
B1T27 (1987), 324 329

S E A R C H A B I L I T Y I N M E R G I N G A N D I M P L I C I T D A T A

S T R U C T U R E S t

J. IAN MUNRO and PATRICIO V. POBLETE*

Data Structuring Group, Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada N2L 3GI

Abstract.

We introduce the notion of searchabitity as a property of an in place merging algorithm. We
show that a pair of sorted arrays can be merged in place in linear time, so that a search can be
performed in logarithmic time at any point during the merging process. We apply this method to
devise an implicit data structure which can support searches in O(log 2 n) time in the worst case,
and O(log n) on the average, and insertions in O(log n) time, in the worst case.

CR categories." E.I, F.2.2.

1. Introduction.

In studying the process of merging sorted blocks of data, three properties
have been considered in the literature : (i) minimizing the number of comparisons
[4], (ii) performing the merge in place [6] (also in [5, ex. 5.2.4-10]), and (iii)
maintaining stability [3], [10]. We introduce the notion of searchability as a
property of a merging algorithm. A merging algorithm is said to support f(n)
searchability if, at any stage in the process, a search for an arbitrary element
can be performed in time f(n). The standard merging algorithm is O0ogn)
searchable. Like stability, this property is of greater interest in considering in
place merging schemes. For instance, Kronrod's in place merging algorithm [6]
is only O(n 1/2) searchable, since it completely "randomizes" a block of n 1/2

elements. Searchability of merge algorithms can be viewed as a paradigm for the
more general issue of performing basic operations while reorganizing a database.

The main result of this paper is an in place merging algorithm that is O(log n)
searchable, and that runs in time O(n). Our interest in this problem was sparked
by the development of an implicit (i.e. pointer free) data structure for performing
searches and insertions. We were relatively content with an algorithm that ran in
time O(nlogn), until we found one that runs in linear time. The slower method

This research was partly supported by NSERC under grant A8237 and presented in preliminary
form at the 10th International Colloquium on Automata, Languages and Programming.

* On leave from the University of Chile.
Received March 1987.

SEARCHABILITY IN MERGING AND IMPLICIT DATA STRUCTURES 325

is described here, too, since it is used as a component of the faster one. The
notions of Wong [11] were useful in the development of these algorithms.

We use the merge algorithm to construct an implicit data structure that supports
insertions in time O(logn) and searches in time O(log 2 n) in the worst case, and
O(log n) in the average.

2. A slow algorithm.

LEMMA 1. Two sorted arrays o f n elements can be merged in place using O(nlogn)
time and O(1) pointers, in such a manner that a search can be conducted at any

time in O(log n) comparisons.

PROOF: Assume that A[1..n] and B[1..n] are to be merged, and that B immediately
follows A. To simplify the presentation, we first assume n is a power of 2. All
logarithms are taken to base 2, unless otherwise noted.

Procedure Slow_ merge

beg a
f o r i = 1 t o t o g n - l d o
begin

A and B at this point are in sorted order and each can be viewed as n/2 i- 1
blocks of 2 ~- 1 elements of consecutive ranks in A u B.
In a single scan (n/2 I-2 comparisons and O(n) moves) concatenate pairs of
blocks of consecutive rank in A u B, so that A and B can each be viewed
as n/T blocks of 2 ~ elements of consecutive rank.
This is done by repeatedly finding the three blocks of smallest elements.
At least two of them will be contiguous. Move the two blocks of smaller
elements into that segment of 2 ~ locations and the third to the remaining
block. (If we remember the location of the block with the smallest elements
from the previous iteration, we need only two comparisons to find the
second and third.)

end
Exchange A and B if necessary.

end

It should be clear that this algorithm requires about O(n) comparisons but
an unfortunate O(n logn) moves. Throughout Slow_merge both A and B remain
in sorted order with one exception. In the process of concatenating two blocks,
one may have a point of non-monotonicity. This leads to a 3 log n search algorithm.

When n is a power of 2, all blocks are the same size, and the concatenation
of two blocks can be done by swapping. When n is not a power of two, we

326 J. IAN MUNRO AND PATRICIO V. POBLETE

form blocks of approximately the same size, and we can concatenate the two
blocks of smallest elements onto the locations occupied by the two contiguous
blocks by using the reversal operation, and the fact that fl~ = (~tRflR) R.

3. A fast algorithm.

THEOREM 1. Two sorted arrays of n elements can be merged in place using O(n)
time and O(1) pointers, in such a manner that a search can be conducted at any
time in O(log n) comparisons.

PROOF: We make use of the fact that two blocks of data can be merged using
a third block as a "scratch area." This third block has to be at least the size of
the smallest of the blocks being merged. The merge proceeds as usual, but the
"move" operation is replaced by "swap." As a result, its data values are not
destroyed, but they are permuted from their orginal order.

Procedure Searchable _merge

begin

1) Find the 2 logn smallest elements of the whole set, and move them to the
first 2 log n locations of A, leaving A and B permuted from their original
form but each still in sorted order. This is done in time O(n) as follows:
In O(log n) comparisons (actually O (loglog n) suffice) determine the r elements
of B to be moved. The elements of ranks 2 logn - r + 1 through 2 logn
of A are merged with the bottom n - r elements of B into (all of) B, using
the first r elements of B as a scratch area. This puts B in proper form but
leaves the top r elements of the original B in unknown order in locations
2 logn - r + 1 through 2 logn of A. Sorting the first 2 log n elements of
A completes this step.

2) Scan the n - 2 logn remaining elements of A and the n elements of B from
top to bottom, logically forming blocks of log n elements of consecutive
ranks in A w B. This can be done in a single pass using the first 2 log n
locations of A as a scratch area.

3) Re-sort the first 2 logn locations of A.
4) View each conceptual block of A and B as consisting of a first element,

header[j] the next log n - 2 elements, middle[j], and the last, trailer[j].
Apply Slow_merge to the 2n/logn elements {header[i]}. At this point, these
"headers" are in their final positions.

5) for i = 1 to 2n/logn do
wKfle middle[i] is not in its final position (i.e. between header[i] and
header[i + 1]) do

By binary search on the headers, find the final position of middle[i] and
swap middle[i] with that block.

SEARCHABILITY IN MERGING AND IMPLICIT DATA STRUCTURES 327

6) Apply Slow_merge to {trailer[i]}
end

Each of the 6 labeled steps requires at most linear time and so the entire
algorithm is linear. Note that when Slow_merge is called, it is applied to lists
of n/log n elements. In step 5) each iteration of the while loop puts one block
in its final position. Therefore, there are O(n/logn) iterations, each with a cost
of O(logn) comparisons and O(log n) moves. The O(logn) searchability follows
by arguments similar to those applied to Slow_merge. Note that during step 5)
searches are performed by two binary searches, on the headers and on the trailers.

For simplicity we have assumed that log n divides n. If this is not the case,
we can form blocks of size /log n], and enlarge the initial block of 2 log n
elements to hold also the elements that did not fit in any of the blocks. Also,
the previous algorithm can be easily generalized to handle the case of merging
sets of different sizes.

4. An application to implicit data structures.

An implicit data structure [9-] is an array of n data elements organized in some
fashion to support appropriate operations without the use of pointers. Clearly
a sorted list is a very effective implicit structure for searching. A sorted list is,
of course, disastrous for insertions and deletions. If the operations insert, delete
and find are to be supported, then a rather complex structure suggested by
Munro [7] can be used to perform these operations in O(log 2 n) time. Bentley
et al. [i] have considered a restricted version of this problem in which no deletions
are permitted. They are able to achieve searches in O(log 2 n) comparisons in the
worst case and O(logn) on the average, with a conceptually straightforward
method. Their scheme may require O(n) time for a single insertion, but is guaranteed
not to take more than O(n log n) time for a sequence of n insertions. We build on
their scheme and our merging algorithm to achieve O(logn) behavior in the
worst case for insertions.

The basic idea of the Bentley et al. scheme is to retain up to log n sorted
subarrays or blocks, one of length 2 i if the ith digit in the binary representation
of n is a 1. A search is performed by applying binary search to the blocks in
decreasing order by size. Insertion is similar to binary addition: a new element
is a new block of length 1. Each time two blocks of length 2 i appear, they are
merged into a single block of length 2 i+ 1. It follows that, although increasing the
structure from n -- 2 k - 1 to 2 k elements will spawn k merges and O(n) work, the
"amortized" number of comparisons per insertion is O(log n). In order to avoid
additional storage in the merge phase, they employ Kronrod's algorithm [6].

To convert the O(logn) average insertion cost to a worst case bound, we
must (i) spread the merging cost over many insertions and (ii) maintain O(log n)

328 J. IAN MUNRO AND PATR1CIO V. POBLETE

searchability while doing so. One way to achieve the former subgoal is to apply
what Bentley and Saxe [2] have dubbed the "online binary transform". The cost
of merging is spread over several insertions in a manner that can be viewed as
counting in a redundant binary system, usin# the di#its O, 1 and 2. The presence
of a 2 in a given position indicates that the two corresponding blocks are being
merged. If we delay, as much as possible, the expansion 2 ~ 10, then there will
always be at least one block of each possible size, and it is not hard to see
that the merging of two blocks of size n can be spread over n steps. We can
therefore use a "time sharing" arrangement, where, for each insertion, we spend an

O(logn) "time slice", doing a constant amount of work on each of the O(logn)
~'active" merges. In practice one would clearly use O(log n) words of O(log n) bits
each to monitor the progress of the merges, thus leading to a ~'semi-implicit" data
structure. One could, of course, carry out a purely implicit implementation. A
cache of O(logn) elements can be used to encode each pointer. The cost of
encoding and decoding this information is kept under control by adopting the
policy of always working on the the smallest uncompleted merge. This implies
that if a "large" number of merges are worked on, then ~'most" of them are
small and so less time is required to decode their status. Hence decoding is not
a dominant issue.

The maintenance of searchability during the process follows by using the
merging algorithm presented in the preceding section. Hence:

THEOREM 2: There is an implicit data structure under which insertions can be
performed in O(logn) steps and searches require O(logn) time on the averaye

and O(log 2 n) in the worst case.

5. Conclusions.

We have introduced the notion of O(log n) searchability as a desirable property
of an (in place) merging scheme. In addition to showing that this new property
can be achieved in linear time we have shown the usefulness of the concept by
demonstrating an implicit data structure requiring only O(log 2 n) comparisons
for a search and O(logn) for an insertion in the worst case. Our scheme requires
only O(log n) time to search, on the average. This compares favourably with the
data structure in [7], that requires O(log 2 n) on the average, as well as in the worst
case, for both operations, although the latter method does support deletions.
In [8] we proposed a scheme for handling deletions in our data structure, that
seems to perform well on the average, but for which no analysis is available.
The reader is referred to [8] for a description of the method, and discussion of

simulation results.

SEARCHABILITY IN MERGING AND IMPLICIT DATA STRUCTURES

Acknowledgement.

329

We thank Gaston Gonnet, Pedro Celis, Joe Culberson and the other members
of the Data Structuring Group for a number of productive discussions on the
mathematical and experimental aspects of this work, and Vitus Chan for some
preliminary experimentation.

R E F E R E N C E S

!. J. L. Bentley, D. Detig, L. Guibas and J. B. Saxe, An optimal data structure for minimal-storage
dynamic member searching, Carnegie-Mellon University, 1978.

2. J. L. Bentley and J. B. Saxe, Decomposable searching problems L Static-to-dynamic transforma-
tion, Journal of Algorithms I, 4 (Dec. 1980), 301-358.

3. E. C. Horvath, Stable sortin# in asymptotically optimal time and extra space, Journal of the
ACM 25, 2 (April 1978), 177-199.

4. F. K. Hwang and S. Lin, A simple algorithm for merging two disjoint linearly ordered sets,
SlAM Journal on Computing 1, 1 (March 1972), 31-39.

5. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley,
Reading, MA., 1973.

6. M. A. Kronrod, An optimal ordering algorithm without a field of operation, Dok. Akad. Nauk
SSSR 186 (1969), 1256-1258.

7. J. I. Munro, An implicit data structure supporting insertion, deletion and search in O(log2n)
time, Journal of Computer and System Sciences 33, 1 (August 1986), 66-74.

8. J. I. Munro and P. V. Poblete, Searchability in merging and implicit data structures, Proceedings
10th International Conference on Automata, Languages and Programming, Barcelona, July 1983.

9. J. 1. Munro and H. Suwanda, Implicit structure for fast search and update, Journal of Computer
and System Sciences 21, 2 (Oct. 1980), 236-250.

10. L. Trabb Pardo, Stable sortin 0 and mergin O with optimal space and time bounds, SIAM Journal
on Computing 6, 2 (June 1977), 351-372.

11. J. K. Wong, Some simple in-place merging algorithms, BIT 21 (1981), 157-166.

