
BIT 21 (1981), 20-30

THE STRING MERGING PROBLEM*

STEPHEN Y. ITOGA

Abstract.
The string merging problem !s to determine a merged string from a given set of strings.

The distinguishing property of a solution is that the total cost of editing all of the given
strings into this solution is minimal. Necessary and sufficient conditions are presented for
the case where this solution matches the solution to the string-to-string correction problem.
A special case where deletion is the only allowed edition operation is shown to have the
longest common subsequence of the strings as its solution.

Key Words and Phrases: String modification, string matching, editing, costs of editing,
longest common subsequence, shortest common supersequence.

1. Introduction.

Wagner and Fischer [11] posed the fundamental string-to-string correction
problem (STS-problem) that has received much interest [1, 6, 7, 12]. Recently
there has been work done to improve the time and space complexity requirements
of their original algorithm [4, 5, 8]. Here we generalize their original problem to
address the case where more than two strings are considered and where none of
the strings are given any special designation. This approach incorporates some of
the ideas found in [7] and [10]. In section 2 the problem is described in its most
general form. Necessary and sufficient conditions for this problem to match the
STS-problem are described in section 3. The special case where deletion is the
only allowed editing operation is shown to solve the longest common subsequence
problem (LCS-problem) in section 4. An algorithm to solve the problem in this
situation is then given along with a complexity analysis of the algorithm using
results from [4, 7, 8]. The special case where insertion is the only allowed editing
operation is shown to solve the shortest common supersequence problem (SCS-
problem) in section 5. The complexity of an algorithm to solve this problem is
then discussed. A summary of our results and some conclusions are presented in
section 6.

2. String merging

For consistency with [1 1] we will use the following notation. We let Z denote
an arbitrary finite set of symbols, S* the monoid freely generated from 27 under

*This research was supported by the U.S. Army Research Office.
Received Feb. 21, 1980. Revised Jan. 22, 1981.

THE STRING MERGING PROBLEM 21

2) deletion: del,(w) =

and

concatenation, and P(2;*) the set of all subsets of .r*. If X is a string (finite
sequence) of symbols then X (i) is the ith symbol of X , X (i : j) is the substring
X (i) X (i + 1) . . . X (j) , and IXI is the length (number of symbols) of X, i.e.,

s = x (l:lSl).
For a fixed 2~, an edit operation s is any mapping from 2;* to P(Z*). We will use

S to denote an arbitrary finite set of edit operations. Then for A, B ~ Z* and s e S,

B is a result of editing A under s if B ~ s(A). An edit sequence s is any finite
sequence of edit operations• The action of s = s~, s2 s,~ on string X is defined

to b e s(X)=Sm(Sm_I(. . . s I (X)) . . .) . W e let ~b represent the null sequence and
define ~O(X)=X. For a sequence of strings X1,X 2 Xr,, a merge sequence of
operations is any sequence of edit sequences # = sl, s2, • • . , sm such that f')7'= 1 si(Xi)
:1:0 (is not empty)• I.e., a merge sequence of operat ions can edit a sequence of

strings into a c o m m o n string• For a fixed S, a set S of operat ions is said to be

complete if for any finite sequence of strings X1, X 2 X,, from 2~* there always
exists a merge sequence from S. The concept of an edit operat ion and an edit

sequence is extended in the natural way for arguments which are sets.
For example, if k, l, r, and s are positive integers such that 27 = {al, a2 ak},

W = a i a ~ . . , a~, and s < k, then we can define some of the s tandard edit operat ions

such as e-

l) insertion: insr, s(w) = ~ ailai2"" "ai'-~asai'ai~+~'" "ai' if r < l
w otherwise

f aiai2...ai,_ai,+ai,+2...ai, if r < l
w otherwise

(ailai~...ai,_lasair+lai,+z...ai, if r < l 3) change: cha,,s(W)
w otherwise

As in I-11] we let 7 be an arbitrary cost function such that ~(s) is a nonnegative

real number for all s ~ S. Then 7 is extended to edit sequences s = Sl, s 2 , s,, via
~(s)=ZT'= 1 ~(si). For consistency we set ~(qJ)=0. In addit ion 7 is extended to

• m S merge sequences # = s l , s 2 s,, via ~(/~)=~i=17(/) . We now define the merge
distance for a finite sequence of strings X 1, X 2 X m to be the minimal cost of
editing all the strings into one c o m m o n string• Formally, S(XI, X 2 Xm)
= min{7(/~) [# is a merge sequence for X1, X 2 Xm}. Since the merge distance
for a sequence of strings is independent of the particular arrangement of the
strings, we can then use the terms merge set of operations and merge distance for a
set of strings without any ambiguity•

This notat ion enables us to state the string merging problem (SM-problem).

Given a finite set of strings {X 1, X 2 X,,}, a complete set of edit operat ions S,
and an associated cost function ~, the problem is to determine the merge distance

D(X 1, X 2 Xm) and any particular member of Ni% 1 si(Xi) where D(X1, X2,
. . . . X,,)=ZT'=a ~(si). In the following sections we will try to justify this rather
abstract version of the elegant problem originally posed in [11].

22 STEPHEN Y. ITOGA

3. Comparison with the STS-problem.
The general requirements for edit operations include the fundamental

operations of insertion, deletion, and change [11] along with more esoteric
operations like interchange [6]. The string to string correction problem (STS
problem) was defined by Wagner and Fischer [11] to be the problem of finding a
minimum cost sequence of edit operations to convert one string into another. We
note in passing that a minimum complete set of operations for it consists of just
insertion and deletion. In contrast, for the SM-problem just insertion alone or just
deletion alone is sufficient to form a complete set. For the rest of this section we
will assume that each edit operation s e S has an associated inverse operation in S,
denoted by INV(s), such that for all Xe,~*, we have XeINV(s) (s(X)). The
generalization to edit sequences is obvious. We also assume that each operation is
necessary in the sense that it constitutes a sequence in the merge sequence for
some instance of the SM-problem. Again, the operations mentioned above all
enjoy this property.

For any two strings X1 and X2, let sx, s 2 represent a solution to the SM-
problem and SST s a solution to the STS-problem. I.e., sI(X1)[")s2(X2)::~=O and
X2 e SsTs(X1). Since the edit sequence s~, INV(s2) edits X 1 into X2 and since the
sequence sST s, ~ is a valid merge sequence we have the following relationships.

LEMMA 1.

a) Suppose sST s, s,, and s 2 are as stated above.
Then ~(s2) < ?(SsTs)--7(sx) < ~(ISV(s2)).

b) Let X-m-Sl(X1)=s2(X2). Then sl, ~k is a solution to the SM-problem for
{XI, X). By symmetry s2, ~k is a solution for {X2, X).

PROOF.

Lemma 1. a) follows from the discussion preceding the lemma. To prove lemma
1. b) suppose there are edit sequences s~', s~ such that s; (X1)=sg(X) and ~(&')
+ 7(sg)< ~(s0. Then the sequences s~ and s2, s~ would constitute a merge sequence
for X1, X2 with a lower cost than Sl, s2. |

With this information we can now state a condition for the equivalence of our
string merging problem and the string-to-string correction problem. By this we
mean that from any solution to the SM-problem we can construct a solution to
the STS-problem with identical cost and vice-versa.

THEOREM 2.
A necessary and sufficient condition for the equivalence of the STS-problem and

the SM-problem for pairs of strings is that 7 (INV (s))= 7 (s) for all operations s e S.

THE STRING MERGING PROBLEM 23

PROOF

Let SSTS, S I and s 2 be edit sequences as described previously. That the condition
is sufficient follows from the fact that ~/(1NV(s))=),(s) for any edit sequence s.
Hence, lemma 1.a) implies that 7(SST~)=~;(SO+V(s2). Conversely, if st, s2 is a
solution to the SM-problem and we construct s~,INV(s2) as a solution to the STS-
problem with identical cost, then necessarily V(s2)= 7 (IN V (s2)). Our assumptions
on the members of S then indicate that the condition is necessary. |

The following example illustrates several of the points made in this section.

EXAMPLE 3.

Let S be the set of insertion and deletion operations. Let cl be the cost of any
insertion operation and c a the cost of any deletion operation.

Case 1 If c i=c d then ? (s) = 7 (I N V (s)) for all edit operations so the SM-problem
and STS problem are equivalent.

Case 2 If c i <ca then take X 1 = ab and X 2 = bc. The merge solution has cost 2c~
which is less than the cost for the STS-problem. Note that the merge solution
(abc) gives the shortest common supersequence of X~ and X 2 as its solution.

Case 3 If c~ > c d then the same example from case 2 has a merge solution cos t 2c d
which is less than the cost for the STS-problem. In this case, the merge solution (b)
gives the longest common subsequence as its solution.

In the remainder of this paper we will discuss two special cases of the SM-
problem, namely the longest common subsequence (LCS) problem [1, 4, 5, 7, 8, 9,
12] and the shortest common supersequence (SCS) problem [7]. Here, given a set
of strings, the LCS problem is to find a longest string that is a substring of every ~
member of the set. Conversely, the SCS problem is to find a shortest string such
that every member of the set is a substring of it.

.4. The LCS-problem

In this section we will present a concise algorithm for solving the LCS-problem
given any finite set of strings X1, X 2 X,~. The key notion is that a solution to
the SM-problem when S only consists of single symbol delete operations is also a
solution to the LCS-problem. This is apparent when one realizes that the result of
any merge sequence of delete operations must be a common subsequence of the
original set of strings. Hence, for the remainder of this section, we will assume that
S = {del r I r > 1} and that the cost of applying any operation is some positive fixed
constant cd. To avoid a trivial situation we will also assume that none of the
strings is the empty string.

For the sake of clarity, we will develop the algorithm first for the case where
there are only two strings to be merged and then later generalize the result to the
case where there are an arbitrary number of strings to be merged. For arbitrary

24 STEPHEN Y. ITOGA

strings X and Y and integers i, j such that O<-i<-[XI and 0=<j__<[Y[let C(i,j)
= ~ (X(1 :i), Y(1 .j)), i.e., C(i,j) is the cost of merging substrings of length i and j. If
i or j is zero, this corresponds to the cost of merging everything to the empty
string. Hence the cost of the merge solution is D(X, Y)=C([X[,]YD. In order to
establish the correctness of the algorithm we will need the following results.

LEMMA 3.

Let i and j be integers such that 1 <= i <= IX[and 1 <=j < BY[. Then C(i,j) must equal
one of the following expressions:

i) C(i- 1,j- 1),
ii) C(i - l , j)+ca , or

iii) C (i , j - 1)+ca.

PROOF
Consider any merge sequence for X(1 :i) and Y(1 :j) with cost C(i,j). There are

only three possible results for the editing operations on the symbols X (i) and
Y(,j). Either neither is deleted (and hence X (i) = Y(,j)) so that i) holds; or X (i) is
deleted so that ii) holds; or otherwise Y(j) is deleted so that iii) holds. 1

THEOREM 4.
Let i and j be integers such that 1 < i <- [X[and 1 <j < [Y]. I f X (i) = Y (j) then

C(i,j) = C (i - 1 , j - 1).

PROOF
Suppose that X (i) = Y (j) and C(i,j) does not equal C (i - 1 , j - 1), i.e., case i) of

lemma 3 does not hold. By symmetry it would suffice to show that ii) does not
hold for then lemma 3 would be contradicted. Assume C(i , j)=C(i - l , j)+cd . It
follows that we can find a minimum cost merge sequence sx, sy for X(1 :i) and
Y(1 :j) such that the edit sequence s x has a delete operation for X (i) . If sy has a
delete operation for Y(.j) then by eliminating both of these delete operations (one
from sx and one from sy) we would have a merge sequence that had a cost
C (i - l , j) - c a < C (i , j) . Since this is a contradiction to our assumptions, the
only alternative is that Y(j) appears in the final solution of the merge sequence.
Hence it must be matched by some symbol X (k) where 1 <k<_i-1 . This implies
that s~ contains delete operations for all symbols X (l) where k < l < i - 1 . Hence
we could create a new edit sequence s" from s~ by dropping the delete operation
for X (i) and replacing it with a delete operation for X (k) . This new minimum
cost merge sequence would then match X (i) with Y (j) implying that C(i,j)=
c (i -] , j - 1) , a

Lemma 3 and theorem 4 justify the correctness of the following algorithm for
computing the cost array C for strings X and Y.

THE STRING MERGING PROBLEM 25

Algorithm 5.

5.1 C(0,0): =0

5.2 for i :=1 to IXI C(i,O):=icd
end for i

5.3 f o r j : = l to IYI C(O,j):=jca
end for j

5.4 for i := 1 to IXl
for j : = l to IYI

if (X<i> = Y<j>)
then C (i , j) : = C (i - 1 , j - 1)
else C(i,j): =min { C (i - 1,j), C (i , j - 1)} +c~

end for j
end for i

In order to generalize our results we define a function ~ such that for any
integer i and j and any finite set of integers K,

~j if i • K
~(i,j, g)

j - 1 if i d ~ K .

For notational convenience we will let ct(it, i2, . . . , im, K) represent the sequence

~(1, il, K), ct(2, i2, K) ct(m, ira, K) .

Algorithm 6.

Let X~, X 2 , X m be non-empty strings. Then the cost array for this situation
(and hence the general solution to the LCS-problem) can be computed as follows.

6.1 for (i l :=0 to IX1], i 2 : - - 0 to IX2[. i r a : = 0 to IXm[)
if (i I = 0 for some 1 < j < m)

• . C m then C(ii, i2, ",ira): = d~k=l ik
end for

6.2. for (i l : = l to]XI], i2:=1 to [X2[. i , , :=1 to [Xm[)

if (X t (i t > = X2(i2> Xm(im>)
then C(il, i 2 ira): = C (i I - 1 , i 2 - - 1 i m - - 1)

else C(il, i 2 , i m) : :

rain {C(~(il, i2 , . . . , ira, K)) + (m-IKI)cdIK : {[Xk<ik> = a} * 0}.
a ~ "

end for

In step 6.1, the initialization of C takes advantage of the fact that if one string is
the empty string then all strings must be deleted completely. In step 6.2, the set K
(a proper subset of {1,2 m}) represents the symbols in {X1<il),
X2<i2) ,Xm(i , ,) } that can be matched together. Hence (m-IKI) deletes are
needed to make the other sequences match.

As an added bonus, the particular formulation of this problem enables us to

26 S T E P H E N Y. 1 T O G A

compute the length of the longest common subsequence of {X 1, X 2 Xm} by
setting c d= 1 and evaluating the expression

(i=~ IXiI-C(IXxI, IX2.]Xml)) /m.

Another interesting statistical quantity would be the term

,,/(s, ,) OLCS = 1 -- C(IX~l, IXzl IX, IXi
i

since it serves as an indication of the amount of similarity that exists among the
strings { X 1 , X 2 Xm}. Here, 0LCS is the ratio of the length of the longest
common subsequence to the average length of the original strings. Since

O<=C(IXll, lX21,...,IXml)<~=a IX~I then 0--<0LCS=<I. In both cases, note that
the expressions can be evaluated without actually determining any member of the
set of longest common subsequences.

In order to illustrate how we can determine a representative longest common
subsequence for { X ~ , X 2 Xm} we introduce two additional m-dimensional
arrays L and P. The L array will keep track of the manner in which elements of
the C array were determined from other elements of the C array, i.e., it records the
"linkage" between various elements of the C array. The P array is used to
determine if a particular element of the C array can correspond to a member of a
longest common subsequence. We will use the expression [il, i2 , . . . , im] to
represent any encoding of the sequence il, i 2 i,~. Then step 6.2 can be modified
to also compute

i f (X l (i l) = X 2 (i 2) g i n (i r a))

then L (i l , i2, . . . , ira): = [il - 1, i 2 - - 1, . . . , i m - 1]
P (i l , i 2 ira): = 1

else L(il , i2 ira): = [ct(il, i2 ira, K)]

P(ix, i2 ira): = 0

Here it has been assumed that some algorithm has been given to select a
particular K ~ {1, 2 , . . . , m} that satisfies the minimality requirement of step 6.2.
The expression for calculating the elements of L clearly illustrates the "linkage"
property previously mentioned. The expression for elements of the P array
indicates that a value of "1" corresponds to the case where a member of the
common subsequence has been found when one is using the L array to
"backtrack" over the computations for the C array.

With this information it is evident that the following algorithm will print out a

longest common subsequence in reverse order.

THE STRING MERGING PROBLEM 27

Algorithm 7.

7.1 f o r j = l to m

i~ = IX~l
end for j

7.2 while ({k[1 < k < m , ik=O} = 0)
if (P(il, i z , . . . , i~)= 1)

then print X 1(i 1) (= X2(i2) Xm(im)).
Update il, i2,...,ira to be the sequence corresponding to

L (il, i 2 ira).
end while

Hirschberg [4] showed that the LCS°problem for sets of size two can be solved
within linear space constraints. Maier [7] showed that the LCS-problem is NP-
complete for 12:1 >2. As in [l l] , the following analysis of algorithm 6 takes the
number of assignment statements executed as an indication of the complexity of
the algorithm. In order to avoid some cumbersome notation we will also assume
that all strings have the same length. Thus the complexity of the algorithm will be
described in terms of m, the number of strings, and n, the length of each string.

Consider step 6.1 which is executed exactly (n+ 1)m-n " times. In terms of the
overall number of assignments for this algorithm this step takes up 1 - 1/(1 + l/n) m
of the whole. Hence for a fixed string length, this step dominates the complexity
requirements as the number of strings increases.

The number of times 6.2 is executed is n m. This clearly dominates the number of
comparisons made during each execution which is O(mlZ[) and hence serves as an
appropriate measure of the complexity of this step. Thus with respect to the total
number of assignments for the algorithm this step takes up 1/(1 + 1/n) ~ of the
whole. Accordingly, for a fixed number of strings, this step dominates the
complexity requirements as the length of the strings increase.

5. The SCS-problem.

In this section we will present an algorithm for solving the SCS-problem. The
treatment parallels the work done in section 4 so many of the details will be
omitted. We will make use of the fact that a solution to the SM-problem when S
consists of single symbol insert operations is also a solution to the SCS-problem.
This is a direct consequence of the fact that the result of any merge sequence of
insert operations must be a common supersequence of the original set of strings.
Hence, for the remainder of this section, we will assume that S = {insr, s I r,s> 1}
and that the cost of applying any operation is some positive fixed cost c i.

Following the same approach that led to the development of algorithm 5 we
can justify the correctness of the following algorithm for computing the cost array
C for strings X and Y.

28 S T E P H E N Y. I T O G A

Algorithm 8.

Repeat the instructions in algorithm 5 substituting ci for c a throughout the
program.

Using the same function ~ as in section 4 we can now present the general
solution t o the SCS-problem.

Algorithm 9.

9.1 C(O,O,. . . ,O)=O

9.2 for (il :=0 to IXll, i2:=0 to IX2I,. . . , ira:=0 to IXml)
if (X 1 (i l) = X2(i2) Xm(im))

then C(il, i2 im) = C (i 1 - 1, i 2 ~ l , i m - 1)

else C(il, ia im) =

man {C(~(il, i 2 , im, K)) + (m - IKI)cilK = { k l X k (i k) = a} 4: 0}
aeZ,

end for

Unlike step 6.1 the initialization step 9.1 can only assign a value of zero to
C(0, 0 0). The reason for this is that for a set of strings containing an empty
string, the solution for the LCS-problem must necessarily be the empty string, but
the solution for the SCS-problem depends on the non-empty strings in the set. In
step 9.2 the set K (a proper subset of {1, 2 , m}) represents the elements that
can be matched together for a minimum cost sequence. Hence (m-]K[) inserts are
needed to make the other sequences match. In terms of the terminology of [7], K
represents the symbols that are to be "threaded" together.

This particular solution to the SCS-problem enables us to compute the length
of a solution to the set {X1,X2 Xm} by setting ci= 1 and evaluating the
expression

(i:~ [Xil+C('XI['[X2"'" ""Xm))/m"

A statistical quantity related to the similarity that exists amongst the strings is the
term

ascs = 1/(l+C(IXll , lX2l IXm[)/,~l IXil)

which is the ratio of the average length of the original strings to the length of the
shortest common supersequence. Since 0-<_C(IXd, lx21,...,IX,,I) _-< (m - l)
~m=l IX~l, then 1/m < ~scs =< 1. Again note that these expressions can be evaluated
without actually determining any member of the set of shortest common
supersequences. (The procedure to actually obtain a representative shortest
common supersequence is almost identical to that for the LCS-problem and is
omitted here.)

THE STRING MERGING PROBLEM 29

Since the total complexity of the algorithm is concentrated in step 9.2 and is
O((n+l) m) we conclude that the algorithm is polynomial with respect to the
length of the strings but goes exponentially with respect to the number of strings.

The following example illustrates the fact that a given set of strings may seem
very homogeneous in terms of the solution to one problem, but very dissimilar in
another case.

Example 10.

For any positive integer m> 1 let Z = { a 1,a 2 am} be a set of m distinct
symbols. For 1 <_i<_m let Xi be the string ala2 . . .a i_ la i+l . . .am of length m - 1
where al is the only symbol missing from 2;. Let the cost of insertion and deletion
have unit value. Since the longest common subsequence is the empty string, but
the shortest common supersequence is axa2. . , a m then QLCS=0 but ~scs =
(m - l) / m . Hence, as m incresses, the difference between these "similarity" par-
ameters approaches the maximum difference of one.

6. Summary.

We have formulated a string editing problem that encompasses the editing
concepts in [11] and the consideration of an arbitrary number of strings as in [7].
An example illustrating the difference between this approach and that found in

[11] was presented in section 2.
This approach was shown to lend itself very naturally to the problems of

finding longest common subsequences and shortest common supersequences. In
particular, we suggest that by modifying the algorithms presented in this paper
with the techniques in [8] very efficient algorithms would be generated for these
problems. Comparing the computational requirements for step 5.4 with steps 5
through 10 in algorithm X of [11], we see that our cost could be less if the strings
have symbols in common. Here we should note that we have explicitly singled out
the comparison between end symbols (X (i) and Y(j)) whereas this action is
implied in [11] by the expression ?(A(i)---~B(,j)).

The biological and data compression applications mentioned in [7] are still
valid under the present formulation. Since we are not actually constrained to
looking for solutions to the LCS-problem and SCS-problem, we actually have
broadened the scope of possible applications. For example, in the case of data
compression for several files, depending on the cost function 7, it may be desirable
to store something else than the solution to the LCS or SCS problems. Also, in the
field of molecular biology when studying the amino acid sequences of several
proteins, perhaps the solution to the SM-problem for particular 7 and S would be
of considerable interest.

As a last remark we would like to suggest the following topic for further
research. Our general formulation allows any mapping from strings to sets of

30 STEPHEN Y. ITOGA

strings to be an edit operation. Clearly there is a large gap between this definition
and the concrete examples used in the literature. Perhaps by limiting the
operations to classes which enjoy well defined and well understood properties one
may extend the theory presented in this paper. For instance, the basis examples of
insertion, deletion and change can be viewed as a-transducer mappings [3]. From
this point of view a natural hope would be to tap the wealth of knowledge in this
area (AFL theory) for further results on the SM-problem.

R E F E R E N C E S
1. A. V. Aho, D. S. Hirschberg and J. D. Ullman. The longest common subsequence problem. J. ACM.

23,1 (Jan. 1976), 1-12.
2. V. L. Artazarov, E. A. Dinic, M. A. Kronrod and I. A. Faradzev. On economical construction of the

transitive closure of an oriented graph. Soviet Math Dokl. 11,5 (1970), 1209-1210.
3. S. Ginsburg and S. A. Greibach, Abstract families of languages. In studies in Abstract Families

of Languages, Memoir 87, Amer. Math. Soc., Providence, R.I., 1969, 1-32.
4. D. S. Hirschberg. A linear space algorithm for computing maximal common subsequences. Comm.

ACM. 18,6 (June 1975), 341-343.
5. J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common subsequences.

Comm. ACM. 20,5 (May 1977), 350-353.
6. R. Lowrance and R. A. Wagner. An extension of the string-to-string correction problem. J. ACM

22,2 (April 1975), 177-183.
7. D. Maier. The complexity of some problems on subsequences and supersequences. J. ACM. 25, 2

(April 1978), 322-336.
8. W. J. Masek and M. S. Paterson. A faster algorithm computing string edit distances. TM-105, MIT

Laboratory for Computer Science, (May 1978), 1-26.
9. D. Sankoff. Matching sequences under deletion/insertion constraints. Proc. Nat. Acad. Sci. USA 69,1

(Jan. 1972), 4-6.
10. P. H. Sellers. An algorithm for the distance between twofinite sequences. J. Combin. Theory (A), 16

(1974), 253-258.
11. R. A. Wagner and M. J. Fischer. The string to string correction problem. J. ACM 21, 1 (Jan. 1974),

168-173.
12. C. K. Wong and A. K. Chandra. Bounds for the string editing problem. J. ACM. 23,1 (Jan. 1976),

13-16.

DEPARTMENT OF INFORMATION AND COMPUTER SCIENCE
UNIVERSITY OF HAWAII
HONOLULU, HI 96822

