1, 2 ] - P [ / ,  I ] × P [ i + 2 ,  2] < 0 
then begin C O N V E X  := false; go to E N D  end; 
CON V E X  : = true; 

END: 
end CON VEX;  

As before the polygon has n - 1  vertices, P~ is equal to P1 and Pn+l 
is equal to P2. The orientation theorem is used when determining whether 
a vertex P~ is concave or not, since the triangle P~_IP~P~+I is of opposite 
orientation compared with the polygon if P~ is a concave vertex. The 
computer adds the triangle to the polygon and investigates if the polygon 
is now concave. The orientation of the new triangle P~_IP~+IP~+~ is de- 
termined. This triangle is included in the polygon if the new vertex P~+I 
is concave. The computer continues with Pv+~ ete until it finds a new 
vertex, for instance P~+k which is convex. The old vertex P~+k+l is now 
included in the calculations and the computer continues with the old 
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vertices P,+k+~, P,+k+3 etc. until it  finds a new concave vertex which is 
then treated in the same way. All the new triangles added to the con- 
cave polygon are stored. I t  is now true tha t  the point Q does not belong 
to the concave polygon if it lies outside the convex polygon or inside one 
of the new triangles. Obviously, the point Q belongs to the concave 
polygon if it belongs to the convex one but to none of the new triangles 
(also cf. figure 9). 

The greatest disadvantage of the point-in-polygon theorems for con- 
cave polygons just described is in many cases tha t  so many new triangles 
must be added tha t  the procedure becomes very slow. 

12. Concave polygons and the enlarged orientation theorem. 

The enlarged orientation theorem consists of two different parts most 
easily explained by means of figure 10. The first part  asserts tha t  a point 
Q belongs to a concave polygon if it is situated closer to the nearest side 
than to the 'nearest vertex and if the triangle formed by this side and the 
point Q has the same orientation as the polygon. The first part  of the 
theorem is valid for the point Q1 in figure 10. This point is situated closer 
to its nearest side (P,P,+I) than to its nearest vertex, P~+I or maybe P , ,  
since the distance QP,+I is very close to or equal to the distance QP~,. 
The orientation of the triangle P~P,+IQ1 is positive. Hence the point Q1 
lies inside the actual concave polygon. 

The second part  of the theorem states tha t  a point Q belongs to a 
concave polygon if it is situated closer to its nearest vertex than to its 
nearest side if this vertex is concave. This second part  of the theorem is 

| .,7------__ 
j , ,  °2 °,( 

Figure 10. The orientation theorem for concave polygons consists of two different par ts :  

1. A point  Q1 belongs to a concave polygon if it lies closer to i ts  nearest  side PvP~+I t h a n  
to its neares t  ver tex  and  if the  orientat ion of the  triangle P~P,,+IQ is equal  to the  orion- 
rat ion of the  polygon. 

2. A point  Qz lies inside a polygon if it  is s i tua ted  closer to it~ nearest  ver tex P~ t h a n  t o  

i t s  n e a r e s t  s ide and if this  vertex P~ is a concave one. 
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valid for the point Q2 in figure 10. The distance between the concave 
vertex P~ and the point Q2 is much less than the distance between Q~ 
and the side P,P,+I- I t  follows then tha t  the point Q~ belongs to the 
polygon. 

The enlarged orientation theorem is valid for all polygons, convex as 
well as concave ones. However, it is very uneconomic to use it in the 
case of convex polygons because the simple orientation theorem is much 
better in this case, and further the procedure NORPCONVEX is very 
fast compared with the procedure based on the enlarged theorem. I t  is 
therefore very convenient to use the procedure CONVEX to determine 
whether the polygon is convex or not and use NORPCONVEX in all 
cases when the polygons are convex. 

13. A mathematical proof of the enlarged orientation theorem. 

A concave polygon P and a point Q are given according to figures 11 
and 12. A new figure is constructed in the following way. The sides of 
the polygon are shifted inwards or outwards the same distance, the 
directions of the sides being kept unchanged, until the point Q is situated 
on the boundary of the new figure. A side is never allowed to become 
larger than it was before, and if necessary the vertices are replaced 

r _  

j ~ , J  

Figure  11. The  s ides  of a po lygon  are  sh i f t ed  b y  t he  s a m e  a m o u n t  un t i l  t h e  b o u n d a r y  

of the new/igure contains the point Q. 

The shift is always perpendicular to the original side. If necessary, the vertices are re- 

placed  b y  c i rcular  arcs .  T h e  sh i f t  p a r a m e t e r  is = ra in  (h, d) where  h is t h e  d i s t ance  f r o m  Q 

to  i t s  n e a r e s t  s ide (Q1) a n d  d t h e  d i s t a n c e  f r o m  Q to  i t s  n e a r e s t  v o r t e x  (Q~). T h e  p o i n t  

Q be longs  to  t h e  p o l y g o n  if t h e  s ides  h a d  to  be  sh i f t ed  inwards .  
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F igu re  12. A po in t  Q does  n o t  lie inside t h e  p o l ygon  if t h e  s ides  h a v e  to be sh i f t ed  out -  
w a r d s  in  o rder  to  r e a c h  t h e  p o i n t  Q. 

by circular arcs with radius equal to the perpendicular displacement. 
Hence, the constructed figure consists of not more than n - 1  straight 
lines corresponding to the sides of the polygon and a number of circular 
arcs corresponding to the concave vertices if the shift has been made 
inwards, and the convex vertices otherwise. (see figures 11 and 12). The 
point Q lies inside the polygon if the sides must  be shifted inwards in 
order to include the point Q. I t  is also obvious that  Q does not belong to 
the polygon if the sides had to be shifted outwards in order to reach 
the point Q and that  Q belongs to one of the sides if no shift at  all was 
necessary. 

The length of the parallel displacement is defined as the distance h 
from the side (P,P,+I) closest to the point Q if h is less than the distance d 
from Q to the nearest vertex P, .  If  this distance d is the smaller one it is 
used as displacement parameter. In the first case the direction of the 
shift is determined by  means of the orientation theorem for the triangle 
formed by  the nearest side and the point Q. In  the second case (d < h) 
the shift is directed inwards if the vertex P ,  is concave and outwards if 
P~ is convex. As is evident from figure 11 and 12 the distance from Q 
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to a convex vertex is always greater than the distance to the correspond- 
ing sides if Q lies inside the polygon. The same theorem is valid for a 
concave vertex and a point outside the polygon. 

The distance from the point Q to the vertex P~ is determined by means 
of the Pythagorean theorem. The distance h from Q to the side PvP,+I 
is calculated by aid of the formula h= 2T/r,,~+ 1 where T is the area of 
the triangle P~O,+I determined for instance by the determinant formula, 
and r,,,+ 1 is the length of the side P,P,+I. I t  must  also be observed tha t  
the angles QP,P,+z and QP,+zP, both must be less than 90 ° (or greater 
than 270 °) if the distance d is to be determined (see figures 10, 11 and 12). 

14. The procedure NORP. 

The parameters and input data  of the procedure NORP are equal to 
those of NORPCONVEX. As before d is the distance from the point Q 
with the coordinates (x,y) to a vertex of the polygon and h the distance 
between Q and a side of the polygon. 

The procedure NORP contains a real procedure DET which determines 
the double area (2T) of a triangle with the vertices (X1, Y1), (X2, Y2) 
and (X3, Y3) by means of the determinant formula. 

The computer determines the square of the smallest d-value (drain), 
i.e. the distance from the point Q to its nearest vertex. The number of 
this corner (j) is also stored. 

integer procedure NORP(n,  x, y, P); 
value n, x, y; integer n; real x, y;  array P;  
begin integer i, j ,  /c; real drain, d, brain, h; 

real procedure DET(X1,  Y1, X2, Y2, X 3, Y3); 
value x 1 ,  Y1, x 2 ,  Y2, X3,  Y3; 
real x 1 ,  Y1, x2 ,  Y2, x3 ,  Y3; 
begin D E T  := X1 x Y2+X2 × Y 3 + X 3 x  Y 1 - X 2 x  Y 1 - X 3 x  Y 2 -  

X I x  Y3 
end D E T  ; 
dmin :=  hmin := 106; 
for i :=  1 step 1 until n - 1  do 
begin d : = (P[i, 1] - x) ~ 2 + (P[i, 2] - y) ~ 2; 

f f d  = 0 t h e n  go to ON; 
ff d < drain then 
begin dmin := d; j := i 
end 

end; 
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for i :=  1 step 1 until n - 1  do 
begin if (x-P[~,  1])x (P[ i+  1, 1 ] - P [ / ,  t ] )+  ( y - P [ i ,  2])x 

(P[ i+  1, 2] - P [ i ,  2]) > 0 ^ (P[i, 1 ] - P [ i +  1, 1]) x ( x - P [ i +  1, 1])+ 
(P[i, 2 ] - P [ i +  1, 2]) x ( y - P [ i +  1, 2]) > 0 then 
begin h : = abs(DET(P[i, 1], P[i, 2], P[i + 1, 1], P[i + 1, 2], x, y))/ 

sqrt((P[i + 1, 1 ] -  P[i, 1]) f 2 + (P[i + 1, 2 ] -  P[i, 2]) f 2); 
if h = 0 then go to ON; 
if h < hmin then begin hmin := h; Ic := i end 

end 
end ; 
if hmin × hmin < dmin then 
begin if DET(P[k,  1], P[/~, 2], P[/c+ 1, 1], P[]c+ 1, 2], x, y) < 0 

then go to OUT else go to I N  
end; 
if j = 1 then begin P[0, 1] :=  P i n - 1 ,  1]; P[0, 2] :=  P i n - 1 ,  2] end; 
if D E T ( P [ j -  1, 1], P [ j -  1, 2], P[j,  1], P[j,  2], P[j  + 1, 1], 

p[j+ 1, 2]) < 0 
then go to I N ;  

OUT: N O R P  := - 1 ;  go to E N D ;  
ON: N O R P  := 0; go to E N D ;  
I N :  N O R P  : = 1; 

E N D :  
end NORP;  

By computation of the cosines of the angles QP,~P,+I and QP,+IP, 
it is determined whether the point belongs to the strip limited by the two 
parallel straight lines perpendicular to P,P,+I through the vertices P,  
and P,+I, this being the case if bo th  cosines are larger than zero. The 
value of h is calculated by aid of the formula h= 2T/r,,,+1. The smallest 
h-value (brain) is determined and the number of the corresponding side 
(k) is stored. 

The point lies closer to its nearest side than to its nearest vertex if 
(hmin)~< dmin. Using the orientation theorem we see tha t  the point Q 
belongs to the polygon if the area of the triangle Pk_Pk+IQ is greater than 
zero. I t  also belongs to the polygon if drnin < (hmin) ~ and if the nearest 
vertex is concave. 

15. Circles and the procedure NORI. 

The procedure NORK did not  allow overlapping of the reference 
squares and it used a quadratic grid net. The procedure NORI works 
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with reference circles which are allowed to overlap and a modified regular 
triangular grid net. The distance between two consecutive grid points 
in the same row is denoted by h which is also the distance between two 
consecutive rows. The length of the connecting line between two conse- 

cutive grid points situated in two different rows is ~/'5]2 or approxi- 
mately 1.lb. This means tha t  the odd rows are shifted 0.5h to the right. 
The overlapping constant s is equal to the radius of the reference circle 
given in the transformed coordinate system with unit  length h and with 
the origin in the map origin. The coordinates of a point (x,y) in the 
untransformed system has the coordinates (a,b) in the new coordinate 
system (see figure 13). The other parameters required by NORI are the 
same as those in NORK (see section 2 above). 

! 
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F i g u r e  13 .  T h e  p a r a m e t e r s  r e q u i r e d  b y  t h e  p r o c e d u r e  N O R I .  

procedure NORI(xO,  yO, l, w, h, s, map);  
value xO, yO, l, w, h, s; 
integer xO, yO, l, w; real h, s; array map; 
begin integer r, c, amin,  amax, bmin, bmax, one; 

real eps, 8s, x, y, data, a, b, hf, aq ; 
Boolean aeven ; 
for r :=  0 step 1 until 1 do 
for c :=  0 step 1 until w do map[r, c] := O; 
ep8:= 10--6; 8s :=  8×8; 

New Point:  
x :=  read; if x < 0 then go to End; 
y : = read; data : = read; 
a : = ( y -  yO)/h; b : = ( x -  xO)/h; 
amin := e n t i e r ( a - s - e p 8 +  1); amax :=  entier(a +s);  
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if a m i n  < 0 then  a m i n  : = O; if a m a x  > 1 then  a m a x  : = 1 ; 

i f  a m a x  < a m i n  then  go to N e w  P o i n t ;  

b m i n  : = entier(b - s - eps + 1) ; b m a x  : = entier(b + 8) ; 

i f  b m i n  < 0 then brain :-- O; if b m a x  > w then b m a x  : =  w; 
if b m a x  < b m i n  then  go to N e w  P o i n t ;  

aeven  : = a m i n  = a m i n -  2 × 2 ; 

one : =  if brain = O v a b s ( b - b m i n - s )  <= 0.5 then 0 else 1; 
for  r : =  a m i n  step 1 until  a m a x  do 
begin h f  :=  if aeven then 0 else 0.5; aq : =  ( a - r ) ×  ( a - r ) ;  

for  c : =  if aeven  then b m i n  else b m i n - o n e  step 1 until  b m a x  do 
i f  a q + ( b - c - h f ) ~  2 < ss then  m a p [ r , c ]  : =  m a p [ r , c ] + d a t a ;  

a e v e n  : - ~  - - - l a e v e n  

end ; 
g o  to  N e w  P o i n t ;  

E n d :  

end N O R I  ; 

The  compute r  calculates the  va lue  of a funct ion  f ( x , y )  a t  the  grid 
points  (x,y) a r ranged  in a t r iangular  ne t  convenient  for cons t ruct ion  of 
isar i thms and isari thmic maps  [1, 4]. The  funct ion  f ( x , y ) ,  for  instance,  
can  be the  number  of real  es ta tes  wi thin  the  dis tance hs f rom the  points  
(x,y) or the  number  of people living in t h a t  circle. 

16. Applications. 

The  point- in-polygon procedures  are used when the  coordinates  of 
points  wi th  assigned da ta  are available and  when i t  is desirable to  obta in  
in format ion  and  summar ized  d a t a  for  a rb i t r a ry  non-adminis t ra t ive  areas 
such as blocks or combinat ions  of blocks or  no-longer  exist ing adminis-  
t r a t ive  units. Of course, there  are m a n y  o ther  cases when the  coordinate  
m e t h o d  and  the  point- in-polygon procedure  can be used. Such an  ex- 
ample  will be given here. 

I n  mos t  countries urbanized areas are def ined b y  means of popula t ion  
densities. Thus  an  urbanized  area in USA was defined in 1960 as an  
area  wi th  a t  least  50000 inhabi tants .  All enumera t ion  distr icts  a round  i t  
having less t han  2500 inhabi tan ts  per square mile are excluded.  Exclaves  
s i tua ted  near  the  urbanized area  are also included if t h e y  have  typica l  
u rb an  functions.  

In  the  Scandinavian countr ies  urbanized  areas are defined wi th  the  
aid of dwelling house densi ty.  Thus,  the  Swedish " t ~ t o r t "  (urbanized 
area,  b r a t - u p  area) is defined as an  agglomerat ion of houses. All houses 
s i tua ted  within a dis tance of 200 meters  f rom a house belonging to  the  
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agglomeration are included in the " t~tor t" .  Areas having typical urban 
functions such as parks, industrial areas, traffic areas etc. are also in- 
cluded. The " t~tor t"  must have at  least 200 inhabitants. 

The Swedish " t~tor t"  is defined in the following way. "T~tort"  is a 
built-up area having at least 200 inhabitants and consisting of all points 
for which it holds true tha t  there is a t  least one house within a distance 
of 100 meters. This definition is equivalent to the following one: A 
" t~tor t"  is the inner area bounded by the 1-isarithm on an isarithmic 
map showing the distribution of houses. The reference area is a circle 
with the radius 100 meters. As an approximation of this house density 
the population density may be used under the following conditions: same 
reference circle and a high degree of overlapping. 

As is shown in figure 1 Hyltebruk is an agglomeration of houses with 
a total of more than  200 inhabitants. The map was constructed by aid 
of the procedure NORK. The side of the reference square is 100 meters 
but it ought to be 200 meters according to the definition of " t~tort" .  
The populations are summarized for all connected 200 meters squares. 
If  this sum is greater than  200 inhabitants, the computer constructs a 
new map by means of NORI. This must be done with such a high degree 
of overlapping that  the errors from the location of the isarithms are neg- 
ligible. The program I~ORIP (published in BIT in 1964 [1]) is then used 
and the 1-isarithms of the map are constructed. All these isarithms are 
given by the computer as a polygon. The computer starts working with 
this polygon by aid of the point-in-polygon procedures and determines 
the total population of the " t~tor t" .  This population is then divided into 
different classes etc. Further  the total  area of the " t~tor t"  is computed 
by aid of the determinant formula for polygons. Hence the delimitation 
of the boundaries of the urban place and the processing of its data  has 
been made automatically by the computer. 

Figure 14 is a map over the same area as figure 1. I t  shows the 1-isa- 
r i thm of the population in Hyltebruk (the solid line). The boundaries of 
the official delimitation of the urban place Hyltebruk is drawn with a 
dashed line. I t  must be observed tha t  the 1-isarithm divides Hyltebruk 
into two built-up areas. The reason for this is tha t  the river Nissan passes 
through it and tha t  there is an industrial area with a paper mill located 
close to the river. 

The delimitation of a built-up area by aid of the population density 
ought to be completed with some rules in order to exclude errors like 
tha t  in figure 14. Such a rule is given by I~ikkinen [6]. Exclaves are in- 
corporated into the urban place even if this breaks the 200 meters rule. 
He suggests tha t  an exclave with H houses be included if the distance (d) 
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F i g u r e  14. A m a p  over  t h e  H y l t e b r u k  area .  T h e  d a s h e d  l ine is t h e  official del imita . t ion 
l ine of t h e  H y l t e b r u k  bu i l t -up  a rea .  T h e  solid l ine is  t h e  1 - i sa r i thm of t h e  popu la t ion .  

I t  w a s  ca lcu la ted  b y  use  of t h e  p r o g r a m  N O R I .  T h e  reference  a r ea  was  a circle w i th  
r a d i u s  100 m e t e r s .  No te  how closely t h e  i s a r i t h m  a n d  t h e  official b o u n d a r y  follow each  

o the r ,  

between the exclave and the urban place is less than 100~/H meters. 
I t  must  be observed that  he is working with a 100 meters rule. I t  seems 

reasonable to change his formula to 200VH according to the Swedish 
definition of " tgtor t"  and to include the population instead of the number 
of houses. One urban house is assumed to correspond to 8 persons and 
instead of using the square root of the population the cube root is used. 

This revision gives the following formula: d < 100~/P. This formula means 
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tha t  an exclave will be included into the urban place if the shortest dis- 

tance between the two corresponding isarithms is less than (100~/P-200) 
meters. The Nissan area in figure 14 is included into the " t a to r t "  Hylte- 
bruk which becomes one urban place if this rule is used. However, it is 
probable tha t  including all industrial areas into the built-up area is 
both preferable and easier. 

I t  should be observed how close the l-isarithm follows the official 
delimitation of the Hyltebruk built-up area except for the eastern part  
where quite a large area is neglected. The delimitation of a built-up area 
by means of computers has one great advantage over a manual one: 
no areas are neglected. 

I t  is not surprising tha t  the isarithm follows the official delimitation 
as closely as it does. They are both built on the same definition of "ti~t- 
ort".  I t  follows, then, that  an introduction of the isarithmic delimitation 
of urban areas will not make it impossible to compare now existing 
statistical data  for built-up areas with those which will then become 
available. 

17. Summary. 

The Swedish Real Estate Register Committee proposes tha t  the loca- 
tion of every Swedish estate shall be given in tile official real estate 
register by the coordinates of central points belonging to each estate. 
The coordinates are used when a computer constructs a simple square 
net  map using the procedure NORK. They are also used when the prob- 
lem is to investigate whether a point Q belongs to a polygon or not. 

The orientation theorem for convex polygons is the most outstanding 
of all "point-in-polygon theorems" discussed here. A triangle is con- 
structed by means of the point Q and a side of the polygon. The point Q 
belongs to the polygon if it is true tha t  every triangle constructed in 
the same way as this first one has the same orientation as the actual 
polygon. The procedure NORPCONVEX uses this theorem. 

The orientation theorem has been revised to handle concave polygons 
as well. There are then two cases. 

1. The point is situated closer to its nearest side (P,P,+I) than to its 
nearest vertex. I t  belongs to the polygon if the triangle (P,,P,+IQ) has 
the same orientation as the polygon. 

2. The point is situated closer to its nearest vertex than to its nearest 
side. The point lies inside the polygon if this vertex is a concave one. 

The procedure NORP uses this more general orientation theorem valid 
for all polygons. The orientation of the polygons and triangles are de- 
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termined by  means of the determinant polygon area formula. This for- 
mula is also used by  the procedure CONVEX which determines whether 
a polygon is convex or concave. 

The point-in-polygon programs are used in connection with data  as- 
signed to a point (x, y) to compute statistical data about  arbitrary poly- 
gons such as blocks and no-longer existing administrative units. They 
can also be used in connection with the isarithmic procedures NORI  
and N O R I P  when the computer automatically constructs the boundaries 
of urban areas. Such an example shows the delimitation of Hyl tebruk 
"ti~tort'. The 1-isarithm follows the official manual delimitation very 
closely. I ts  area is very easily computed by  aid of the determinant 
formula for polygon areas. Data  determined by  means of the isarithmie 
delimitations of " t~tor t"  are almost identical with now existing manu- 
ally determined data. Hence, an introduction of the automatic delimita- 
tion of built-up areas will not  make historical investigations of the urban 
areas impossible. 
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