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THE STRING MERGING PROBLEM* 

STEPHEN Y. ITOGA 

Abstract. 
The string merging problem !s to determine a merged string from a given set of strings. 

The distinguishing property of a solution is that the total cost of editing all of the given 
strings into this solution is minimal. Necessary and sufficient conditions are presented for 
the case where this solution matches the solution to the string-to-string correction problem. 
A special case where deletion is the only allowed edition operation is shown to have the 
longest common subsequence of the strings as its solution. 

Key Words and Phrases: String modification, string matching, editing, costs of editing, 
longest common subsequence, shortest common supersequence. 

1. Introduction. 

Wagner and Fischer [11] posed the fundamental string-to-string correction 
problem (STS-problem) that has received much interest [1, 6, 7, 12]. Recently 
there has been work done to improve the time and space complexity requirements 
of their original algorithm [4, 5, 8]. Here we generalize their original problem to 
address the case where more than two strings are considered and where none of 
the strings are given any special designation. This approach incorporates some of 
the ideas found in [7] and [10]. In section 2 the problem is described in its most 
general form. Necessary and sufficient conditions for this problem to match the 
STS-problem are described in section 3. The special case where deletion is the 
only allowed editing operation is shown to solve the longest common subsequence 
problem (LCS-problem) in section 4. An algorithm to solve the problem in this 
situation is then given along with a complexity analysis of the algorithm using 
results from [4, 7, 8]. The special case where insertion is the only allowed editing 
operation is shown to solve the shortest common supersequence problem (SCS- 
problem) in section 5. The complexity of an algorithm to solve this problem is 
then discussed. A summary of our results and some conclusions are presented in 
section 6. 

2. String merging 

For  consistency with [1 1] we  will use the following notation. We let Z denote 
an arbitrary finite set of symbols, S* the monoid freely generated from 27 under 
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2) deletion: del,(w) = 

and 

concatenation,  and P(2;*) the set of all subsets of .r*. If  X is a string (finite 
sequence) of symbols then X ( i )  is the ith symbol of X , X  ( i : j )  is the substring 
X ( i )  X ( i +  1 ) . . .  X ( j ) ,  and IXI is the length (number of symbols) of  X, i.e., 

s = x  (l:lSl). 
For  a fixed 2~, an edit operation s is any mapping  from 2;* to P(Z*). We will use 

S to denote an arbitrary finite set of edit operations. Then for A, B ~ Z* and s e S, 

B is a result of editing A under s if B ~ s(A). An edit sequence s is any finite 
sequence of edit operations• The action of s = s~, s2 . . . . .  s,~ on string X is defined 

to b e  s(X)=Sm(Sm_I( . . . s I (X)) . . . ) .  W e  let ~b represent the null sequence and 
define ~O(X)=X. For  a sequence of strings X1,X  2 . . . . .  Xr,, a merge sequence of 
operations is any sequence of edit sequences # = sl, s2, • • . ,  sm such that  f')7'= 1 si(Xi) 
:1:0 (is not  empty)• I.e., a merge sequence of operat ions can edit a sequence of 

strings into a c o m m o n  string• For  a fixed S, a set S of  operat ions is said to be 

complete if for any finite sequence of strings X1, X 2 . . . . .  X,, from 2~* there always 
exists a merge sequence from S. The concept  of  an edit operat ion and an edit 

sequence is extended in the natural  way for arguments  which are sets. 
For  example, if k, l, r, and s are positive integers such that  27 = {al, a2 . . . . .  ak}, 

W = a i a ~ . . ,  a~, and s < k, then we can define some of the s tandard edit operat ions 

such as e- 

l )  insertion: insr, s(w) = ~ ailai2"" "ai'-~asai'ai~+~'" "ai' if r < l 
w otherwise 

f aiai2...ai,_ai,+ai,+2...ai, if r < l 
w otherwise 

(ailai~...ai,_lasair+lai,+z...ai, if r < l 3) change:  cha,,s(W) 
w otherwise 

As in I-11] we let 7 be an arbitrary cost function such that  ~(s) is a nonnegative 

real number  for all s ~ S. Then 7 is extended to edit sequences s = Sl, s 2 . . . .  , s,, via 
~(s)=ZT'= 1 ~(si). For  consistency we set ~(qJ)=0. In addit ion 7 is extended to 

• m S merge sequences # = s l ,  s 2 . . . .  s,, via ~(/~)=~i=17(/) .  We now define the merge 
distance for a finite sequence of strings X 1, X 2 . . . . .  X m to be the minimal cost of 
editing all the strings into one c o m m o n  string• Formally,  S(XI, X 2 . . . . .  Xm) 
= min{7(/~) [# is a merge sequence for X1, X 2 . . . . .  Xm}. Since the merge distance 
for a sequence of strings is independent of the particular arrangement  of the 
strings, we can then use the terms merge set of operations and merge distance for a 
set of  strings without  any ambiguity• 

This notat ion enables us to state the string merging problem (SM-problem). 

Given a finite set of strings {X 1, X 2 . . . . .  X,,}, a complete set of edit operat ions S, 
and an associated cost function ~, the problem is to determine the merge distance 

D(X 1, X 2 . . . . .  Xm) and any particular member  of Ni% 1 si(Xi) where D(X1, X2, 
. . . .  X,,)=ZT'=a ~(si). In the following sections we will try to justify this rather 
abstract  version of the elegant problem originally posed in [11]. 
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3. Comparison with the STS-problem. 
The general requirements for edit operations include the fundamental 

operations of insertion, deletion, and change [11] along with more esoteric 
operations like interchange [6]. The string to string correction problem (STS 
problem) was defined by Wagner and Fischer [11] to be the problem of finding a 
minimum cost sequence of edit operations to convert one string into another. We 
note in passing that a minimum complete set of operations for it consists of just 
insertion and deletion. In contrast, for the SM-problem just insertion alone or just 
deletion alone is sufficient to form a complete set. For the rest of this section we 
will assume that each edit operation s e S has an associated inverse operation in S, 
denoted by INV(s), such that for all Xe,~*,  we have XeINV(s)  (s(X)). The 
generalization to edit sequences is obvious. We also assume that each operation is 
necessary in the sense that it constitutes a sequence in the merge sequence for 
some instance of the SM-problem. Again, the operations mentioned above all 
enjoy this property. 

For any two strings X1 and X2, let sx, s 2 represent a solution to the SM- 
problem and SST s a solution to the STS-problem. I.e., sI(X1)[")s2(X2)::~=O and 
X2 e SsTs(X1). Since the edit sequence s~, INV(s2) edits X 1 into X2 and since the 
sequence sST s, ~ is a valid merge sequence we have the following relationships. 

LEMMA 1. 

a) Suppose sST s, s,, and s 2 are as stated above. 
Then ~(s2) < ?(SsTs)--7(sx) < ~(ISV(s2) ). 

b) Let X-m-Sl(X1)=s2(X2). Then sl, ~k is a solution to the SM-problem for 
{XI, X).  By symmetry s2, ~k is a solution for {X2, X).  

PROOF. 

Lemma 1. a) follows from the discussion preceding the lemma. To prove lemma 
1. b) suppose there are edit sequences s~', s~ such that s; (X1)=sg(X ) and ~(&') 
+ 7(sg)< ~(s0. Then the sequences s~ and s2, s~ would constitute a merge sequence 
for X1, X2 with a lower cost than Sl, s2. | 

With this information we can now state a condition for the equivalence of our 
string merging problem and the string-to-string correction problem. By this we 
mean that from any solution to the SM-problem we can construct a solution to 
the STS-problem with identical cost and vice-versa. 

THEOREM 2. 
A necessary and sufficient condition for the equivalence of  the STS-problem and 

the SM-problem for pairs of  strings is that 7 ( INV (s))= 7 (s) for all operations s e S. 
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PROOF 

Let SSTS, S I and s 2 be edit sequences as described previously. That the condition 
is sufficient follows from the fact that ~/(1NV(s))=),(s) for any edit sequence s. 
Hence, lemma 1.a) implies that 7(SST~)=~;(SO+V(s2). Conversely, if st, s2 is a 
solution to the SM-problem and we construct s~,INV(s2) as a solution to the STS- 
problem with identical cost, then necessarily V(s2)= 7 ( IN  V (s2)). Our assumptions 
on the members of S then indicate that the condition is necessary. | 

The following example illustrates several of the points made in this section. 

EXAMPLE 3. 

Let S be the set of insertion and deletion operations. Let cl be the cost of any 
insertion operation and c a the cost of any deletion operation. 

Case 1 If c i=c  d then ? ( s ) = 7 ( I N V  (s)) for all edit operations so the SM-problem 
and STS problem are equivalent. 

Case 2 If c i <ca then take X 1 = ab and X 2 = bc. The merge solution has cost 2c~ 
which is less than the cost for the STS-problem. Note that the merge solution 
(abc) gives the shortest common supersequence of X~ and X 2 as its solution. 

Case 3 If c~ > c d then the same example from case 2 has a merge solution cos t  2c d 
which is less than the cost for the STS-problem. In this case, the merge solution (b) 
gives the longest common subsequence as its solution. 

In the remainder of this paper we will discuss two special cases of the SM- 
problem, namely the longest common subsequence (LCS) problem [1, 4, 5, 7, 8, 9, 
12] and the shortest common supersequence (SCS) problem [7]. Here, given a set 
of strings, the LCS problem is to find a longest string that is a substring of every ~ 
member of the set. Conversely, the SCS problem is to find a shortest string such 
that every member of the set is a substring of it. 

.4. The LCS-problem 

In this section we will present a concise algorithm for solving the LCS-problem 
given any finite set of strings X1, X 2 . . . . .  X,~. The key notion is that a solution to 
the SM-problem when S only consists of single symbol delete operations is also a 
solution to the LCS-problem. This is apparent when one realizes that the result of 
any merge sequence of delete operations must be a common subsequence of the 
original set of strings. Hence, for the remainder of this section, we will assume that 
S = {del r I r >  1} and that the cost of applying any operation is some positive fixed 
constant cd. To avoid a trivial situation we will also assume that none of the 
strings is the empty string. 

For the sake of clarity, we will develop the algorithm first for the case where 
there are only two strings to be merged and then later generalize the result to the 
case where there are an arbitrary number of strings to be merged. For arbitrary 
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strings X and Y and integers i, j such that O<-i<-[XI and 0=<j__<[Y[ let C(i,j) 
= ~ (X(1 :i), Y(1 .j)), i.e., C(i,j) is the cost of merging substrings of length i and j. If 
i or j is zero, this corresponds to the cost of merging everything to the empty 
string. Hence the cost of the merge solution is D(X, Y)=C([X[, ]YD. In order to 
establish the correctness of the algorithm we will need the following results. 

LEMMA 3. 

Let i and j be integers such that 1 <= i <= IX[ and 1 <=j < BY[. Then C(i,j) must equal 
one of  the following expressions: 

i) C(i- 1,j- 1), 
ii) C( i - l , j )+ca ,  or 

iii) C ( i , j -  1)+ca. 

PROOF 
Consider any merge sequence for X(1 :i) and Y(1 :j) with cost C(i,j). There are 

only three possible results for the editing operations on the symbols X ( i )  and 
Y(,j). Either neither is deleted (and hence X ( i )  = Y(,j)) so that i) holds; or X ( i )  is 
deleted so that ii) holds; or otherwise Y(j) is deleted so that iii) holds. 1 

THEOREM 4. 
Let i and j be integers such that 1 < i <- [X[ and 1 <j < [Y]. I f  X ( i )  = Y ( j )  then 

C(i,j) = C ( i -  1 , j -  1). 

PROOF 
Suppose that X ( i )  = Y ( j )  and C(i,j) does not equal C ( i -  1 , j -  1), i.e., case i) of 

lemma 3 does not hold. By symmetry it would suffice to show that ii) does not 
hold for then lemma 3 would be contradicted. Assume C( i , j )=C( i - l , j )+cd .  It 
follows that we can find a minimum cost merge sequence sx, sy for X(1 :i) and 
Y(1 :j) such that the edit sequence s x has a delete operation for X ( i ) .  If sy has a 
delete operation for Y(.j) then by eliminating both of these delete operations (one 
from sx and one from sy) we would have a merge sequence that had a cost 
C ( i - l , j ) - c a < C ( i , j ) .  Since this is a contradiction to our assumptions, the 
only alternative is that Y(j)  appears in the final solution of the merge sequence. 
Hence it must be matched by some symbol X ( k )  where 1 <k<_i-1 .  This implies 
that s~ contains delete operations for all symbols X ( l )  where k < l <  i - 1 .  Hence 
we could create a new edit sequence s" from s~ by dropping the delete operation 
for X ( i )  and replacing it with a delete operation for X ( k ) .  This new minimum 
cost merge sequence would then match X ( i )  with Y ( j )  implying that C(i,j)= 
c ( i - ] , j - 1 ) ,  a 

Lemma 3 and theorem 4 justify the correctness of the following algorithm for 
computing the cost array C for strings X and Y. 
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Algorithm 5. 

5.1 C(0,0): =0  

5.2 for i :=1 to IXI C(i,O):=icd 
end for i 

5.3 f o r j : = l  to IYI C(O,j):=jca 
end for j 

5.4 for i := 1 to IXl 
for j : = l  to IYI 

if (X<i> = Y<j>) 
then C ( i , j ) : = C ( i -  1 , j -  1) 
else C(i,j): =min { C ( i -  1,j), C ( i , j -  1)} +c~ 

end for j 
end for i 

In order to generalize our results we define a function ~ such that for any 
integer i and j and any finite set of integers K, 

~j if i • K 
~(i,j, g )  

j - 1  if i d ~ K .  

For notational convenience we will let ct(it, i2, . . . , im, K) represent the sequence 

~(1, il, K), ct(2, i2, K) . . . . .  ct(m, ira, K ) .  

Algorithm 6. 

Let X~, X 2 . . . .  , X m be non-empty strings. Then the cost array for this situation 
(and hence the general solution to the LCS-problem) can be computed as follows. 

6.1 for ( i l :=0  to IX1], i 2 : - - 0  to  IX2[ . . . . .  i r a : = 0  to IXm[) 
if (i I = 0 for some 1 < j  < m) 

• . C m then C(ii, i2, ",ira): = d~k=l ik 
end for 

6.2. for ( i l : = l  to ]XI], i2:=1 to [X2[ . . . . .  i , , :=1 to [Xm[ ) 

if (X t (i t  > = X2(i2> . . . . .  Xm(im>) 
then C(il, i 2 . . . . .  ira): = C ( i  I - 1 ,  i 2 - -  1 . . . . .  i m - -  1) 

else C(il, i 2 . . . .  , i m ) :  : 

rain {C(~(il, i2 , . . . ,  ira, K ) ) +  (m-IKI)cdIK : {[Xk<ik> = a} * 0}. 
a ~ "  

end for 

In step 6.1, the initialization of C takes advantage of the fact that if one string is 
the empty string then all strings must be deleted completely. In step 6.2, the set K 
(a proper subset of {1,2 . . . .  m}) represents the symbols in {X1<il), 
X2<i2) . . . .  ,Xm(i , , ) }  that can be matched together. Hence (m-IKI) deletes are 
needed to make the other sequences match. 

As an added bonus, the particular formulation of this problem enables us to 
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compute the length of the longest common subsequence of {X 1, X 2 . . . . .  Xm} by 
setting c d= 1 and evaluating the expression 

(i=~ IXiI-C(IXxI,  IX2. . . . . .  ]Xml)) /m.  

Another interesting statistical quantity would be the term 

,,/(s, ,) OLCS = 1 -- C(IX~l, IXzl . . . . .  IX,  IXi 
i 

since it serves as an indication of the amount  of similarity that exists among the 
strings { X 1 , X  2 . . . . .  Xm}. Here, 0LCS is the ratio of the length of the longest 
common subsequence to the average length of the original strings. Since 

O<=C(IXll, lX21,...,IXml)<~=a IX~I then 0--<0LCS=<I. In both cases, note that 
the expressions can be evaluated without actually determining any member of the 
set of longest common subsequences. 

In order to illustrate how we can determine a representative longest common 
subsequence for { X ~ , X  2 . . . . .  Xm} we introduce two additional m-dimensional 
arrays L and P. The L array will keep track of the manner in which elements of 
the C array were determined from other elements of the C array, i.e., it records the 
"linkage" between various elements of the C array. The P array is used to 
determine if a particular element of the C array can correspond to a member of a 
longest common subsequence. We will use the expression [il, i2 , . . . , im] to 
represent any encoding of the sequence il, i 2 . . . . .  i,~. Then step 6.2 can be modified 
to also compute 

i f  ( X l ( i l ) = X 2 ( i 2 )  . . . . .  g i n ( i r a )  ) 

then L ( i l ,  i2,  . . . ,  ira): = [il - 1, i 2 - -  1, . . . ,  i m - 1] 
P ( i l ,  i 2 . . . . .  ira): = 1 

else L(il ,  i2 . . . . .  ira): = [ct(il, i2 . . . . .  ira, K)]  

P(ix, i2 . . . . .  ira): = 0 

Here it has been assumed that some algorithm has been given to select a 
particular K ~ {1, 2 , . . . ,  m} that satisfies the minimality requirement of step 6.2. 
The expression for calculating the elements of L clearly illustrates the "linkage" 
property previously mentioned. The expression for elements of the P array 
indicates that a value of "1" corresponds to the case where a member of the 
common subsequence has been found when one is using the L array to 
"backtrack" over the computations for the C array. 

With this information it is evident that the following algorithm will print out a 

longest common subsequence in reverse order. 
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Algorithm 7. 

7.1 f o r j = l  to m 

i~ = IX~l 
end for j 

7.2 while ({k[1 < k < m ,  ik=O} = 0 )  
if (P(il, i z , . . . ,  i~)= 1) 

then print X 1(i 1 ) ( = X2(i2)  . . . . .  Xm(im) ). 
Update il, i2,...,ira to be the sequence corresponding to 

L (il, i 2 . . . . .  ira). 
end while 

Hirschberg [4] showed that the LCS°problem for sets of size two can be solved 
within linear space constraints. Maier [7] showed that the LCS-problem is NP- 
complete for 12:1 >2. As in [ l l ] ,  the following analysis of algorithm 6 takes the 
number of assignment statements executed as an indication of the complexity of 
the algorithm. In order to avoid some cumbersome notation we will also assume 
that all strings have the same length. Thus the complexity of the algorithm will be 
described in terms of m, the number of strings, and n, the length of each string. 

Consider step 6.1 which is executed exactly (n+ 1)m-n " times. In terms of the 
overall number of assignments for this algorithm this step takes up 1 - 1/(1 + l/n) m 
of the whole. Hence for a fixed string length, this step dominates the complexity 
requirements as the number of strings increases. 

The number of times 6.2 is executed is n m. This clearly dominates the number of 
comparisons made during each execution which is O(mlZ[) and hence serves as an 
appropriate measure of the complexity of this step. Thus with respect to the total 
number of assignments for the algorithm this step takes up 1/(1 + 1/n) ~ of the 
whole. Accordingly, for a fixed number of strings, this step dominates the 
complexity requirements as the length of the strings increase. 

5. The SCS-problem. 

In this section we will present an algorithm for solving the SCS-problem. The 
treatment parallels the work done in section 4 so many of the details will be 
omitted. We will make use of the fact that a solution to the SM-problem when S 
consists of single symbol insert operations is also a solution to the SCS-problem. 
This is a direct consequence of the fact that the result of any merge sequence of 
insert operations must be a common supersequence of the original set of strings. 
Hence, for the remainder of this section, we will assume that S =  {insr, s I r,s> 1} 
and that the cost of applying any operation is some positive fixed cost c i. 

Following the same approach that led to the development of algorithm 5 we 
can justify the correctness of the following algorithm for computing the cost array 
C for strings X and Y. 
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Algorithm 8. 

Repeat the instructions in algorithm 5 substituting ci for c a throughout the 
program. 

Using the same function ~ as in section 4 we can now present the general 
solution t o  the SCS-problem. 

Algorithm 9. 

9.1 C(O,O,. . . ,O)=O 

9.2 for (il :=0 to IXll, i2:=0 to IX2I,. . . , ira:=0 to IXml) 
if (X 1 ( i l )  = X2(i2) . . . . .  Xm(im)) 

then C(il, i2 . . . . .  im) = C ( i  1 - 1,  i 2 ~ l . . . .  , i m - 1)  

else C(il, ia . . . . .  im) = 

man {C(~(il, i 2 . . . .  , im, K)) + (m - IKI)cilK = { k l X k  ( i k )  = a} 4: 0} 
aeZ, 

end for 

Unlike step 6.1 the initialization step 9.1 can only assign a value of zero to 
C(0, 0 . . . . .  0). The reason for this is that for a set of strings containing an empty 
string, the solution for the LCS-problem must necessarily be the empty string, but 
the solution for the SCS-problem depends on the non-empty strings in the set. In 
step 9.2 the set K (a proper subset of {1, 2 . . . .  , m}) represents the elements that 
can be matched together for a minimum cost sequence. Hence (m-]K[) inserts are 
needed to make the other sequences match. In terms of the terminology of [7], K 
represents the symbols that are to be "threaded" together. 

This particular solution to the SCS-problem enables us to compute the length 
of a solution to the set {X1,X2 . . . . .  Xm} by setting ci= 1 and evaluating the 
expression 

(i:~ [Xil+C('XI['[X2"'" ""Xm))/m" 

A statistical quantity related to the similarity that exists amongst the strings is the 
term 

ascs = 1/(l+C(IXll ,  lX2l . . . . .  IXm[)/,~l IXil) 

which is the ratio of the average length of the original strings to the length of the 
shortest common supersequence. Since 0-<_C(IXd, lx21,...,IX,,I) _-< ( m - l )  
~m=l IX~l, then 1/m < ~scs =< 1. Again note that these expressions can be evaluated 
without actually determining any member of the set of shortest common 
supersequences. (The procedure to actually obtain a representative shortest 
common supersequence is almost identical to that for the LCS-problem and is 
omitted here.) 
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Since the total complexity of the algorithm is concentrated in step 9.2 and is 
O((n+l )  m) we conclude that the algorithm is polynomial with respect to the 
length of the strings but goes exponentially with respect to the number of strings. 

The following example illustrates the fact that a given set of strings may seem 
very homogeneous in terms of the solution to one problem, but very dissimilar in 
another case. 

Example 10. 

For any positive integer m> 1 let Z = { a  1,a 2 . . . . .  am} be a set of m distinct 
symbols. For 1 <_i<_m let Xi be the string ala2 . . .a i_ la i+l . . .am of length m - 1  
where al is the only symbol missing from 2;. Let the cost of insertion and deletion 
have unit value. Since the longest common subsequence is the empty string, but 
the shortest common supersequence is axa2. . ,  a m then QLCS=0 but ~scs = 
( m - l ) / m .  Hence, as m incresses, the difference between these "similarity" par- 
ameters approaches the maximum difference of one. 

6. Summary. 

We have formulated a string editing problem that encompasses the editing 
concepts in [11] and the consideration of an arbitrary number of strings as in [7]. 
An example illustrating the difference between this approach and that found in 

[11] was presented in section 2. 
This approach was shown to lend itself very naturally to the problems of 

finding longest common subsequences and shortest common supersequences. In 
particular, we suggest that by modifying the algorithms presented in this paper 
with the techniques in [8] very efficient algorithms would be generated for these 
problems. Comparing the computational requirements for step 5.4 with steps 5 
through 10 in algorithm X of [11], we see that our cost could be less if the strings 
have symbols in common. Here we should note that we have explicitly singled out 
the comparison between end symbols ( X ( i )  and Y(j)) whereas this action is 
implied in [11] by the expression ?(A(i)---~B(,j)). 

The biological and data compression applications mentioned in [7] are still 
valid under the present formulation. Since we are not actually constrained to 
looking for solutions to the LCS-problem and SCS-problem, we actually have 
broadened the scope of possible applications. For example, in the case of data 
compression for several files, depending on the cost function 7, it may be desirable 
to store something else than the solution to the LCS or SCS problems. Also, in the 
field of molecular biology when studying the amino acid sequences of several 
proteins, perhaps the solution to the SM-problem for particular 7 and S would be 
of considerable interest. 

As a last remark we would like to suggest the following topic for further 
research. Our general formulation allows any mapping from strings to sets of 
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strings to be an edit operation. Clearly there is a large gap between this definition 
and the concrete examples used in the literature. Perhaps by limiting the 
operations to classes which enjoy well defined and well understood properties one 
may extend the theory presented in this paper. For instance, the basis examples of 
insertion, deletion and change can be viewed as a-transducer mappings [3]. From 
this point of view a natural hope would be to tap the wealth of knowledge in this 
area (AFL theory) for further results on the SM-problem. 
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