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Abstract. 

We introduce the notion of searchabitity as a property of an in place merging algorithm. We 
show that a pair of sorted arrays can be merged in place in linear time, so that a search can be 
performed in logarithmic time at any point during the merging process. We apply this method to 
devise an implicit data structure which can support searches in O(log 2 n) time in the worst case, 
and O(log n) on the average, and insertions in O(log n) time, in the worst case. 

CR categories." E.I, F.2.2. 

1. Introduction. 

In studying the process of merging sorted blocks of data, three properties 
have been considered in the literature : (i) minimizing the number of comparisons 
[4], (ii) performing the merge in place [6] (also in [5, ex. 5.2.4-10]), and (iii) 
maintaining stability [3], [10]. We introduce the notion of searchability as a 
property of a merging algorithm. A merging algorithm is said to support f(n) 
searchability if, at any stage in the process, a search for an arbitrary element 
can be performed in time f(n). The standard merging algorithm is O0ogn) 
searchable. Like stability, this property is of greater interest in considering in 
place merging schemes. For instance, Kronrod's in place merging algorithm [6] 
is only O(n 1/2) searchable, since it completely "randomizes" a block of n 1/2 

elements. Searchability of merge algorithms can be viewed as a paradigm for the 
more general issue of performing basic operations while reorganizing a database. 

The main result of this paper is an in place merging algorithm that is O(log n) 
searchable, and that runs in time O(n). Our interest in this problem was sparked 
by the development of an implicit (i.e. pointer free) data structure for performing 
searches and insertions. We were relatively content with an algorithm that ran in 
time O(nlogn), until we found one that runs in linear time. The slower method 
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is described here, too, since it is used as a component of the faster one. The 
notions of Wong [11] were useful in the development of these algorithms. 

We use the merge algorithm to construct an implicit data structure that supports 
insertions in time O(logn) and searches in time O(log 2 n) in the worst case, and 
O(log n) in the average. 

2. A slow algorithm. 

LEMMA 1. Two sorted arrays o f  n elements can be merged in place using O(nlogn) 
time and O(1) pointers, in such a manner that a search can be conducted at any 

time in O(log n) comparisons. 

PROOF: Assume that A[1..n] and B[1..n] are to be merged, and that B immediately 
follows A. To simplify the presentation, we first assume n is a power of 2. All 
logarithms are taken to base 2, unless otherwise noted. 

Procedure Slow_ merge 

beg a 
f o r i =  1 t o t o g n - l d o  
begin 

A and B at this point are in sorted order and each can be viewed as n/2 i- 1 
blocks of 2 ~- 1 elements of consecutive ranks in A u B. 
In a single scan (n/2 I-2 comparisons and O(n) moves) concatenate pairs of 
blocks of consecutive rank in A u B, so that A and B can each be viewed 
as n/T blocks of 2 ~ elements of consecutive rank. 
This is done by repeatedly finding the three blocks of smallest elements. 
At least two of them will be contiguous. Move the two blocks of smaller 
elements into that segment of 2 ~ locations and the third to the remaining 
block. (If we remember the location of the block with the smallest elements 
from the previous iteration, we need only two comparisons to find the 
second and third.) 

end 
Exchange A and B if necessary. 

end 

It should be clear that this algorithm requires about O(n) comparisons but 
an unfortunate O(n logn) moves. Throughout Slow_merge both A and B remain 
in sorted order with one exception. In the process of concatenating two blocks, 
one may have a point of non-monotonicity. This leads to a 3 log n search algorithm. 

When n is a power of 2, all blocks are the same size, and the concatenation 
of two blocks can be done by swapping. When n is not a power of two, we 
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form blocks of approximately the same size, and we can concatenate the two 
blocks of smallest elements onto the locations occupied by the two contiguous 
blocks by using the reversal operation, and the fact that fl~ = (~tRflR) R. 

3. A fast algorithm. 

THEOREM 1. Two sorted arrays of  n elements can be merged in place using O(n) 
time and O(1) pointers, in such a manner that a search can be conducted at any 
time in O(log n) comparisons. 

PROOF: We make use of the fact that two blocks of data can be merged using 
a third block as a "scratch area." This third block has to be at least the size of 
the smallest of the blocks being merged. The merge proceeds as usual, but the 
"move" operation is replaced by "swap." As a result, its data values are not 
destroyed, but they are permuted from their orginal order. 

Procedure Searchable _merge 

begin 

1) Find the 2 logn smallest elements of the whole set, and move them to the 
first 2 log n locations of A, leaving A and B permuted from their original 
form but each still in sorted order. This is done in time O(n) as follows: 
In O(log n) comparisons (actually O (loglog n) suffice) determine the r elements 
of B to be moved. The elements of ranks 2 logn - r  + 1 through 2 logn 
of A are merged with the bottom n - r  elements of B into (all of) B, using 
the first r elements of B as a scratch area. This puts B in proper form but 
leaves the top r elements of the original B in unknown order in locations 
2 logn - r +  1 through 2 logn of A. Sorting the first 2 log n elements of 
A completes this step. 

2) Scan the n - 2  logn remaining elements of A and the n elements of B from 
top to bottom, logically forming blocks of log n elements of consecutive 
ranks in A w B. This can be done in a single pass using the first 2 log n 
locations of A as a scratch area. 

3) Re-sort the first 2 logn locations of A. 
4) View each conceptual block of A and B as consisting of a first element, 

header[j] the next log n - 2  elements, middle[j], and the last, trailer[j]. 
Apply Slow_merge to the 2n/logn elements {header[i]}. At this point, these 
"headers" are in their final positions. 

5) for i = 1 to 2n/logn do 
wKfle middle[i] is not in its final position (i.e. between header[i] and 
header[i + 1]) do 

By binary search on the headers, find the final position of middle[i] and 
swap middle[i] with that block. 
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6) Apply Slow_merge to {trailer[i]} 
end 

Each of the 6 labeled steps requires at most linear time and so the entire 
algorithm is linear. Note that when Slow_merge is called, it is applied to lists 
of n/log n elements. In step 5) each iteration of the while loop puts one block 
in its final position. Therefore, there are O(n/logn) iterations, each with a cost 
of O(logn) comparisons and O(log n) moves. The O(logn) searchability follows 
by arguments similar to those applied to Slow_merge. Note that during step 5) 
searches are performed by two binary searches, on the headers and on the trailers. 

For simplicity we have assumed that log n divides n. If this is not the case, 
we can form blocks of size /log n], and enlarge the initial block of 2 log n 
elements to hold also the elements that did not fit in any of the blocks. Also, 
the previous algorithm can be easily generalized to handle the case of merging 
sets of different sizes. 

4. An application to implicit data structures. 

An implicit data structure [9-] is an array of n data elements organized in some 
fashion to support appropriate operations without the use of pointers. Clearly 
a sorted list is a very effective implicit structure for searching. A sorted list is, 
of course, disastrous for insertions and deletions. If the operations insert, delete 
and find are to be supported, then a rather complex structure suggested by 
Munro [7] can be used to perform these operations in O(log 2 n) time. Bentley 
et al. [ i ]  have considered a restricted version of this problem in which no deletions 
are permitted. They are able to achieve searches in O(log 2 n) comparisons in the 
worst case and O(logn) on the average, with a conceptually straightforward 
method. Their scheme may require O(n) time for a single insertion, but is guaranteed 
not to take more than O(n log n) time for a sequence of n insertions. We build on 
their scheme and our merging algorithm to achieve O(logn) behavior in the 
worst case for insertions. 

The basic idea of the Bentley et al. scheme is to retain up to log n sorted 
subarrays or blocks, one of length 2 i if the ith digit in the binary representation 
of n is a 1. A search is performed by applying binary search to the blocks in 
decreasing order by size. Insertion is similar to binary addition: a new element 
is a new block of length 1. Each time two blocks of length 2 i appear, they are 
merged into a single block of length 2 i+ 1. It follows that, although increasing the 
structure from n -- 2 k - 1 to 2 k elements will spawn k merges and O(n) work, the 
"amortized" number of comparisons per insertion is O(log n). In order to avoid 
additional storage in the merge phase, they employ Kronrod's algorithm [6]. 

To convert the O(logn) average insertion cost to a worst case bound, we 
must (i) spread the merging cost over many insertions and (ii) maintain O(log n) 
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searchability while doing so. One way to achieve the former subgoal is to apply 
what Bentley and Saxe [2] have dubbed the "online binary transform". The cost 
of merging is spread over several insertions in a manner that can be viewed as 
counting in a redundant binary system, usin# the di#its O, 1 and 2. The presence 
of a 2 in a given position indicates that the two corresponding blocks are being 
merged. If we delay, as much as possible, the expansion 2 ~ 10, then there will 
always be at least one block of each possible size, and it is not hard to see 
that the merging of two blocks of size n can be spread over n steps. We can 
therefore use a "time sharing" arrangement, where, for each insertion, we spend an 

O(logn) "time slice", doing a constant amount of work on each of the O(logn) 
~'active" merges. In practice one would clearly use O(log n) words of O(log n) bits 
each to monitor the progress of the merges, thus leading to a ~'semi-implicit" data 
structure. One could, of course, carry out a purely implicit implementation. A 
cache of O(logn) elements can be used to encode each pointer. The cost of 
encoding and decoding this information is kept under control by adopting the 
policy of always working on the the smallest uncompleted merge. This implies 
that if a "large" number of merges are worked on, then ~'most" of them are 
small and so less time is required to decode their status. Hence decoding is not 
a dominant issue. 

The maintenance of searchability during the process follows by using the 
merging algorithm presented in the preceding section. Hence: 

THEOREM 2: There is an implicit data structure under which insertions can be 
performed in O(logn) steps and searches require O(logn) time on the averaye 

and O(log 2 n) in the worst case. 

5. Conclusions. 

We have introduced the notion of O(log n) searchability as a desirable property 
of an (in place) merging scheme. In addition to showing that this new property 
can be achieved in linear time we have shown the usefulness of the concept by 
demonstrating an implicit data structure requiring only O(log 2 n) comparisons 
for a search and O(logn) for an insertion in the worst case. Our scheme requires 
only O(log n) time to search, on the average. This compares favourably with the 
data structure in [7], that requires O(log 2 n) on the average, as well as in the worst 
case, for both operations, although the latter method does support deletions. 
In [8] we proposed a scheme for handling deletions in our data structure, that 
seems to perform well on the average, but for which no analysis is available. 
The reader is referred to [8] for a description of the method, and discussion of 

simulation results. 
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