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COMPUTER CARTOGRAPHY
POINT-IN-POLYGON PROGRAMS

STIG NORDBECK and BENGT RYSTEDT
Abstract.

The official statistics and census reports give figures only for administrative
units. The boundaries of these units are often changed and hence it is very diffi-
cult to compare statistics from two different periods. However, an administrative
unit can always be approximated by a polygon. Real estate data are assigned to
a central point for which the coordinates are known. A computer can determine
whether a point belongs to & polygon or not by means of a special program. Data
for all real estate central points belonging to the actual polygon are added. In this
way it will be possible to compute data for arbitrary polygons, for instance ad-
ministrative units which do not exist any longer, by assigning real estate data to
the central points.
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1. The Swedish real estate register and the coordinate method.

The Swedish ‘“Fastighetsregisterutredningen”, a committee appointed
to perform a revision of the real estate registration in Sweden, delivered
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its report to the Swedish Government October 10, 1966. Among other
reforms of the real estate register the committee proposes [2] that
the location of every real estate property be given in the official real
estate register by means of coordinates for some central point suggested
to be the center of the house in case of a small estate with one house
situated near the center of the largest circle inscribed in the real estate
polygon [4, 5]. The coordinates of this latter point are given in two main
cases, first if there is no house on the estate, and second as supplemen-
tary information to the house coordinates if the distance between the
house and the central point is larger than 100 meters.

The Swedish land use map in seale 1:10000 and its parallel coordinate
system covering the whole of Sweden are supposed to be used when the
real estate coordinates are determined. Local maps in a larger scale
(1:2000) available for towns and other larger agglomerations may also
be used, but then the transformation between the coordinate systems
must be very easy to perform.

A coordinate registration of real estates will determine the positions of
many data, not only those included in the real estate register but also all
data in other registers associated with it.

The techniques described here to locate areal data to central points,
and to determine the coordinates of these points is in Sweden known as
the coordinate method. The coordinates are used in two different ways.
It is easy to find the map sheet that an estate belongs to by means of its
coordinates. The real estate coordinates make it possible for a computer
to deal with areal data according to their location which is the most
important reason to establish the Swedish real estate coordinate register.

2. Computing data for squares by means of coordinates.

The program NORK.

The ALGOL program NORK is the simplest of the programs dealing
with the point-in-polygon problem. In this case the polygons are squares,
all equal in size and organized in a regular quadratic grid net. They are
not allowed to overlap and they must cover the whole area under con-
sideration (figure 1). NORX is also the simplest of all mapping programs
and the result is a common square net map (figure 1). More complicated
mapping programs allow overlapping and require a triangular grid net.
[1, 4].

procedure NORK (20, 40,1, w, h, map);
integer 20, 0, I, w, h;
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array map;
begin integer r, c;
real z, y, data;
for r := 0 step 1 until [ do
for ¢ := 0 step 1 until w do map[r, c]:= 0;
New Point:
x := read; if x> ;,7 then go to End;
y 1= read; data := read;
r:= entier((y —yO)/h); ¢ := entier((x —x0)/R);
fOZrar<ila0=<cac 2 wthen
maplr, ¢] := map[r, ¢c]+data;
go to New Point;
End;
end NORK;

i

The procedure NORK includes the following parameters:

(x0, y0) are the coordinates of the origin, which is the lower left corner
of the map, and [ is the length of the map. Hence, the number of rows
is equal to ({+1).

The width of the map is denoted by w and the number of columns
is equal to (w+ 1). Further, % is the size of the sides of the squares and
also the distance between two consecutive grid points, since the squares
do not overlap.

Input data are z, y and data, x, y being the coordinates of a real estate
unit, and daia, for instance, denoting population, information belonging
to the real estate or information about persons living there. It can also
be concerned with the real estate itself such as land use, size, value ete.
The value of x must be less than 107, an exit from the procedure oc-
curring otherwise.

The computer determines the row number (r) by taking the integer
part of (y—y0)/k. The column number (¢) is calculated in the same way
from (x—20)/h. The point (x, ) belongs to the map area if 0<r =<1 and
02c=w. Now data is added to cell number (r, ¢) in the array map.
The computer then proceeds to the next point and deals with it in the
same way and so on until the mapping is finished.

Figure 1 is a square net map over a small urban place, Hyltebruk,
situated in the westernmost part of Smaland, Sweden [3]. It shows the
number of inhabitants per hectare in 1960. It may be observed how easy
it is to get numerical information out of a square net map compared with
a dot map, which is the most common kind of distribution map.
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Figure 1. A population map (coordinate map) over an area around Hyltebruk, a small
town in the westernmost part of Sméaland, Sweden. The map shows the number of inhabit-
ants per hectare (2.471 acres) in 1960.

3. The procedure RECTANGLE.

A polygon is defined by its vertices with known coordinates. By
determining a starting point (P,) and a direction, in this case counter-
clockwise, and by enumerating the vertices accordingly, the polygon can
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be defined as the area situated to the left of all connecting lines between
two consecutive vertices. The vertices of the polygon will be designated
P,P,P,,...,P, P, where P, is equal to P,. Thus the polygon has
n~— 1 vertices.

The z-coordinate for the extreme left (west) vertex of the polygon is
denoted by W. In the same way and with obvious notations we define
E, N, and S. As is evident from figure 2 the polygon in question is si-
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Figure 2. All points outside the rectangle (X, S), (E, N), (W, N), (W, S) are also outside
the polygon. Z=2max, W==2min, N =¥max, and §=ymnin. (, y) are the coordinates for the
vertices of the polygon.

S

tuated wholly and entirely within the rectangle (W,S), (,8), (E,N),
and (W,N). This rectangle is one of the rectangles circumscribed round
the polygon. A point ¢ with coordinates (z,y) does not belong to the
polygon if x< W or x> E or if y <8 or y > N. By means of the procedure
RECTANGLE the coordinates of the circumscribed rectangle round the
polygon are computed and further it is determined whether the point @
belongs to this rectangle or not.

Boolean procedure RECTANGLE(x, y, n, P); value z, y, n;
real z, y; integer n; array P;
begin integer i;

real W, 8, B, N, pz, py;

W.=FE:= P[1,1]; N:= S:= P[1, 2];

for i := 2 step 1 until n—-1 do

begin px := P[i, 1]; py := P[4, 2];
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if px < W then W := px else if px > F then F := px;
if py < Sthen 8:= pyelseif py > N then N := py
end;
RECTANGLE := W s zaxz S EAS S yay £ N
end RECTANGLE,

The procedure RECTANGLE is also used when there is a whole set of
polygons (P,), for instance blocks in a town, and the problem is to
determine whether a point belongs to one of these polygons P, or not.
The computer starts by calculating a rectangle circumscribed around all
the polygons (see figure 3). In this case the vertices of all the polygons
are treated as if they belonged to one and only one polygon. The z-
coordinate of the westernmost vertex of the westernmost polygon is
designated Wmin, and Emax, Smin, and Nmax are defined in a similar
way. Obviously, a point Q(z,y) does not belong to any polygon P, if
x < Wmin or x> Emax or if y<Smin or y> Nmazx. If the point @ belongs
to the rectangle the individual polygons and their circumscribed rect-
angles are then treated one at a time.
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Figure 3. A rectangle is circumscribed & set of polygons. A point outside this rectangle
does not belong to any one of the polygons.
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4. The circumscribed circle.

Instead of using the circumscribed rectangle and the procedure
RECTANGLE we may use the smallest circle circumscribing the polygon
and the procedure CIRCUM CIRCLE. The circle is determined by the
location of its center (CP) and the length of its radius (B). It is clear
that the point @ lies outside the polygon P if the distance between @
and the center CP is greater than the length of the radius R.

The computer starts by calculating the length of the longest diagonal
of the polygon which is then taken as diameter in a circle offering the
first approximation of the circumsecribed circle. This approximation is
identical with the smallest circumscribed circle if all the vertices lie
inside it. If this is not true the most remote vertex outside the circle is
chosen to form a triangle, and a new circle passing through the three
vertices of the triangle is constructed. This is the second approximation
of the circumscribed circle. If it is not the right one the polygon corner
lying farthest away from the circle is chosen and three new triangles are
created. It is determined if any one of these triangles is the correct one.
If not, the procedure is repeated, possibly by going back taking another
of the first three triangles, but usually the iteration is finished well
before that stage.

The procedure CIRCUM CIRCLE has some disadvantages compared
with RECTANGLE. The determination of the circumscribed circle in
most cases takes more time than the construction of the rectangle. The
procedure RECTANGLE also generally excludes more points than
CIRCUM CIRCLE. Of course, using both these procedures would exclude
more points than using just one. However, the gain is very small and it
can even be a loss since the use of the combination of the two procedures
sometimes takes more time than it saves. It is therefore better to work
with a point-in-polygon program directly after the procedure RECT-
ANGLE has been passed.

5. The intersection between the polygon P and a straight line through

the point Q.

An arbitrary line through the point @ (cf. figure 4) intersects the sides
of the polygon an odd number of times to the left (or to the right) of
¢ if this point lies inside the polygon. The coordinates of the point ¢
are designated (x0,y0). As a rule, the polygon is intersected by the line
y =40 parallel to the z-axis. It must be observed that the coordinates of
the point ¢ are here designated (20,y0) and not (z,y) as in section 3.

The intersection theorem is valid for all polygons, convex as well as



46 STIG NORDBECK AND BENGT RYSTEDT

Figure 4. A point @ is situated inside a polygon if a straight line through it intersects the
sides of the polygon an odd number of times to the left or to the right of the point. The
point @; belongs to the polygon (3 intersections to the left and 5 to the right) while Qo
does not (2 intersections to the right).

concave. All inner angles of the vertices are less than 180° in a convex
polygon. It follows then that there is at least one inner angle greater
than 180° in a conecave polygon as is shown in figure 4. It may be sup-
posed that this theorem is very valuable since it is valid for all polygons.
It was used in a procedure NORP1 published in 1962 [4, 5]. However,
it was soon discovered that it had some great disadvantages. For example,
no one of the sides of the polygon was allowed to be parallel to the z-axis,
and the point @ could not lie on the sides or their extensions. Of course,
it would be possible to take care of all these special cases but the program
would become too complicated and too slow. It is more economical
to use another point-in-polygon program than that based upon the inter-
section theorem.

6. The sign of the distance between the point Q@ and the sides PP, ,
of the polygon.

As is evident from figure 5 the point @ lies inside the convex polygon
P if for all sides P P,,, the distance between ¢ and the side P P, , has

¥
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Figure 5. A point @ lies inside a convex polygon if the distance between @ and the side
PP, +1 has the same sign as the distance between ¢ and vertex P, Ps y=1,2,3,...,

n~— 1. This theorem is not valid for concave polygons.
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the same sign as the distance between the vertex P, , and the side. The
signs of these distances are determined by inserting the coordinates of
the point Q(z,y) and of the vertex P, ,(%,,s,¥,,,) into the equation of
the side written in normal form.

This theorem is not valid for concave polygons. The point § does
belong to the polygon to the right in figure 5 but the sign of the distance
between the vertex P, and the side P,P; is different from the sign of the
distance between @ and P,P,.

7. The sum of the angles in the point Q in the triangles PP, 0.

The polygon P has n—1 vertices and n — 1 sides. It is divided inton—1
triangles by the connecting lines between ¢ and the vertices.  belongs
to the polygon if the sum of the n—1 angles in ¢ is equal to 360°. The
point @ does not belong to the polygon if this sum is equal to 0°. (See
figure 6). All angles in ¢ are counted with the proper sign.

Figure 6. A polygon is divided into n—1 triangles by the connecting lines between the
point @ and the vertices. @ belongs to the polygon if the sum of the angles is equal t0 360°.
The point also lies inside the convex polygon if the sum of the areas of the triangles is
equal to the area of the polygon.

Considerable rounding errors can be accepted when the angles are de-
termined except when the point ¢ lies near a side P, P, or its extension.

A computer can determine whether an angle in @ is greater, equal to
or less than 0° by investigating the sign of the area (the orientation) of
the triangle under consideration. The point @ belongs to the side PP,
or its extension if this area is equal to zero.

The greatest disadvantage with a program depending on this theorem
is that it is quite slow due to the fact that the computation of the angles
is very time-consuming. The program also includes a procedure which
calculates the area and the orientation of every triangle, and this proce-
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dure can also be used as an independent point-in-polygon program (see
the procedure NORPCONVEX).

8. The sum of the areas of the triangles PP, ., 0.

The polygon P is divided into n—1 triangles by the connecting lines
between the vertices of the polygon and the point @. As is evident from
figure 6 the point belongs to a convex polygon if the sum of the areas
of the triangles is equal to the area of the polygon. The areas must be
taken with their absolute values, the theorem otherwise being valid for
all points and all polygons independent of the location of the point @
outside or inside of the polygon. It should be observed that the point-in-
polygon theorem on the sum of the area of the triangles is not valid for
concave polygons.

One advantage of this theorem is that it is very easy to calculate the
areas of the polygon and the triangles by means of the determinant for-
mula without any serious round-off errors. The area of the polygon is
designated 7', where n is equal to the number of vertices of the polygon
plus 1. The determinant formula is stated as follows:

Xy Ty & z
T, = {P,Py,P,,...,P,_,,P,} = 17373 " n}=
o = BePals v Pu) {3/1yzys-~-yn

= ZyYy+ToY3+ LYyt . .+ Ty g Yy
— (Y1 %+ YaZ3 +YsTyt - o+ Ypo1Zn)

Thus, the area of a polygon is equal to the sum of 2(n—1) simple
products between the z-coordinate and the y-coordinate of two conse-
cutive vertices [5]. This formula is also used when the orientations of the
polygon and the triangles are to be determined.

9. The orientation theorem for convex polygons.

All point-in-polygon theorems described here have serious disadvan-
tages. Most of them are not valid for concave polygons. It is not possible
in any case to establish that a point does or does not belong to the polygon
until the computer has dealt with all the sides. There are several special
cases such as a point being situated on a side or its extensions. These
disadvantages have the effect that a program using one of these theorems
will be complicated and rather slow.

The connection lines between a point ¢ and the vertices divide a
triangle into three other triangles as is seen in figure 7. The vertices of
this triangle are given in a counter-clockwise order. The orientation of
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Figure 7. A point ¢ lies inside the convex polygon P if the triangles PP, ;@ all have
the same orientation as the polygon.

the triangle is positive if the area is greater than zero when calculated by
means of the determinant formuia.

The lines QP;, QP, and @QP, divide the triangle P,P,P; into three
other triangles P P,Q, P,P,0} and PyP.(Q) (see figure 7). The connecting
lines between a point @ in the same way divide the polygon P.P,P,...
P, P, (where P,=P,) into n—1 triangles PP, ,@, »=1,2,3,...,n—2,
n—1. The orientation theorem states that the point @ belongs to the
convex polygon P if the triangles PP, ;¢ all have the same orientation
as the polygon. As is evident from figure 7 the orientations of the new
triangles are determined by the orientation of the side P P,.;.

The orientation point-in-polygon theorem also states that a point @
does not lie inside the convex polygon if one of the triangles has an
opposite orientation compared with the polygon (see figure 8). The
orientation of the triangle PyP,Q is negative while the given triangle is
positively oriented. It follows then that @ is situated outside the triangle.

It could not be decided whether the point lies outside the triangle
until the side (and the triangle) number 3 had been used in the calculation

Figure 8. A point @ does not belong to the convex polygon P if one of the friangles
P,P,,,Q has an opposite orientation compared with the polygon.

BIT 7 — 4
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in this example. However, a point @ situated outside the polygon in
most cases is eliminated earlier. Let us assume that there are many
points @ in the example in figure 8 and that they are uniformly distrib-
uted over the area around the triangle. The probability that a point @
lying outside the polygon will be eliminated by means of side number 1
(P,P,) is as high as 0.5. That means that 5 points out of 10 will be elimi-
nated in this case. On the conditions which are valid in the example of
figure 8, about 4 points out of 10 will be eliminated by side number 2.
The probability that @ is situated as in figure 8 and that it is not elimi-
nated until side number 3 is not more than 0.1.

The more sides there are in a polygon the less is the probability that
a point @ lying outside the polygon will not be eliminated until we reach
the last side. A very rough estimate shows that 509, of the points ¢ will
be eliminated by side 1, 60-90%, by sides 1 and 2 together, 70-95%, by
sides 1, 2 and 3, 80-100%, by sides 1, 2, 3 and 4. The elimination percent-
ages depend on the angles between side number 1 and the other sides.
The larger the outer angle between side 1 and an other side, the more
points @ are eliminated. If this outer angle is greater than 180°, almost
1009, of the points will be eliminated. In this case the extension of the
side number » intersects the extension of side 1 to the left of vertex P;.
The direction left is explained by the fact that the vertex P, lies to the
right of P,.

The orientation theorem also takes care of the case when the point @
lies on a side or its extension. The sign of the triangle P, P,,,Q will then
be equal to zero. The point @ belongs to the extensions of the side if the
sign of x -z, is equal to the sign of z —x,,;. In this case it is also true that
the point @ belongs to another triangle having opposite orientation com-
pared with the polygon.

The orientation ‘‘point-in-polygon theorem” has many advantages
compared with the other theorems presented in this paper. A procedure
using this theorem automatically takes care of all special cases. It is
not surprising that it is much faster than any other procedure which
depends on some of the other theorems. The best way of determining the
direction of the distance between the point ¢ and the sides PP, ., is to
use the orientation theorem. The point € does not belong to the polygon
if one of the angles of the triangles surrounding ¢ is negative. This can
be determined by means of the sign of the sine of the angle here designated
A. This is best done by using the formula sin 4 =27/(r,r,.,) where 7 is
the area of the actual triangle, », and 7, are the positive distances from
Q to P, and P,,, respectively. The sign of sin4 obviously is identical
with the sign of the area of the triangle 7. The areas of the polygon
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and the triangles ought to be calculated by use of the determinant
formula [4]. Hence, all these theorems depend upon the orientation
theorem. Of course, this basic theorem ought to be used independently
because the compound theorems are more complicated and less effective.

10. The point-in-polygon procedure NORPCONVEX.

The point-in-polygon procedure NORPCONVEX is based on the ori-
entation theorem. It determines whether a point lies outside a polygon (— 1)
or whether it is situated inside the polygon (+ 1) or whether it belongs to
one of the sides (0). The following parameters are included: n which as
usual means that the polygon has n—1 vertices; P, a two-dimensional
array which consists of the coordinates of the polygon vertices. Input
data are x and y, the coordinates of the actual point . The area of the
triangle P,P,,,@ is denoted by a.

integer procedure NORPCONVEX (n, z, y, P); value n, z, y;
integer n; real x, y; array P;
begin integer ¢; real a;
for ¢:= 1 step 1 until n—1 do
begin @ := P[i, 11x Pi+1, 2]+ Pli+1, 1]xy+xx P[4, 2]~ P[i+1, 1]
x Pli, 21— x Pli+1, 2]-P[, 1] xy;
if a < O then go to OUT else if ¢ = O then
begin if sign(x — Pfi, 1]) = sign(z— Pli+1, 1]) then go to OUT
else go to ON

end
end;
IN: NORPCONVEX := 1; go to END;
OUT: NORPCONVEX := —1; go to END;
ON: NORPCONVEX := 0;
END:

end NORPCONVEX;

11. The orientation theorem and concave polygons.

A concave polygon can always be divided into two or more convex
polygons. It is true that if a point belongs to one of these convex poly-
gons, it also belongs to the concave polygon. Hence, the proeedure
NORPCONVEX can be used even when it is to be determined whether
or not a point lies inside a concave polygon. However, it can be quite
complicated for the computer to divide the concave polygon into convex

polygons.
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As is evident from figure 9 the concave polygon can always be made
convex by including the outer triangles of the concave vertices. The com-
puter starts by determining if the polygon is concave or convex by aid of
the procedure CONVEX.

Figure 9. A concave polygon can always be made convex by including triangles around
the concave vertices,

Boolean procedure CONVEX(n, P); integer n; array P;

begin integer ¢;
for ¢ := 1 step 1 until n—1 do
if P[i, 11x P[i+1, 2]+ P[i+1, 1]x P[i +2, 2]+ P[i + 2, 1] x P[3, 2] -
Pli+1,11x P[4, 2]—P[i+2, 1]x Pt +1, 2] - P[4, 1]x P[i+2,2] < 0
then begin CONVEX := false; go to ZND end;
CONVEX := true;

END:

end CONVEX;

As before the polygon has n—1 vertices, P, is equal to P, and P,
is equal to P,. The orientation theorem is used when determining whether
a vertex P, is concave or not, since the triangle P, ,P P ., is of opposite
orientation compared with the polygon if P, is a concave vertex. The
computer adds the triangle to the polygon and investigates if the polygon
is now concave. The orientation of the new triangle P, P, . P,,, is de-
termined. This triangle is included in the polygon if the new vertex P, ;
is concave. The computer continues with P,,, etec until it finds a new
vertex, for instance P,,; which is convex. The old vertex P, ., is now

included in the calculations and the computer continues with the old
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vertices P,,; s, P, .45 ebc. until it finds a new concave vertex which is
then treated in the same way. All the new triangles added to the con-
cave polygon are stored. It is now true that the point ¢ does not belong
to the concave polygon if it lies outside the convex polygon or inside one
of the new triangles. Obviously, the point @ belongs to the concave
polygon if it belongs to the convex one but to none of the new triangles
(also cf. figure 9).

The greatest disadvantage of the point-in-polygon theorems for con-
cave polygons just described is in many cases that so many new triangles
must be added that the procedure becomes very slow.

12. Concave polygons and the enlarged orientation theorem.

The enlarged orientation theorem consists of two different parts most
easily explained by means of figure 10. The first part asserts that a point
@ belongs to a concave polygon if it is situated closer to the nearest side
than to the nearest vertex and if the triangle formed by this side and the
point ¢ has the same orientation as the polygon. The first part of the
theorem is valid for the point @, in figure 10. This point is situated closer
to its nearest side (P,P,,;) than to its nearest vertex, P,,; or maybe P,,
since the distance QP,,, is very close to or equal to the distance QP,.
The orientation of the triangle P P, ¢, is positive. Hence the point @,
lies inside the actual concave polygon.

The second part of the theorem states that a point @ belongs to a
concave polygon if it is situated closer to its nearest vertex than to its
nearest side if this vertex is concave. This second part of the theorem is

Figure 10. The orientation theorem for concave polygons consists of two different parts:
1. A point @, belongs to a concave polygon if it lies closer to its nearest side P, P, ., than
to its nearest vertox and if the orientation of the triangle P P, ;@ is equal to the orien-
tation of the polygon.

2. A point @, lies inside a polygon if it is situated closer to its nearest vertex P, than to
its nearest side and if this vertex P, is a concave one.
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valid for the point @, in figure 10. The distance between the concave
vertex P, and the point @, is much less than the distance between @,
and the side P,P,,,. It follows then that the point @, belongs to the
polygon.

The enlarged orientation theorem is valid for all polygons, convex as
well as concave ones. However, it is very uneconomic to use it in the
case of convex polygons because the simple orientation theorem is much
better in this case, and further the procedure NORPCONVEX is very
fast compared with the procedure based on the enlarged theorem. It is
therefore very convenient to use the procedure CONVEX to determine
whether the polygon is convex or not and use NORPCONVEX in all
cases when the polygons are convex.

13. A mathematical proof of the enlarged orientation theorem.

A concave polygon P and a point @ are given according to figures 11
and 12. A new figure is constructed in the following way. The sides of
the polygon are shifted inwards or outwards the same distance, the
directions of the sides being kept unchanged, until the point @ is situated
on the boundary of the new figure. A side is never allowed to become
larger than it was before, and if necessary the vertices are replaced

Figure 11. The sides of a polygon are shifted by the same amount until the boundary
of the new figure contains the point Q.

The shift is always perpendicular to the original side. If necessary, the vertices are re-
placed by cireular arcs. The shift parameter is =min (%, d) where k is the distance from @
to its nearest side (Q,) and d the distance from @ to its nearest vertex (¢,). The point
Q belongs to the polygon if the sides had to be shifted inwards.
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Figure 12. A point @ does not lie inside the polygon if the sides have to be shifted out-
wards in order to reach the point Q.

by circular arcs with radius equal to the perpendicular displacement.
Hence, the constructed figure consists of not more than n—1 straight
lines corresponding to the sides of the polygon and a number of circular
arcs corresponding to the concave vertices if the shift has been made
inwards, and the convex vertices otherwise. (see figures 11 and 12). The
point @ lies inside the polygon if the sides must be shifted inwards in
order to include the point @. It is also obvious that § does not belong to
the polygon if the sides had to be shifted outwards in order to reach
the point @ and that @ belongs to one of the sides if no shift at all was
necessary.

The length of the parallel displacement is defined as the distance A
from the side (P,P,.,) closest to the point @ if 4 is less than the distance d
from @ to the nearest vertex P,. If this distance d is the smaller one it is
used as displacement parameter. In the first case the direction of the
shift is determined by means of the orientation theorem for the triangle
formed by the nearest side and the point . In the second case (d<A)
the shift is directed inwards if the vertex P, is concave and outwards if
P, is convex. As is evident from figure 11 and 12 the distance from @
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to a convex vertex is always greater than the distance to the correspond-
ing sides if @ lies inside the polygon. The same theorem is valid for a
concave vertex and a point outside the polygon.

The distance from the point @ to the vertex P, is determined by means
of the Pythagorean theorem. The distance % from @ to the side PP,
is calculated by aid of the formula A=2T/r, ., where T is the area of
the triangle P,P,,, determined for instance by the determinant formula,
and 7, ., is the length of the side P,P,.;. It must also be observed that
the angles QP,P, , and QP,, P, both must be less than 90° (or greater
than 270°) if the distance d is to be determined (see figures 10, 11 and 12).

14. The procedure NORP.

The parameters and input data of the procedure NORP are equal to
those of NORPCONVEX. As before d is the distance from the point @
with the coordinates (z,y) to a vertex of the polygon and 4 the distance
between @ and a side of the polygon.

The procedure NORP contains a real procedure DET which determines
the double area (27') of a triangle with the vertices (X1,Y1), (X2,Y2)
and (X3,Y3) by means of the determinant formula.

The computer determines the square of the smallest d-value (dmin),
i.e. the distance from the point @ to its nearest vertex. The number of
this corner () is also stored.

integer procedure NORP(n, x, y, P);
value n, z, y; integer n; real x, y; array P;
begin integer 4, j, k; real dmin, d, hmin, h;
real procedure DET(X1, Y1, X2, Y2, X3, Y3);
value X1, Y1, X2, Y2, X3, Y3;
real X1, Y1, X2, Y2, X3, Y3;
begin DET := X1x Y24+ X2x Y3+ X3x Y1 -X2xY1-X3x ¥Y2-
X1ixYs
end DET;
dmin 1= hkmin := {,6;
for ¢ := 1 step 1 until n—1 do
begin d := (P[i, 1]—z)+ 2+ (P[¢, 2]—y) 1 2;
if d = 0 then go to ON;
if d < dmin then
begin dmin :=d; j:= ¢
end
end;
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for 4:= 1 step 1 until n—1 do
begin if (x—P[Z, 1)) x (P[i+1, 1]—-P[, 1D+ {y—P[¢, 2]) x
(P[i+1,2]1-P[7,2]) 2 OA(P[7, 1]—-PLE+ 1L, 1)) x (x—P[E+1, 1]+
(Ple, 2]—Ple+1,2)) x (y—P[i+1, 2]) = O then
begin h:= abs(DET(P[i, 1], P[i, 2], P[i+1, 1], P[i+1, 2], , 9))/
sqri((P[i+1, 11— P[i, 11)4 2+ (P[i+ 1, 2]— P[i, 2]) 1 2);
if # = 0 then go to ON;
if » < hmin then begin hmin := k; k:= ¢ end
end
end;
if Amin x hmin < dmin then
begin if DET(P[k, 1], P[k, 2], P[k+1,1], Plk+1,2], 2,94) < O
then go to OUT else go to IN
end;
if j = 1 then begin P[0, 1]:= Pln—1, 1]; P[0, 2]:= P[n—1, 2] end;
it DET(P[j—1,1], P[j—1, 2], P[4, 11, P[j, 2], P[j+1, 11,
Plj+1,2) < 0O
then go to IN;
QUT: NORP := —~1;¢oto END;
ON: NORP := 0; go to END;
IN: NORP :==1;
END:
end NORP;

By computation of the cosines of the angles @QP,P,,, and QP, P,
it is determined whether the point belongs to the strip limited by the two
parallel straight lines perpendicular to P, P,.; through the vertices P,
and P, ,, this being the case if both cosines are larger than zero. The
value of A is calculated by aid of the formula A =2Tr, ,,,. The smallest
h-value (hmin) is determined and the number of the corresponding side
(k) is stored.

The point lies closer to its nearest side than to its nearest vertex if
(Amin)® <dmin. Using the orientation theorem we see that the point @
belongs to the polygon if the area of the triangle P, P, @ is greater than
zero. It also belongs to the polygon if dmin < (hmin)? and if the nearest
vertex is concave.

15. Circles and the procedure NORI.

The procedure NORK did not allow overlapping of the reference
squares and it used a quadratic grid net. The procedure NORI works
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with reference circles which are allowed to overlap and a modified regular
triangular grid net. The distance between two consecutive grid points
in the same row is denoted by % which is also the distance between two
consecutive rows. The length of the connecting line between two conse-

cutive grid points situated in two different rows is By 5/2 or approxi-
mately 1.14. This means that the odd rows are shifted 0.54 to the right.
The overlapping constant s is equal to the radius of the reference circle
given in the transformed coordinate system with unit length % and with
the origin in the map origin. The coordinates of a point (z,y) in the
untransformed system has the coordinates (a,b) in the new coordinate
system (see figure 13). The other parameters required by NORI are the
same as those in NORK (see section 2 above).
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Figure 13. The parameters required by the procedure NORIL

procedure NORI(z0, 40,1, w, k, s, map);
value x0, 40, I, w, &, s;
integer x0, %0, I, w; real h, s; array map;
begin integer r, ¢, amin, amazx, bmin, bmax, one;
real eps, ss, 2, y, date, a, b, hf, ag;
Boolean aeven;
for r:= 0 step 1 until / do
for ¢ := 0 step 1 until w do map[r,c] := 0;
eps 1= 14—6; 88 1= §X8§;
New Point:
z:= read; if z < O then go to End;
y 1= read; data .= read;
a:= (y—y0)fh; b:= (x—=z0)/h;
amin : = enfier(a —s—eps+1); amax := entier(a+s);
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if amin < O then amin := 0; if amazx > 1 then amazr := 1;

if amax < amin then go to New Point;

bmin 1= entier(b—s—eps+1); bmazx 1= entier(b+s);

if bmin < 0 then bmin := 0, if bmax > w then bmazx .= w;

if bmax < bmin then go to New Point;

aeven := amin = amin=2x2;

one := if bmin = Ov abs(b—bmin—s) < 0.5 then 0 else 1;

for r := amin step 1 until amazx do

begin Af := if aeven then 0 else 0.5; ag := (a—7r)x (¢ ~71);
for ¢ := if aeven then bmin else bmin —one step 1 vntil bmax do
if ag+{b—c—hf)+2 < ss then maplr,c] := map[r,c]+data;
aeven ;= —aeven

end;

go to New Point;

End:
end NORI;

The computer calculates the value of a function f(z,y) at the grid
points (z,y) arranged in a triangular net convenient for construction of
isarithms and isarithmic maps [1, 4]. The function f(z,y), for instance,
can be the number of real estates within the distance ks from the points
(z,y) or the number of people living in that circle.

16. Applications.

The point-in-polygon procedures are used when the coordinates of
points with assigned data are available and when it is desirable to obtain
information and summarized data for arbitrary non-administrative areas
such. as blocks or combinations of blocks or no-longer existing adminis-
trative units. Of course, there are many other cases when the coordinate
method and the point-in-polygon procedure can be used. Such an ex-
ample will be given here.

In most countries urbanized areas are defined by means of population
densities. Thus an urbanized area in USA was defined in 1960 as an
area with at least 50000 inhabitants. All enumeration districts around it
having less than 2500 inhabitants per square mile are excluded. Exclaves
situated near the urbanized area are also included if they have typical
urban functions.

In the Scandinavian countries urbanized areas are defined with the
aid of dwelling house density. Thus, the Swedish “titort” (urbanized
area, built-up area) is defined as an agglomeration of houses. All houses
situated within a distance of 200 meters from a house belonging to the
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agglomeration are included in the “tatort”. Areas having typical urban
functions such as parks, industrial areas, traffic areas etc. are also in-
cluded. The “tétort”’ must have at least 200 inhabitants.

The Swedish “tétort” is defined in the following way. “Tatort” is a
built-up area having at least 200 inhabitants and consisting of all points
for which it holds true that there is at least one house within a distance
of 100 meters. This definition is equivalent to the following one: A
“tatort” is the inner area bounded by the l-isarithm on an isarithmic
map showing the distribution of houses. The reference area is a circle
with the radius 100 meters. As an approximation of this house density
the population density may be used under the following conditions: same
reference circle and a high degree of overlapping.

As is shown in figure 1 Hyltebruk is an agglomeration of houses with
a total of more than 200 inhabitants. The map was constructed by aid
of the procedure NORK. The side of the reference square is 100 meters
but it ought to be 200 meters according to the definition of “titort”.
The populations are summarized for all connected 200 meters squares.
If this sum is greater than 200 inhabitants, the computer constructs a
new map by means of NORI. This must be done with such a high degree
of overlapping that the errors from the location of the isarithms are neg-
ligible. The program NORIP (published in BIT in 1964 [1]) is then used
and the l-isarithms of the map are constructed. All these isarithms are
given by the computer as a polygon. The computer starts working with
this polygon by aid of the point-in-polygon procedures and determines
the total population of the “tétort”. This population is then divided into
different classes etc. Further the total area of the “‘titort” is computed
by aid of the determinant formula for polygons. Hence the delimitation
of the boundaries of the urban place and the processing of its data has
been made automatically by the computer.

Figure 14 is a map over the same area as figure 1. It shows the 1-isa-
rithm of the population in Hyltebruk (the solid line). The boundaries of
the official delimitation of the urban place Hyltebruk is drawn with a
dashed line. It must be observed that the l-isarithm divides Hyltebruk
into two built-up areas. The reason for this is that the river Nissan passes
through it and that there is an industrial area with a paper mill located
close to the river.

The delimitation of a built-up area by aid of the population density
ought to be completed with some rules in order to exclude errors like
that in figure 14. Such a rule is given by Rikkinen [6]. Exclaves are in-
corporated into the urban place even if this breaks the 200 meters rule.
He suggests that an exclave with H houses be included if the distance (d)
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Figure 14. A map over the Hyltebruk area. The dashed line is the official delimitation
line of the Hyltebruk built-up area. The solid line is the l-isarithm of the population.
It was calculated by use of the program NORI. The reference area was a circle with
radius 100 meters. Note how closely the isarithm and the official boundary follow each
other,

between the exclave and the urban place is less than 100)/H meters.
It must be observed that he is working with a 100 meters rule. It seems
reasonable to change his formula to 200/ H according to the Swedish
definition of “tatort” and to include the population instead of the number
of houses. One urban house is assumed to correspond to 8 persons and
instead of using the square root of the population the cube root is used.

This revision gives the following formula: d < 100V P. This formula means
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that an exclave will be included into the urban place if the shortest dis-

tance between the two corresponding isarithms is less than (100YP — 200)
meters. The Nissan area in figure 14 is included into the “tiatort”” Hylte-
bruk which becomes one urban place if this rule is used. However, it is
probable that including all industrial areas into the built-up area is
both preferable and easier.

It should be observed how close the l-isarithm follows the official
delimitation of the Hyltebruk built-up area except for the eastern part
where quite a large area is neglected. The delimitation of a built-up area
by means of computers has one great advantage over a manual one:
no areas are neglected.

It is not surprising that the isarithm follows the official delimitation
as closely as it does. They are both built on the same definition of “tét-
ort”’. 1t follows, then, that an introduction of the isarithmic delimitation
of urban areas will not make it impossible to compare now existing
statistical data for built-up areas with those which will then become
available.

17. Summary.

The Swedish Real Estate Register Committee proposes that the loca-
tion of every Swedish estate shall be given in the official real estate
register by the coordinates of central points belonging to each estate.
The coordinates are used when a computer constructs a simple square
net map using the procedure NORK. They are also used when the prob-
lem is to investigate whether a point ¢ belongs to a polygon or not.

The orientation theorem for convex polygons is the most outstanding
of all “point-in-polygon theorems” discussed here. A triangle is con-
structed by means of the point ¢ and a side of the polygon. The point ¢
belongs to the polygon if it is true that every triangle constructed in
the same way as this first one has the same orientation as the actual
polygon. The procedure NORPCONVEX uses this theorem,

The orientation theorem has been revised to handle concave polygons
as well. There are then two cases.

1. The point is situated closer to its nearest side (P, P,,;) than to its
nearest vertex. It belongs to the polygon if the triangle (P P,.,Q) has
the same orientation as the polygon.

2. The point is situated closer to its nearest vertex than to its nearest
side. The point lies inside the polygon if this vertex is a concave one.

The procedure NORP uses this more general orientation theorem valid
for all polygons. The orientation of the polygons and triangles are de-
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termined by means of the determinant polygon area formula. This for-
mula is also used by the procedure CONVEX which determines whether
a polygon is convex or concave.

The point-in-polygon programs are used in connection with data as-
signed to a point (,y) to compute statistical data about arbitrary poly-
gons such as blocks and no-longer existing administrative units. They
can also be used in connection with the isarithmic procedures NORI
and NORIP when the computer automatically constructs the boundaries
of urban areas. Such an example shows the delimitation of Hyltebruk
“tatort’. The l-isarithm follows the official manual delimitation very
closely. Its avea is very easily computed by aid of the determinant
formula for polygon areas. Data determined by means of the isarithmic
delimitations of “tétort” are almost identical with now existing manu-
ally determined data. Hence, an introduction of the automatic delimita-
tion of built-up areas will not make historical investigations of the urban
areas impossible.
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