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Abstract. 

By applying the theory of completely symmetric functions we derive a Gaussian quadrature rule 
which generalizes that due to McNamee. A feature of this generalization is the inclusion of an explicit. 
correction term taking account of the presence of poles (of any order) of the integrand close to the 
integration-interval. A numerical example is provided to illustrate the formulae. 
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I. Introduction. 

The problem considered is that  of  evaluating numerically an integral of the 
form 

f~ w(x)f (x)dx, 

where [a, b] is a finite interval, f is analytic on [a, b] and w may have singularities 
in [a, b] or at its end-points, but  is integrable over [a, b]. Since the interval can 

be t ransformed by a linear t ransformation to [ - 1 ,  1], we" shall take as our  
s tandard form 

(1) I ( f )  = w(x ) f ( x )dx .  
1 

We shall assume that f can be continued analytically into some region of the 
complex plane, but  that  the resulting complex function has a finite number  of  

poles close to [ -  l, 1]. 
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Unlike many previous authors, we concentrate specifically on cases when the 
poles are of order greater than one. Such multiple poles have also been con- 
sidered by Lether [3, 4], but our method differs from his in many respects. It 
was first investigated in Okecha [7], and is based on Gaussian quadrature. It 
generalizes some results from Hunter [1]. 

2. The method. 

Suppose that in (1) f is analytic on [ -  1, 1], and that it can be continued 
analytically to give a function which is analytic within and on some contour 
D in the complex plane, except at a finite number of poles z~, z2 ..... zr, where 
z, is of order mt (t = 1, 2 .. . . .  r). We shall assume that the principal part of the 
Laurent expansion of f about z t is 

mt 

(2) ~" e , ~ ( z - z , )  -k  , 
k = l  

where the values Q,k are known. 
Our intention here is to describe a method of evaluating l ( f )  numerically 

for any values of the multiplicities m,. Associated with the weight function w(,;) 
there is a sequence of orthogonal polynomials {po(X), p t ( x )  . . . .  } satisfying 

(3) w(x)pm(x)p . (x )dx  = 0 ( m ¢  n). 
- 1  

We shall denote the zeros of p. (x)  by x.~,x.2 . . . . .  x . . ;  provided w(x)/> 0 in 
[ - 1 ,  1], these are real and distinct, and lie in the interval ( - 1 ,  1). 

To develop the numerical method, we consider the contour integral 

fo f(z)dz 
(z-x)p.(z) ' 

where x is real, with - 1 < x < 1, and does not coincide with one of the zeros 
of p.(z). The integrand has the following poles: 

(i) a simple pole at x, with residue f ( x ) / p . ( x ) ,  
(ii) simple poles at x,~, (s -- 1, 2 .. . . .  n), with residues 

f (x.s) 
(X.s - x )p'.(X.~) ' and 

(iii) a pole of order mTat each of the points zt (t = 1, 2 . . . . .  r). Suppose the 
residue at z t is fit(x). To obtain an expression for it, suppose the Taylor 
series about z t for 1/p,(z)  is 

( 4 )  1/p.(z) = y, H,,(z-z,)'. 
s = 0  
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Then 

The principal part of this expansion is 

(5) 

where 

(6) 

Also, 

(7) 

So 

mt 
Y~ K,Az-  z,)- ~, 

j = l  

mt 
Kti = ~ O t k H t ,  k - j  • 

k=j 

( z - x ) - '  = - ~ ( z - z , F / ( x - z , F  +1 
j = O  

f(z) 
(z-x)p.(z) (j~= l KtJ(z-  z')- J + " " ")kZ=O (Z-- z')k/(x -- zt)k + I 

Picking out the term in (z -z , ) -1 ,  we get 

rrtt 

(8) 6,(x) = - ~ K J ( x - z , )  ~. 
s = l  

Combining these results, 

1 ~ f(z)dz _ f ( x )  
2rci JD p . ~ x )  p.(x) 

f (x . . )  - -  + 
.=~, (x..-x)p'.(x..) - Y ( x - z , ) '  " 

t = l  s = l  

Rearranging, 

f (x.s)p.(x) ~ m, 1 fo f (z)p.(x)dz Ktsp"(x) + 
(9) f (x )  = s = l  ( X ~ n s )  + Z (X--2t) ~ ~ i  (2--X)pn(2) t = l  s = l  

Multiplying by w(x) and integrating over [ - 1 ,  1], we obtain finally 

(10) I ( f )  = G .+R.+E. ,  

where 
(11) G, = ~. wff(x,s),  

S = I  

with f l  w(x)p.(x)dx 
(12) w, = - 1 (x-x.~)p'.(x.,) 
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is the standard Gaussian quadrature approximation to I ( f ) ;  

~,  mf 
(13) R. = ~ ( -  1)~K,~q.s(z,), 

t = l  s = l  

where S- w(x)p.(x)dx 
(14) q.s(z)= ~ ~ , ( z ¢ [ - 1 , 1 ] ) ;  

and 

1 fo f(z)q.l(z)dz 
(15) E. = 2rti p.(z) 

Equation (10) is the basis of the method suggested for evaluating I(f). The 
term R. will be regarded as a correction to be added to the standard 
Gaussian approximation G. ; En then gives the error in the corrected approxi- 
mation. McNamee's results [5] correspond to the case R. = 0. 

The main difficulty in applying this method lies in the evaluation of the 
correction term R.. For each pole z ,  we must carry out four s~teps : 

(i) determine the coefficients H,, of eqn (4); 
(ii) determine the coefficients Ktj using eqn (6); 

(iii) evaluate the functions q,,,(zt) of eqn (14); 
(iv) evaluate the term given by the inner sum in (13). 
Of these, steps (i) and (iii) are the most difficult. We shall consider them 

separately in the next two sections. 
Before doing so, it is worthwhile pointing out that if f is a real function, the 

poles z t will occur in conjugate pairs, and it is then necessary to evaluate the 
terms in (13) corresponding to poles above the real axis only, as the 
corresponding terms for poles below the real axis will be their conjugates. 

3. Evaluation of Itts. 

Denoting by a. the coefficients of z" in the expansion of p.(z), we have 

(16) 1/pn(z) = a ;  1 (-I (z--x.~) -1 
S=I  

= a; 1 (zt-x.~) -1 1-[ 1 z--z! 
s = 1 k = 1 X n k  - -  Z t , /  

1 oo 
- ~ hs(ul, u~ . . . . .  u . ) ( z - z , )  ~, 

p.(z,) ~ = o  

where 

(17) uk = 1/(X.k--Z,), (k = 1,2 . . . . .  n) 
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and h~(ul, u2, . . . ,  u.) is the completely symmetric fimction or homogeneous product 
sum of  degree s in ul, u2 .. . . .  u,, (see Littlewood [2]. Chapter V). Thus 

(18) H,~ = h.(u l, u 2 . . . . .  u.)/p,(zO. 

Now for any j ~< n, the functions h~(u l, u2 . . . . .  u~) are generated by the formula 

J 

I~ (1--Uk t)-x  = h~(ui 'u2 '""uJ)  t~" 
k = l  s=O 

Multiplying by (1 - u~ ) and equating terms in t ~ we obtain, after some manipulation, 
the recurrence relation 

(19) h~(ul,u2 . . . .  ,uj) = h~(ul,u2 . . . . .  u~_l)+u~hs- l (u l ,u2  . . . . .  u~). 

This can be used to generate h,(ut ,u  2 . . . .  ,uj) for s = 1,2 . . . . .  mr-1  and 
j = 0, 1 . . . . .  n, from the initial values 

ho(ul, u2 . . . .  , uj) -~ 1, (j >>. 0)~ 
(20) 

h~(~) = 0 , (s > 0)  l 
where q> is the empty set (corresponding to the value j = 0). 

If w(x) is an even function, the zeros X.k are symmetrically distributed about 0, 
and we can exploit this symmetry by introducing them in pairs ifi generating 
h s ( u l , u  2 . . . . .  Un). If x . , j -1 = - x . j ,  equation (19)can be replaced by 

(21) hs(ul , . . . ,  uj) =, h~(ul, u2 . . . . .  us-2) 

+ [2z,h,_l (ul, u2 . . . . .  u~) + h,_ 2(ul, u2 . . . .  , Uj)]/(XZnj-- ZZt). 

4. Evaluation of  the funetions qns(z). 

The orthogonal polynomials p.(x) satisfy a recurrence relation of the form 

(22) p.+l(x)  = ( A . x - B . ) p . ( x ) - C . p . _ l ( x ) ,  (n >>. O) 

with po(x) = ao (constant), p_ l(x) = 0. From (14) and (22), we readily deduce that 

(23) q.+l,s(z)  = ( A . z - B . ) q , ~ ( z ) - C . q . _ l , ~ ( z ) - A . q . , s _ l ( z ) ,  is >~ 1,n >I 0), 

the initial values being given by the equations 

(24) q.o(Z) = {0 ° Si-l w(x)dx', (n(n >= 0)0) 

q-1,.(z) = 0, (s i> 0). 



238 D . B .  HUNTER AND G. E. OKECHA 

The above recurrence relations can be used to generate the functions q.~(z), 
provided analytical expressions for qo~(Z) are known. In many cases, these can 
be obtained directly from (14); alternatively, once 

(25) qol(Z) = ao f x  w(x)dx 
3 - 1  2 - - X  

has been determined, we can obtain expressions for qo~(Z) by repeated use of the 
formula 

(26) q,,~+l(z) = -q',~(z)/s, (s >~ 1), 

with n = 0 .  

It is useful, perhaps, to give a few special cases here. 
(i) If w(x) = 1, we have 

)'2Qo(z) = ln((z+ 1)/(z-  1)) , 
qos(z) = ( [ ( z -  1) 1 -~-  (z+ 1 ) ' - s ] / ( s -  1), 

(s = 1) 

( s >  1). 

(ii) If w(x) = (l--x2) -1/2, we have 

qol(z) = zt/(z 2 - 1) '/2. 

Expressions for qos(Z) for s > 1 can then be obtained by using (26). 
If Izl is small, the recurrence relations (23) can be used in the forward direction in 

both n and s. Otherwise, they are unstable in the forward direction, and a modification 
of Miller's backward algorithm [6] must be used. This can be obtained by rewriting 
(23) as a set of simultaneous equations. In matrix form, these are 

(27) Aq ~) = b ~ 

where 

A = 

( A x z - B 1 )  - 1  0 0 ..... 

- - C  2 (A2z-B2) - 1  0 ..... 

0 - C 3  ( A 3 z - B 3 )  - 1  ..... 

qtS)= [qas(z) q2~(z) q3~(z)...] r 

b ts)= [(Clqos(z)+hlql ,s-x(Z))  A2q2,s_,(z)  Aaq3,s_l (z ) . . . ]  r, (s >1 1). 

If we truncate the system (27) to N simultaneous equations for some suitable 
N > n, we can solve them by triangular decomposition for s = 1, 2,..'., m, in 
turn; this is equivalent to applying the recurrence relation in the forward 
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direction in s, but backwards in n. As usual with such methods, the determination 
of the appropriate value of N is a problem. We shall not pursue it further here ; 
in many cases, zt will be small enough to enable us to use (23) in the forward 
direction. This point will be discussed further in the next section. 

5. Discussion and example. 

The method described in the foregoing sections of this paper  can be 
quite effective. However, it requires a certain amount  of analytical work in 
determining the Laurent coefficients Qtk, and also involves an appreciable amount  
of complex arithmetic. For these reasons, it is perhaps best used only in cases 
where some of the poles z t are sufficiently close to the interval [ - -  1, 1] to have 
a serious effect on standard quadrature methods. 

These points can be illustrated by using the example 

f _ ° e 'dx f _ cosh xdx 
(28) F(a) = , (x~aa2)  3 = , ( ~ + a ~ '  (a > 0). 

The integrand has poles of order 3 at the points _ ia. For  the second form of the 
integral, the Laurent coefficients at zl = ia are given by the equations 

Qll =/ (cos  a - 3sin a/a - 3cos a/a2)/16a 3 

Q12 = - (2sin a + 3cos a/a)/16a 3 

Q 13 = i cos a/8a 3. 

When a = 1, our method, with n = 4, gave the values G4 = 1.1778839, 
R4 = 0.0131268, leading to the value F ( 1 ) =  1.1910108, which is correct to 7 
decimal places. However, as the same accuracy can be obtained by using 16- 
point Gaussian quadrature or by, e.g., composite 4-point Gaussian quadrature, 
with the interval [ -  1, 1] subdivided into 5 equal sub-intervals, it is questionable 
whether the extra work involved in our method is worthwhile. 

On the other hand, when a = 0.1, the situation is very different. The results 
are given in the following table. 

Evaluation of  F(0.1) 

n G. R. G. + R. 

2 57.885267 117947.88 118005.77 
4 699.18325 117306.58 118005.77 
8 8903.1293 109102.64 118005.77 

12 29819.129 88186.636 118005.77 
16 55828.944 62176.822 118005.77 
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Surprisingly, 8-digit accuracy is obtained, in this case, with n = 2. To obtain 
comparable accuracy using Gaussian quadrature without the correction term, a 
value of about  100 is required for n. 

In this example, since the two poles of the integrand lie on the imaginary 
axis, it is possible to avoid the use of complex arithmetic by working with the 
real qantities i -"p . ( ia) ,  iS-"q.~(ia) and i -Shs(ul ,  112 . . . . .  bln)" ~ as tO the last of these, 
we have 

ho(u,, u2 . . . . .  Un) = 

i -  t h l ( u l ,  u2 . . . . .  u .)  = 

n/2 

2 j ~  __ 2 2 , (n even) 
= Xnj  ~- a 

( .-  1)/2 a (n odd) 1 + 2  ~', 2 
a j = l  Xnj  "~612' 

where in each case the summation is over the positive zeros x,j. The value of 
i -2hE(Ul,  u 2 . . . . .  Un) is then obtained by applying equation (21). 

The considerations of the last paragraph will not apply in the case of poles 
off the imaginary axis. However in many cases we shall be able to get round this 
difficulty as follows. Suppose for simplicity that w(x)  = 1 and that there is just 

one conjugate pair of poles z l  = o~+ifl, z 2 = c t - i f l ,  where fl > 0 is small. If  
is inside the interval [ -  1, 1] and not too near one of its end-points we can sub- 
divide [ - 1 ,  l ]  into two or more subintervals, of which one is centred on ct. 
We then apply the methods of this paper to the subinterval centred on ct only;  
the contributions from the other subintervals will be less severely affected by the 
poles, and can be evaluated by Gaussian quadrature. A further advantage of this 
approach is that, once the subinterval centred on 0t has been transformed to 
[ - 1 ,  1], the poles will in many cases be close to 0, so that the recurrence 
relation (23) can be used in the forward direction. 
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