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Abstract. 

A control-theoretic approach is used to design a new automatic stepsize control algorithm for 
the numerical integration of  ODE's. The new control algorithm is more robust at little e~tra 
expense. Its improved performance is particularly evident when the stepsize is limited by numerical 
stability. Comparative numerical tests are presented. 

Subject classification: AMS 65L05. 

I. Introduction. 

In the numerical integration of ordinary differential equations, automatic 
stepsize control is probably the most important means to make an integration 
method efficient. The objective of stepsize control is the following optimization 
problem: Given a method and an initial value problem, "minimize" the 
computational effort to construct an approximate solution in accordance with 
a user-specified "accuracy" requirement. 

As for the accuracy, a standard approach is to adjust the stepsize to keep 
an estimate of the local truncation error per unit step bounded. This strategy 
is motivated by the fact that the global error can be bounded in terms of the 
local truncation error per unit step. 

In order to minimize the work, one usually maximizes each individual 
step, without regard to global strategies (an interesting exception is the work 
in [10]). More precisely, one tries to minimize the work 

(1) W = ~N+~M, 

where N is the total number of steps and M is the number of stepsize changes. 
The parameters ~ and/~ represent the costs of taking one step and changing the 
stepsize, respectively. For some methods (e.g. explicit Runge-Kutta methods) 
changing the stepsize does not invoke extra computations, i.e. /~ = 0. In 

Received May 1987. Revised October 1987. 



A P I  S T E P S I Z E  C O N T R O L  F O R  T H E  N U M E R I C A L  S O L U T I O N  . . . 271 

connection with implicit methods intended for stiff problems, on the other 
hand, a stepsize change may require additional matrix factorizations, thus 
causing the second term in (1) to be significant. 

Despite the importance of stepsize control, it seems that no effort has been 
devoted to using control theory for the design of such algorithms. In this paper, 
we analyze a typical stepsize control algorithm from a control theory point of 
view. We propose a new control algorithm, based on a discrete PI (proportional 
integral) controller. The choice is motivated by the performance requirements: 
the con(roller must work properly for problems with a great diversity in 
dynamical behavior. 

It is evident that such requirements are hard to meet, since the controller 
parameters must be tuned for a variety of test problems. It is of particular 
importance that the stepsize sequences are smooth. Our comparative tests 
indicate that the new controller generally produces stepsize sequences with 
a better regularity than the standard controller. As a result, the error estimates 
show a smoother behavior. The latter property might be of particular interest 
in connection with multistep methods, since their numerical performance may 
depend in a crucial way on the stepsize sequence. Indeed, if the stepsize 
sequence is smooth enough, there is no need to try to minimize the number of 
stepsize changes in (t). Ideally, one would like the stepsize sequence smoothness 
to resemble the smoothness of the solution itself. 

In this investigation we have limited ourselves to tuning the controller 
parameters for an explicit Runge-Kutta method, although the algorithm can 
be used with any type of integration method (possibly after a change of 
parameters). For explicit methods, the typical controller sometimes oscillates 
violently if there is a conflict between accuracy and numerical stability. Since 
this will happen in any stiff problem, many of our test problems are stiff. The 
new controller overcomes the oscillatory behavior and thus has much improved 
stability characteristics. For nonstiff problems, its performance is similar to that 
of the standard controller. It is likely that our algorithm will be advantageous 
also in stiff integration methods. This will, however, require a separate analysis 
which has not been pursued in this paper. 

2. Standard stepsize control algorithms. 

We start by describing a typical stepsize control algorithm. Most integration 
methods today use an algorithm of this kind I-4, 5]. 

A typical stepsize control algorithm. 

The user specifies the desired accuracy of the solution by giving an upper 
bound tol for the local error per unit step. For a method of order p the local 
error r depends on the stepsize h asymptotically as r ,,~ h p÷ 1. If we represent 
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the error by 

(2) r = q~h p+I, 

the coefficient vector tp is 0(1) as h-- ,0.  In addition, q~ depends on the 
solution of the differential equation; in this respect it may be regarded as a 
function of time, 

The error is often measured with the norm 

(3) Ilrll = max [~/rl-~-t/~. , 

where qi is a scaling factor for the ith component of y, resultiflg in a mixed 
absolute-relative error measure. 

To take as long steps as possible without violating the prescribed tol, the 
stepsize should be chosen to fulfil 

(4) [Irll/h = tol. 

Motivated by these relations the stepsize for the next step (h,+l) is chosen as 

(5) h,  + 1 = Oh, 

( tol 
0 7 ~,llr, l[/h, ] 

where ~ is a "safety factor" chosen < 1. A typical choice is 7 = 0.9. The 
purpose of the safety factor is to reduce the risk of rejecting the next step. 
If the error per unit step is too big in one step (tlrll/h > ~" tol), then the step 
is rejected and recalculated with a new stepsize. A typical value of Q is 1.2. 

To prevent many small stepsize changes a dead-zone is often used. If 0 is close 
to 1 no stepsize change is made. Here we introduce the dead-zone mainly for 
the sake of studying different control strategies. Although a dead-zone is not 
commonly used for Runge-Kutta methods (but rather for multistep methods), 
it may occasionally prevent stepsize oscillations. There is also a limit on how 
much the stepsize may increase in one step. Hence 

(6) I! ' if Oto < 0 < Ohi 
0 ~-~LO,..x, if 0 > Om.x 

LO, otherwise 

where '*--' means assignment. Typical values of the parameters are: 0to = 1.0, 
0h~ = 1.2, and 0,,,x = 2.0. 

This standard stepsize control algorithm normally performs quite well. 
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However, there are differential equations and integration methods for which its 
performance is unacceptable. The stepsize oscillates violently (cf. Section 4) 
and much computation time is spent recalculating rejected steps and changing 
the stepsize. This is especially true for non-stiff integration methods applied 
to stiff differential equations. 

Analysis from a control theory point of view. 

Considering the choice of stepsize as a standard automatic control problem, 
the problem may be viewed as in Figure 1. The plant Gp consists of the 
integration routine and the differential equation. It takes a stepsize h as input 
and produces an error estimate r as output. Naturally, the numerical solution 
of the differential equation is also produced by the plant, but it is not used for 
stepsize control. The controller Gc is the stepsize control algorithm. It tries to 
select the stepsize such that the estimated local error per unit step comes as 
close as possible to the prescribed tolerance. 

tol 

-I Cp 

Fig. 1. Stepsize cont ro l  viewed as an  au to ma t i c  control  p roblem.  

The plant is nonlinear and time-varying. Its properties depend on the 
changing behavior of the solution of the ODE. One part of the nonlinearity is 
approximately known, and can be taken care of. From (2) we know that Ilrll is 
asymptotically proportional to h p÷ 1. tf the logarithm of h is regarded as plant 
input and the logarithm of [[rll as the output, this part of the nonlinearity will 
turn into an affine relation, i.e. logllrll = (p + 1)log h +logllq~ll, 

The standard control strategy described above can be viewed as an integrating 
controller with the logarithm of h as the control variable. To see that, we start 
by expressing log(h,+l) as a function of log(h,) using formula (5). Some 
manipulations give 

(7) logh,+x = i o g h , +  P log(TP'tol) \ h ,  ]]" 

Thus h, will change until the deviation log(~P.tol)-log(llr, ll/h,), known as 
the control error, is zero. Note that the use of a safety factor 7 is equivalent 
to using a smaller tolerance ?P-tot. We recognize log(~, p. tol) as the set point, 
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i.e. the controller aims at a local truncation error per unit step as close as 
possible to log(7 p- tol). The control h is thus obtained by "integrating" the 
control error signal. 

When the dead-zone or the limitation is active it means invoking a different 
control signal than the calculated control. The states in the controller are 
updated to reflect this difference to prevent the controller from behaving 
improperly. In control engineering this special update, when the control signal 
is limited, is referred to as anti-windup, see e.g. [3, 12]. Thus the controller can 
be expressed with the following equations: 

(8) e, = log(7 p" toI)- log(Ilr ,  ll/h,) 

Ite,,p = I, _ 1 + P -  1 e .  

h,erap --- exp(Itemp) 

hn, 
h~+ l = O~.~h.. 

htemp~ 

I,  = It¢,,p + (log h, + I - log htemp) 

if Oloh. <~ htemp <- Ohihn 
if htemp :> Omaxh n 
otherwise 

(control error) 

(integration) 

(limitation) 

(anti-windup) 

The control error is multiplied by the factor 1/p before being integrated. This 
factor is referred to as the inteyration .qain. The integration gain will determine 
how fast the controller responds to a non-zero control error. The performance 
of the closed loop system will also depend on the properties of the integration 
routine and the ODE. These properties will differ from problem to problem, 
thus making the behavior of the closed loop system vary considerably. It should 
be noted that such variations, which are represented by the term logl[~ll above, 
are not explicitly accounted for by this controller or by the new controller 
discussed in Section 3. 

A good controller must work well for a large class of problems. However, 
the standard controller does not have an entirely satisfactory performance. 
Oscillations can clearly be seen when applying it to certain problems (cf. 
Section 4). One origin of the oscillations is the poor stabilizing capability of a 
pure  integrating controller. This is further accentuated by a large integration 
gain. The observed oscillations suggest that the currently used value (I/p) is 
too large. 

Controller stability. 

In particular, when a problem integrated by an explicit method becomes stiff, 
the stepsize will be limited, by the numerical stability requirement. In that 
situation, the standard stepsize control increases the stepsize until the numerical 
stability is lost. The estimated truncation errors in subsequent steps will then 
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be large, forcing the stepsize to be reduced until stability is regained. This process 
repeats itself, causing the stepsize to oscillate. The dead-zone may sometimes 
prevent such oscillations. 

For embedded explicit Runge-Kutta methods, the oscillation phenomenon 
has recently been studied in [6, 7], and earlier in [11]. Shampine showed for 
the linear test equation p = 2y, that when this type of instability occurs, the 
average stepsize h will place h)~ on the boundary of the stability region. Hall 
investigated the stability of the standard control algorithm and gave stability 
test criteria for real [6] and complex [7] values of 2, respectively. More 
recently, these criteria have been used [8, 9] to construct new embedded Runge- 
Kutta methods for which the standard stepsize control is stable when h 
becomes limited by the numerical stability requirement. 

It may be argued that when numerical stability limits the stepsize, the 
asymptotic relevance 1 of the error estimate used for stepsize control is 
questionable. This is true unless the effect of numerical instability is negligible. 
However, as long as numerical stability is maintained, the error estimate may 
be considered relevant. Therefore, it i s  most important that the controller acts 
correctly to prevent numerical instability. 

It is also important to realize that the asymptotic relation between the 
error r and the stepsize h is a rather weak argument for .selecting the 
integration gain 1/p in the design of the controller. Both from the numerical and 
the control theoretic points of view, it is more important that the algorithm 
manages to maintain numerical stability and control the errors. For control 
purposes it is, strictly speaking, of no concern whether or not an asymptotic 
relation is used to achieve this end. 

Therefore, our approach is different from that taken by Higham and Hall [9]. 
Rather than constructing new numerical methods that go tbgether well with 
the standard controller, we have opted for the design of a new controller that 
can be tuned to perform well for almost any method. In addition, we shall drop 
a few old techniques. First, we do not use a dead-zone. The stepsize sequences 
obtained with the new controller will in general be smoother. Second, we omit 
the safety factor 7. We believe that the user-specified tolerance tol should also 
be the set point of the control algorithm. 

3. A new stepsize control algorithm. 

The pure integrating controller often performs quite well. We therefore choose 
to generalize this structure and suggest the use of a standard discrete PI 
controller [3]. P stands for proportional and I for integral. The output of such 

1 By asymptotic relevance we mean that the error estimate should represent the dominating part 
of the true error. 
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a controller is formed as a sum of two components. The first component is 
directly proportional to the control error and the second is proportional to the 
integral of the control error. In the controller log(tol) is regarded as set point, 
log([[r[I) as plant output and log(h) as control signal. 

A PID controller has also been tested. The output of such a controller contains 
a third component, proportional to the time derivative (D) of the control error. 
In simulations it was noted that the influence of the D-part on the controller's 
performance was insignificant. This is to be expected based on the assumptions 
of a static plant (2). In the following we therefore only present the P! 
controller. 

The PI  controller. 

h N The plant is discrete-time. It takes a sequence of stepsizes { .}.= 1 as input 
5r ~X and produces a sequence of errors t .s .  = t as output. The discrete PI controller 

is derived from the corresponding continuous time equivalent, by replacing the 
integration with a summation. We get the following expressions: 

(9) e.  = log(tol) - log(llrnll/h.) 

P .  = Ke" e.  

I ,  = I n_~ + K ~ ' e ,  

h,+l = exp(P ,+ l , )  

where Kp is the proportional gain and KI is the integration gain. 

Dead-zone on stepsize changes. 

The PI controller performs very well (see Section 4). It manages to control 
the error better than the old algorithm, but at the price of many small stepsize 
changes. It can be argued that a good controller should keep the number of 
stepsize changes down, since in certain methods (e.g. multistep methods) 
changing the stepsize may be an expensive operation. This is certainly true if the 
stepsize sequence is irregular and contains large changes. Irregular stepsize 
changes may cause instability in such methods, and large individual changes may 
imply expensive operations, such as refactorizations of the Jacobian. However, 
if the stepsize sequence is smooth and regular there is little or no need to 
prevent stepsize changes. Since this is normally the case with the new algorithm, 
we have chosen to omit the dead-zone. 

Even if the dead-zone can be omitted, there is still a need to limit the stepsize 
increase. The same limitation factor as in the standard algorithm is used. 
Due to the limitation, anti-windup is incorporated into the integration part. 
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Rejected steps. 

Occasionally, it will happen that the suggested stepsize gives rise to an un- 
acceptable error (llr[l/h > Q.tol). One cause may be sudden changes in the 
differential equations, affecting logHtpl] (and hence Gp), that call for a drastic 
decrease in stepsize. In such events the step will be rejected. The algorithm will 
keep on rejecting steps until a step giving an acceptable error is found. 
Although this is perfectly fine from the point of view of the controller, it is 
not an effective way to produce the solution of the differential equations. 

Ideally one would like to have a controller with good stabilizing properties 
and with fast response to track the changing properties of Gp accurately, thus 
quickly resolving situations with rejected steps. Unfortunately these properties 
are conflicting. The new controller is designed to have better stabilizing 
properties than the old one. This will also make it a little slower when following 
transients. Normally this is advantageous since it produces smoother stepsize " 
sequences, but in connection with rejected steps it may cause longer standstills. 

The problem is resolved by using two parameter sets. The first set is chosen 
to optimize the stabilizing behavior of the algorithm. Parameter set two gives a 
faster response and is used when a step has been rejected. Typically, parameter 
set two is used in only a few percent of the calls to the stepsize control 
algorithm. 

Complete alyorithm. 

Finally we state the complete control algorithm. The anti-windup and the 
limitation on stepsize increase have been included. 

(10) e. = log(tol)-log(llr.[l/h.) 

Pn = Kp" en 

Itemp = In- 1 + KI" e. 

htemp = exp(P. + lte.,p) 

f O.,axh., if hte,.p > O.,a~h. 
h. + ~ = t h~e.,p, otherwise 

I. = lte,.p + (log h. + 1 - log hrs.,p). 

The algorithm can be rewritten on a form resembling (5). Some manipulations, 
similar to the ones establishing (7), yield 

(11) h,emp = L i i ~ , t  \ IIr.ll/h. 1) r" h" 

f Om.xh., if htemp > Omaxh n 
h. + t = ] tht~p,  otherwise. 



278 KJELL GUSTAFSSON, MICHAEL LUNDH AND GUSTAF SODERLIND 

Thus, apart from giving a new value to K, (i.e. Kx < l/p), the new algorithm 
includes a correction factor in the relation (5). This factor will make the new 
stepsize depend not only on the current error per unit step llrnll/h ~ but also 
on its most recent development. 

Repeated simulations have suggested the following two parameter sets. 

Set for normal case Set for rejected case 

Kp = 0.13 Kp = 0 
KI = 1/15 KI = 1/5 

0m~x = 2.0 0m~x = 2.0 
= 1.2 Q = 1.2 

4. N u m e r i c a l  tests .  

The integration method used in this paper is DOPRI45 [5], a fourth order 
Runge-Kutta method with an embedded fifth order error estimate. It was 
implemented as a PASCAL system in the simulation package Simnon [1], which 
gives a convenient way to change parameters in the routine. There are also 
good plotting facilities included in the package. 

Basic properties o f  the new controller. 

A first set of test runs solving Problem 6 (all problems can be found in the 
Appendix) shows how some of the differences between the new and the old 
algorithm affect the stepsize. All quantities are plotted as functions of time. 
The stepsize for a pure integrating controller with dead-zone (old strategy) is 
shown in Figure 2a. Figure 2b shows the effect of removing the dead-zone, 
In Figure 2c the integration gain KI is changed from 1/4 to 1/15. (Note that 

a) KI=I/4 dead-zone b) KI=I/4 no dead-zone 

0.05 Jk.fl..~ 0.05 

0 1 2 3 4 0 I 2 3 4 

c) KI=I/I5 d) KP=0,|3 KI--I/15 

0,1 ~ f r ~ ,  0.1 

oA~5 . . . . . . . . . . . . . . . . . . . . . . . .  0 . 0 5  . . . . . .  

0 1 2 3 4 0 i 2 3 4 

Fig. 2. The effect on stepsize of some of the differences between the old and the new 
algorithm (Problem 6). 
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in the original stepsize control, the integration gain was 1/p, where p is the 
order of the method under consideration). Addition of the proportional term 
further improves the performance as seen in Figure 2d. 

The next three test runs (Figure 3) show that it is possible to drive the 
estimated local error per unit step to the desired value tol. The tests also 
demonstrate the stability of the new controller. The problem is Problem 6, and 
three different tolerances have been used. In, the error plots, the estimated local 
truncation error is normalized to tol. 

norm.  error ,  tol= IE-2  0 .08  s teps ize ,  Io I=IE-2  

i i i i i 

0 1 2 3 0 1 2 3 

norm.  error ,  t o l= lE -5  0 .08  s teps ize ,  to l= l  E-5 

i ~ ' ' i 0 i i I 

0 ! 2 3 0 I 2 3 

norm.  error ,  t o l = l E - 8  0 ,05  s teps ize ,  t o l = l E - 8  

0 1 2 3 0 I 2 3 

Fig. 3. Error estimate and stepsize for different tolerances (Problem 6). New controller. 

For tol = 10 -2 and 10 -5 we note that the stepsize reaches the same 
"steady-state" level. (The stepsize is not constant, but decreasing very slowly; 
this is due to a slow change in the nonlinear character of the problem). In 
fact, for any tolerance tol > 10 -6, we reach the same level. Since the stepsize 
is independent of the accuracy requirement in this interval, it is limited by the 
numerical stability requirement, but without any stepsize oscillations. Finally, 
for tol = 10 -8, the tolerance is tight enough to prevent the stepsize from 
reaching the stability limit. Hence, for the latter tolerance, the problem is no 
longer stiff. 

It is interesting to note that, since dr/dh changes rapidly with h when the 
stepsize is limited by numerical stability (see also Figure 5), one would obtain 
a much improved accuracy in the numerical solution by taking steps only slightly 
shorter than the maximum stable stepsize. However, since the maximum stable 
stepsize is independent of tol, this cannot be achieved by using a smaller tol. 
In fact, we are not aware of any control technique that would achieve this 
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desirable goal; any controller will (and should!) increase the stepsize if the 
control error is positive. 

If the same problem is solved using the old controller (Figure 4), the 
stepsize oscillates at tol = 10 -2. For tol = 10 -~, the dead-zone manages to 
prevent oscillations for t > 1, but without the dead-zone the oscillations return. 
At tol = 10 -8 there are no oscillations, but the safety factor 7 = 0.9 leads to a 
shorter steady-state stepsize than that used by the new controller. On the 
other hand, if the safety factor is dropped in the old controller, there is a 
significant increase in the number of rejected steps. Thus it seems as if the 
safety measures implemented in the old controller lead to inefficiency. These 
results are typical for all problems of a similar character. 

norm. error, tol= IE-2 0.08 stepsize, tol= IE-2 

0.04 

0 1 2 3 0 1 2 3 

norm. error, tol= 1E-5 0.08 stcpsize, tol=lE-5 

0.04 

0 1 2 3 0 1 2 3 

norm. error, lol= IE-8 0.08 stcpsize, tol=t E-8 

0.04 

0 | 2 3 0 1 2 3 

Fig. 4. Error estimate and stepsize for different tolerances (Problem 6). Old controller. 

In Figure 5 we see the effect of incorporating a very small dead-zone 
(0hi = 1.02,0~o = 0.995) into the new controller. Its most significant effects 
occur when numerical stability limits the stepsize. The plots (Problem 3) show 
that even the most minute stepsize changes will cause a rapid growth or decay 
in the error estimate. The result is the ripple in the graph of the normalized 
error. We see no reason for using a dead-zone in the new controller, and 
consequently it has been omitted. 

Comparative tests. 

A number of differential equations have been solved with the new stepsize 
control algorithm. Its performance has been compared with the old control 
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normalized error 

i 
0 0.05 

2 i0 "~ stcpstzc 

IiO-3 t ~  

0 - - - - ~  + 
0 0.05 

normalized error ,) 
- ~ - - - - ' 1  0 1 ~ i i 

0.1 0,15 0 0.05 0.1 0.15 

2.10-3 stepsize 

---n 1"10-30 + + + 

0 I 0.15 0 0.05 0.1 0.15 

Fig. 5. New controller with (left) and without (right) dead-zone. 

algorithm. The results are shown in Figures 6-13 ,  with each figure consist ing 

of six small  plots.  The upper left shows  the solution of the differential equation.  

In the upper right, two  curves appear showing  the cost  for solving the 
differential equation. It is the number of  integration routine calls for the 
old (solid line) and for the new method  (dashed line). N o t e  that this includes 

rejected steps in order to reflect the total work  properly. The two plots  in the 

middle show the est imated local error per unit step (llr.ll/h.) for the old (left) 
and the new (right) method.  The value is normal ized to t o l .  The two  lower 

plots compare  the stepsize for the methods.  
The first of  these comparat ive  s imulat ions  solves  Problem 1. This is a sys tem 

10 1 y ly2  y3 y4 100 number o f  steps 

-10 p , ~ , , 0 
0 0.5 I !.5 2 0 0.5 t 1.5 2 

normalized error, old normalized error, n e w  

0 0.5 1 1 +5 2 0 0,5 1 1,5 2 

stepsize,  o ld  stepsize,  new 

0 0.5 1 1.5 2 0 0.5 1 1 +5 2 

Fig, 6. Solving Problem 1, t o l  = 0.01. 
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0 0.5 1 1.5 2 

normalized error, old 

0 0.5 I 1.5 2 

stepsize, old 

0.04 0 ~ ,  

0 0.5 1 1.5 2 

number of steps 
80 .... 

40 . -  . . . .  

0 0.5 1 1.5 2 

normalized error, new 

0"5 0 ~ 

! I 

0 0.5 1 1.5 2 

stepsize, new 

0.04 

OV , l l 

0 0.5 1 1.5 2 

Fig. 7. S o l v i n g  P r o b l e m  2, tol  = 0.01. 

where both controllers have some difficulties. Even for constant steps, the slowly 
damped oscillations would lead to fluctuating errors to which the controllers 
respond. 

Next, Problem 2 is solved. The new controller quickly finds the maximum 
stable stepsize and stays there without oscillations. The total work is reduced 
by some 10-15%. A similar performance can be seen in Problem 3. In this 

yl y2 ),3 number of steps 

0.5 11)0 . . . ° "  . . . .  

O P " - ,  0 1 t 

0 0.1 0.2 0.3 0 ' 0.1 0.2 0.3 

normalized error, old normalized error, new 

0.50 0.5 

1 | ! 

0 O. 1 0.2 0.3 0 O. 1 0.2 0.3 

2, |0 "~ stepsize, old 2.10 -3 stcpsizc, now 

1 . 1 0  4 1 , 1 0  ") 

0[  , , , 0 , , ; 
0 0.1 02 0.3 0 0.1 0~ 0. 

Fig. 8. Solving P rob lem 3, tol  = 0.01. 
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y I y2 "~00 number of steps 

0 

-~ 0 

0 2 4 6 8 10 0 2 4 6 8 10 

normahzefl error, old normalized error, new 

0.5 0.5 

0 , , ~ 0 

0 2 4 6 8 10 0 2 4 6 8 | 0  

stepsize, old slcpsiz¢, new 

o.1 0.1 

0 ................ , , , ~ , 0 

0 2 4 6 8 10 0 2 4 6 8 10 

Fig .  9. S o l v i n g  P r o b l e m  4,  t o l  = 10 - 6 .  

case, the oscillations in the old controller show a remarkable periodicity, with 
an approximate period of 40 steps. 

Problems 4 and 5 are van der Pol oscillators. The first is nonstiff and the 
second is moderately stiff, for the tolerances used. In the first case, the two 
controllers have a similar performance, with the old controller slightly more 
efficient. In the latter, the new controller has a much smoother behavior, 

yl y2 number of steps 

0 2 4 6 8 t0 0 2 4 6 8 10 

normalized error, old normahzed error, new 

0 2 4 6 8 10 0 2 4 6 8 10 

stcpsize, old stepsize, new 

0.02 0.02 

0 0 

0 2 4 6 8 10 0 2 4 6 8 10 

F ig .  10. S o l v i n g  P r o b l e m  5, t o l  = 10 - 4 .  
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y I y2 y3 

0"5 t ~ ~  0 

0 I 2 3 4 5 

normah/cd error, old 

0'50 

0 1 2 3 4 5 

stcpslze, old 

0-~ , ,, , , , , , 
0 1 2 3 4 5 

n m n b c r  o f  s t e p s  

0 ( ,  , , ~ L 

0 I 2 3 4 5 

norlna|l/.Cd cflof, new 

0 1 2 3 4 5 

s t c p s i z e ,  n e w  

0.040'08 l~x.~_ ~ 

0 I 2 3 4 5 

Fig. 11. Solving Prob lem 6, tol = 0.01. 

while at the same time being marginally faster. Note that in the graph of the 
solution, the spikes have been clipped. 

Problem 6, a chemical kinetics problem, is another typical example, showing 
the superior stabilizing effect of the PI controller. The efficiency is increased 
by 20 %. 

Problems 7a and b are so-called "Brusselators", a type of nonlinear oscillating 

5 a y I y2 number of s t e p s  

i t ~ '1 
0 5 I0 1.5 20 0 5 I0 15 20 

normalized error, old normalized error, new 

0.5 0 ~ ~ 0.5 

t i ~ i 0 ~  i i I ...... i 

0 5 10 15 20 0 5 10 15 20 

0.4 stcpstzc, old 0.4 stcpsize, new 

0 5 10 15 20 0 5 l0 15 20 

Fig. 12. Solving P ro b l e m 7a, tol  = 10 -6.  
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y I y2 ntunber of steps 

i i 
0 10 20 30 0 10 20 30 

normalized error, old normalized error, new 

0.5 0.5 

O l  , , ' ~ 0 

0 10 20 30 0 10 20 30 

stepsize, old stepsize, l~ew 

0 ' i i ! i 

0 I0 20 30 0 10 20 30 

F ig .  t3.  S o l v i n g  P r o b l e m  7b, tol = 10 -4 .  

system arising in chemical kinetics. The first is non-stiff and the second 
moderately stiff. The behavior of the two controllers is very similar to that 
observed for the van der Pol oscillators. Thus, in the nonstiff system the 
controllers perform similarly. Note that the character of the solution changes so 
rapidly that neither control algorithm is able to obtain a smooth error graph. 
In the stiffer version of the system, on the other hand, the new controller achieves 
a smoother performance at the same cost. 

5. Conclusions. 

By using standard control theory much insight and understanding of the step- 
size control problem can be gained. The discussion of the standard control 
algorithm (Section 2) explains why it sometimes results in oscillations. A 
remedy is to use a PI control algorithm. In particular, the proportional part 
improves the stability of the controller, which yields better results and a more 
consistent performance. 

This is particularly evident in problems where the stepsize becomes limited 
by numerical stability. One might argue that this is of little importance 
since problems of this type arise only rarely in nonstiff problems and never in 
stiff problems if a proper integration method is selected. However, we believe 
that the new algorithm significantly improves the robustness of the stepsize 
control at little or no extra expense. Moreover, this improvement may certainly 
be important for moderately stiff problems, in the transition from nonstiff to 
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stiff and in connect ion with the implementat ion o f  type-insensitive 
intended for bo th  classes o f  problems. 

codes 

Appendix.  

Problem t Problem B 1 in [2] .  

-91 = - Y l  +Y2 yl(0) = 1.0 
J'z = - IOOyt - Y 2  y2(O) = 0.0 

9 3  = - -  100)73 + ) ' 4  y 3 ( 0 )  = 1 . 0  

Y4 = - -  10000y3-- 100y4 y,(0)  = 0.0 

Problem 2 Problem C2 in [2 ]  with fl = 0.1.  

91 = - Y l  + 2  )q(0) = 1.0 

-92 = - lOyz + fly~ y2(0) = 1.0 

-93 = --40y3 +4fl"  (y~ +y~)  )'3(0) = 1.0 
Y4 = -- 100y4+ 10ft" ( y~+y~+yZ)  y4(0) = 1.0 

Problem 3 Problem D2 in [23. 

-91 = - 0 . 0 4 y l  +O.Otyzy3 Yl(0) = 1.0 
.92 = 400yl - 100y2y3 - 3000y~ y=(0) = 0.0 

-93 = 30y~ y3(0) = 0.0 

Problem 4 Problem E2 in [2].  

-91 = Y2 yl(0) = 2.0 

-92 = ( 1 - Y ~ ) Y 2 - Y l  yz(O) = 0.0 

Problem 5 Problem E2 in [2] (slightly changed). 

-9t = Y2 yl(0) = 2.0 
92 = 50( i -yZl )y  2 - 1 0 y l  y2(O) = 0.0 

Problem 6 Problem E3 in [2] .  

Pl = - ( 5 5 + y 3 ) y l  +65y2  yl(0)  = 1.0 

Y2 = 0 .0785(y l -Y2)  y2(0) = 1.0 
-93 = 0.1yl y 3 ( 0 )  = 0.0 

Problem 7 Brusselator:  a. fl = 3.0, b. fl = 8.533. 

91 = 1.0+y~y2 - (fl+ 1.0)yl y2(0) = 1.3 

-92 = f lY1-Y~Yz y2(0) = fl 

N o t e  added in proof.  

As is normal ly  the case, the method D O P R I 4 5  has been used in the numerical 

tests with local extrapolation, i.e. as a f i f th  order  method.  The parameter  p in the 
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standard controller (called "the order of the method") should still have the value 
4, since the embedded error estimate is of fifth order and the local truncation 
error per unit step is controlled. Unfortunately, the use of local extrapolation 
leads to a few similar inconsistencies in the way the term order is used in the 
paper. However, this fact does not change any results or conclusions of the paper. 
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