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CONTRACTIVITY OF RUNGE-KUTTA METHODS

1. F. B. M. KRAALIJEVANGER*

Department of Mathematics and Computer Science, University of Leiden,
P.0O. Box 9512, 2300 RA Leiden, The Netherlands

Abstract

In this paper we present necessary and sufficient conditions for Runge-Kutta methods to be contrac-
tive. We consider not only unconditional contractivity for arbitrary dissipative initial value problems,
but also conditional contractivity for initial value problems where the right hand side function satisfies
a circle condition. Our results are relevant for arbitrary norms, in particular for the maximum norm.

For contractive methods, we also focus on the question whether there exists a unique solution to the
algebraic equations in each step. Further we show that contractive methods have a limited order of
accuracy. Various optimal methods are presented, mainly of explicit type. We provide a numerical
illustration to our theoretical results by applying the method of lines to a parabolic and a hyperbolic
partial differential equation.

Subject Classifications: AMS (MOS): 65L05, 65L20, 65M10.

1. Introduction.
We consider initial value problems for systems of s > 1 ordinary differential

equations,

(1.13) %U(t) =feU@) = t)

(1.1b) Ulty) = up.
We assume here that 1, R, u, e R® and
(1.2a) f is a continuous function from R x R’ into R’

(1.2b) for each t,eR and uy,eR® problem (1.1) has a unique solution
U:[to,@)”"RS;

(1.2¢) |||l is a norm on R® such that for any ¢, € R and any two solutions U, Uto
(1.1a) we have | U(t) — U(t)]| < [|U(to) — Ulto)ll (for all £ = t,).
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The class consisting of all pairs (£, ||-]|) satisfying (1.2) (for some appropriate s) is
denoted by #. If (£, | ))e &# we say that [ is dissipative with respect to ||-|. In this
case the initial value problem (1.1) is said to be dissipative as well.

In the present paper we study Runge-Kutta methods for the numerical solution of
(1.1). In these methods we select a step size h > 0, and generate approximations
u, >~ U(t,), n=1,2,3,..., in a step by step fashion, starting with the initial value
ug = Ult,). Here the grid points ¢, are defined by ¢, = t,-; + h. More precisely, if
u,..; has already been computed, u, is defined to be

(1.3a) Up = Uy + hZ}”:l bif(te—1 + c;h, y)),
where the vectors yy, y,,..., ¥, € R are a solution to the system of equations
(1.3b) Vi=tyo1 +BY T a5 by +cihy) (L <i<m).

The coefficients a;;, b;, ¢; (i,j = 1,2,...,m) are real numbers specifying the Runge-
Kutta method. The number m is called the number of stages. We always assume that

;=0 +a;;+ ...+ ay, (lﬁiﬁm);

In view of this assumption we can represent a Runge-Kutta method by its
coefficient scheme (A,b), where A denotes the m x m matrix 4 = (g;;) and b the
m-dimensional column vector b = (by,b,,...,b,)". Usually one displays the coeffi-
cient scheme (4, b) and the values ¢; in the tableau

€11 811 ... Qgy
Co | Qi orv O
b, ... b,

Suppose that, instead of u,_;, we are dealing with a perturbed approximation
i, 1. Then the Runge-Kutta step will generate 4, satisfying

(1.42) Ty =By + hYT bif (61 + b3,
(1.4b) Vo=t +h YT @ f(tay + c;h, 3 (I<i<m)

If f is dissipative with respect to a given norm |||, it is natural to require
contractivity of the numerical method, i.e.

(15) ”ﬁn - un” < ”an—l - un—lu'

This very favourable stability property of the method has been studied by many
authors. For the case where the norm ||| is generated by an inner product <., .), i.e.
Ixl = <x, x>/ for all x € R, there exists a satisfactory theory providing necessary
and sufficient conditions for contractivity. This theory comprises not only uncondi-
tional contractivity, i.e. contractivity for all step sizes h > 0, but also conditional
contractivity, i.e. contractivity under a step size restriction 2 < H. In the case of
unconditional contractivity, arbitrary functions f are considered, which are dissi-
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pative with respect to an inner product norm, ¢f. [3],[6], [18] (see also [51,[9]). In
the case of conditional contractivity, it is assumed that f satisfies a stronger
condition than dissipativity, namely a circle condition (5.7) with a given radius
p >0, cf [71, (8], [23] (see also [9]).

For norms not generated by an inner product, there exists no general theory for
contractivity. Only for linear autonomous differential equations, necessary and
sufficient conditions for unconditional and conditional contractivity are known
[34] (see also Remarks 5.7 and 6.4). For more details and further results in this
situation we refer to [15], [211, [22], [33], [35], [36], [37].

In this paper we shall present necessary and sufficient conditions on a Runge-
Kutta method to be contractive in arbitrary norms. We will consider unconditional
contractivity on the class & as well as conditional contractivity on subclasses of
F (f must satisfy a circle condition (5.7)). Asin [34], special attention is given to the
important maximum norm. We mention that some of our results were already
stated, without proof, in [24]. For related results on contractivity for linear multi-
step and one-leg methods we direct the reader to {26], [27], [29], [30], [31], [34],
[39].

In the following we give a brief outline of the paper. Section 2 is of preliminary
nature. Here we introduce the concept of absolute monotonicity for the well-known
stability function ¢ and K-function K of a Runge-Kutta method, and also for the
so-called matrix-valued K-function, denoted by K. For the investigation of absolute
monotonicity of the functions K and I, it is convenient to consider certain algebraic
conditions on the coefficient scheme (4, b). These algebraic conditions are referred to
as absolute monotonicity of the scheme (4, b).

In Section 3 it is proved that absolute monotonicity of K, K and (4, b) are
equivalent.

In Section 4, the radius of absolute monotonicity R(4, b)e[0, co] is defined and
studied for arbitrary Runge-Kutta schemes (4, b). One of the results, ¢f. Theorem
4.2,1s that only schemes (4, b)with A > Oand b > Ocan have a non-vanishing radius
R(A4,b).

In Section 5 we study conditional contractivity of Runge-Kutta schemes. It is
assumed that the function f satisfies a circle condition (5.7), where |- || is an arbitrary
norm and p > 0is fixed. The main result, cf. Theorem 5.4, is that the maximum step
size H for which we have contractivity is given by H = R(4,b)p ™.

In Section 6 we study unconditional contractivity on the class #, which is proved
to be equivalent to R(A, b) = oo, cf. Theorem 6.1.

In Section 7 it is proved that the system of Runge-Kutta equations (1.3b) has
a unique solution whenever the conditions that guarantee contractivity are fulfilled.
Moreover it is shown that there is stability with respect to perturbations of these
equations.

In Section 8 we consider the impact of the conditions R(4, b) > Oand R(4,b) = oo
on the order of accuracy of the method. A distinction is made between the classical
order of consistency p and the stage order p. We mention the negative result
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7 < p < 1 for unconditionally contractive methods, i.e. methods with R(4, b) = oo.
This order barrier was already derived in [34] by considering only linear auton-
omous problems. Further we have for conditionally contractive methods, ie.
methods with R(4, b) > 0, the order barriers p < 6 and p < 2. Explicit methods, for
which always p < 1, suffer even from an order barrier p < 4in case R(4,b) > 0. This
last negative result was also found in [7], where only inner product norms were
considered. We also present convergence estimates for methods with R(4, b) > 0, cf.
Theorem 8.1.

In Section 9 we study, for given integers m and p, the maximum of R(4, b) on the
class of explicit Runge-Kutta methods with m stages and classical order at least p.
Several optimal explicit methods are presented.

In Section 10 a numerical illustration is given. Heun’s third order scheme (with
R(A4,b) = 0) is compared with the optimal third order 3-stage scheme derived in
Section 9 (with R(4, b) = 1). Both methods are applied to three initial value prob-
lems which are dissipative with respect to the maximum norm (I, norm) or
(weighted) sum norm (I; norm). The latter two problems come from a space
discretization of a parabolic and a hyperbolic partial differential equation with
coefficients varying in space and time.

2. Preliminaries.
2.1. Definition of the functions ¢, K and K.

Let a Runge-Kutta method be given with m > 1 stages and coefficient scheme
(A, b). If we apply this method to the linear scalar autonomous test problem

(2.1) —(%— Ul) = AU@{) (t = t), U(ty) = ug,

it is well known (cf. e.g. [5], [9], [38]) that (1.3) reduces to the simple recurrence
relation u, = @(hA)u,—, (n > 1), where ¢ is the so-called stability function of the
method. The stability function ¢ is a rational function in one complex variable
z with numerator det(I —z(A — eb")) and denominator det(I — zA), where
e=(1,1,...,1)"eR" and I stands for the m x m identity matrix, Although we shall
deal with differential equations in real vector spaces only, implying that the argu-
ment z = h/ is real, it is convenient to define ¢(z) for complex values z as well. We
note that it is possible that ¢ has removable singularities, namely if the numerator
and denominator of ¢ have a common zero (in C). Finally, it is well known that ¢(z)
can be written as

@(z)=1+zb"I —z4A)"*e  (if I — 24 is nonsingular).
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If we apply the Runge-Kutta method to the more general, linear scalar non-
autonomous test problem

d
(2.2) E;U(t) =A0U@) (£ =1to), Ulto) = uo.

it 1s well known {cf. e.g. [3], [5], [9]) that (1.3} reduces to the recurrence relation
u, = K{z(,22,..., Za)ity _ . (n = 1), where K is the so-called (scalar) K-function of the
method and z; = hi(t,_, + ¢;h),i = 1,2,...,m. The K-function s a rational function
in the complex variables z;,7,,...,2, with numerator det( — (4 — eb")Z) and
denominator det{l — AZ), where Z is the diagonal matrix Z = diag{z,z3,..., Zm)
We shall use both notations K(zy,2,,...,2,) and K(Z). It is well known that

K(Z)=1+b"Z( — AZ)"'e  (if I — AZ is nonsingular).

We note that the K-function reduces to the stability function ¢ if we take
2z, =z, =... = z,,. Further we emphasize that all variables z,z,,...,2, of the
K-function are considered to be independent, although in the application of the
method to (2.2) we always have z; = z; whenever ¢; = ¢;.

Let s be a positive integer and consider the linear non-autonomous test problem

3 L 00 =Lov0 (20, U=,

where L(t) is a real or complex s x s matrix depending on t. In this case (1.3) reduces
to the recurrence relation u, = K(Z,Z,, ..., Zy)u,— (n > 1), where K is a matrix-
valued function and Z; = hL(t,_{ + c;h),i = 1,2,...,m. We define Z to be the block
diagonal matrix Z = diag(Z,,Z,,...,Z,,). Both notations K(Z,Z;,...,Z,) and
K(Z) will be used. One easily verifies that

K(Z) =1+ b'2(0 — AZ) ‘e (if 1 — AZ is nonsingular),

where A= AR, b=bR,e=e@I, 1 =1®Land 1 =(1)® I = L. Here [
stands for the s x sidentity matrix and ® for the Kronecker product (cf. e.g. [25],
[9]). Weshall refer to I€ as the matrix-valued K-function of the method. This function
is defined for all block diagonal matrices Z = diag(Z,,Z,,..., Z,)forwhich | — AZ
isnonsingular and where the blocks Z, are square matrices of the same (but arbitrary)
order s > 1. If s = 1, the blocks become scalars, Z; = (z;) (i = 1,2,...,m), and the
block diagonal matrix Z becomes a diagonal matrix Z = diag(zy, 23, .. ., z). In this
case the matrix-valued K-function K(Z) reduces to the scalar K-function K(Z).

2.2. Absolute monotonicity of ¢, K, i and (A, b).

In this subsection the functions ¢, K and K are as in Subsection 2.1. For these
three functions, and for the coefficient scheme (4, b} itself, we shall define the concept
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of absolute monotonicity. We begin with defining absolute monotonicity for ra-
tional functions {y = P/Q, where P and Q are polynomials in the complex variable z,
both with real coefficients. Note that the stability function ¢ is of this type.

DEerFINITION 2.1. ¢ is said to be absolutely monotonic at a given point £eR if
0(8) # 0 and (d*y/dz*)(&) = 0, k = 0,1,2,.... Further,  is said to be absolutely
monotonic on a given set 2 < R if Y is absolutely monotonic at each £€ Q.

For the (scalar) K-function K, depending on the complex variables z, z,,...,2,,
the definition of absolute monotonicity is as follows.

DrerINITION 2.2. K is said to be absolutely monotonic at a given point e R if
I — £A is nonsingular and (8t *2% - ""K/8z702%...8200E,E,..., &) = 0 for all
nonnegative integers i, i,,..., i, Further, K is said to be absolutely monotonic on
a given set Q < Rif K is absolutely monotonic at each £e Q.

Note that in the two above definitions, absolute monotonicity of the scalar
functions ¢ and K at a real point ¢ amounts to the nonnegativity of all coefficients of
the Taylor expansion about z = ¢ and Z = &I, respectively. In this light it is natural
to define absolute monotonicity of the matrix-valued function K at a point £ € R as
the nonnegativity of all coefficients of the expansion of K(Z) about Z = &1 In order
to find the coefficients of this expansion, we introduce the following notation,
provided that I — £4 is nonsingular,

(2.42) AQ) = (&) = AU - E4)7Y,
(2.4b) bE&)" = (B1(8), Bo(8), ... &) = BT — EA) 7Y,
(2.4¢) e(d) = (24(0), 62(8) . @) = (I — £A) e

Let s be a positive integer and write A() = A ® L, BE =R I,
e(&) = e(é) ® I,. Suppose W is a block diagonal matrix W = diag(W,, W,,..., W),
where each W, is a real (or complex) s x s matrix. If Z=¢1+ W, and W is
sufficiently close to zero, it is easy to prove that | — AZ is nonsingular with inverse

(2.5) (1 —AZ)™ = ) [AQWII - AT .
k=0
A straightforward computation shows that this leads to

Q6 K= O+ 3 BETWIAGWT o) -

= @(&; + Z > Bi iy %ipiy - - %y i 8 Wi, Wy o W

k=11iy,i2,..., ik

K?
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where we have suppressed the dependence of the entries a;;, f; and & on the
parameter ¢ for shortness of notation. This expansion gives rise to the following
definition.

DEerFNITION 2.3, K is said to be absolutely monotonic at a given point e R if
I — A is nonsingular, ¢(¢&) > 0 and ;061,06 %, _ 5,8, = 0 for all k> 1 and
iy, 1z,...,ix Further, i is said to be absolutely monotonicona givenset @ < Rif Kis
absolutely monotonic at each £ Q.

For the investigation of absolute monotonicity of the functions K and K, the
following property of the coefficient scheme (4, b) is of great importance.

DEerINITION 2.4. The coefficient scheme (A4, b) is said to be absolutely monotonic at
agiven point £ € Rif I — £A4 is nonsingular, ¢(£) > 0, A(¢) = 0, (&) = Oand e(&) = 0.
Further, the coefficient scheme is said to be absolutely monotonic on a given set
Q < R if it is absolutely monotonic at each €

In the above definition the inequalities involving A4(&), b(¢) and e(£) should be
interpreted component-wise.

A relation between the four concepts, introduced in the definitions above, is given
in the following lemma. Its easy proof is omitted.

LEMMA 2.5. Suppose that  is a subset of R. Then, for any coefficient scheme (4, b),
we have (a) = (b) = (c) = (d), where
(a) (A4, b) is absolutely monotonic on £2;
(b) K is absolutely monotonic on Q;
(c) K is absolutely monotonic on Q;
{(d) o is absolutely monotonic on L.

We conclude this subsection with a remark.

REMARK 2.6. As is done in [24], it is possible, and probably more natural, to
define absolute monotonicity of the K-function on sets €' < R™ rather than —as is
done in Definition 2.2 — on sets 2 < R. In this alternative definition, K is said to be
absolutely monotonic on a given set ' < R™ if the Taylor expansion of K about
each point in € exists and has nonnegative coefficients. The reason why we did not
adopt this definition is that the presentation of many of our results would have
become considerably more complicated. This disadvantage is even more pro-
nounced for similar adaptations of Definition 2.3. Further, with these alternative
definitions we would not arrive at stronger results than those obtained with the
present definitions.
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2.3. Reducibility of (4, b).

Let a Runge-Kutta method be given with m > 1 stages and coefficient scheme
(4,b). Following [7], [8] the coefficient scheme is said to be DJ-reducible if there
exist disjoint index sets .#; and 4, with A, v M, = {1,2,...,m} and 4, # @ such
that b; = 0(if ie .#4,) and a;; = 0 (if i € 4, and je .4,). In case of DJ-reducibility, the
method makes no use of the stages with index in .#,, and is therefore equivalent to
a Runge-Kutta method with m’ stages, where m' is the number of elements in 4.
The following lemma will be useful in Section 3.

LeEMMA 2.7. Let a Runge-Kutta method be given with m > 1 stages and coefficient
scheme (A, b). Suppose that there exists an index i€ {1,2,...,m} such that
(2.7) bixamzaizis e a,-k_ e

Then (A, b) is DJ-reducible.

=0 (for all k = 1 and all indices iy, i,,...,5 with i, = i).

Proor. Define .#, as the index set containing all i with property (2.7), and let
My ={1,2,... . m\M,. |

A different reducibility concept was introduced in [18] (see also [8], [9]). The
coefficient scheme (4,b) is said to be HS-reducible if for some integer r with
1 < r < m and some nonempty pairwise disjoint index sets #;, 4,,...,.#, with
My Myo.. 0 M= {1,2,...,m} we have

Y aw= Y ap
ke, ke,
forallowith1 < ¢ <randalli,j belonging to the same index set .4, with1 < p < r.
In case of HS-reducibility, all vectors y; in (1.3b) with an index i belonging to the
sameindex set .4, are considered to be equal, leading to a Runge-Kutta method with

r < m stages. In Section 5 we make use of the following lemma due to W. H.
Hundsdorfer, the proof of which can be found in [23].

LEMMA 2.8. Let a Runge-Kutta method be given with m > 1 stages and coefficient
scheme (A, b). Suppose (A,b) is not HS-reducible. Then, for any real y, there exist
vectors p = (P1,Pa. ..., Pm)" and ¢ = (41,42, ., 4m)" in R™ such that ¢ = Ap and

pi# 0 (@i —a)/pi —p) <y (foralli,jwithi# j).
A unified approach combining the two reducibility concepts above is presented in

[8]. Following [8] we call a coefficient scheme (4, b) reducible if it is DJ-reducible
and/or HS-reducible, and irreducible otherwise.
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3. Equivalence of absolute menotonicity of K, K and (4, 5).
3.1. Introduction.

Throughout this section (4, b) is a given coefficient scheme of a Runge-Kutta
method with m > 1 stages. The corresponding functions ¢, K and K are defined in
Subsection 2.1.

The main purpose of this section is to prove for any real interval [ —r, 0] with
r = 0, the equivalence of the following three propositions,

(3.1 K is absolutely monotonic on [ —7,0];
(3.2 K is absolutely monotonic on [ —r,0];
(3.3) (A, b) is absolutely monotonic on [ —r,0].

In addition to the notation of Section 2, the index set {1,2,...,m} is denoted by
A . Forreal matrices {or vectors) F = ( j},-)aridG = (g;;) wewrite F > Gif f;; > g;;for
alliand j, and F > G if f;; > g,; for all i and j. The reverse relations < and < are
defined similarly. The matrix with entries |f;;| is denoted by |F|. If F is a square
matrix, its spectral radius is denoted by spr(F).

3.2. Equivalence of absolute monotonicity of K and K.

In this subsection we prove that, for any ¢€R, absolute monotonicity at ¢ of
K and KK are equivalent, We start with an auxiliary lemma.

LeMMa 3.1. Let = P/Q be a rational function in the complex variable z, where
P and Q are polynomials with real coefficients. Suppose y is absolutely monotonic at
a given point £€R. Then  is absolutely monotonic on the interval [£,n), where
n satisfies ¢ <y < oo and is defined by n = inf{t|te (&, 00) and Q(t) = 0}. Further, the
Taylor series of r about z = £ has a radius of convergence > n — &.

Proo¥. The Taylor series of  about z = ¢ is given by ¥ =% o vilz — &), where
7 = Y®(E)/k! = 0. Suppose that the radius of convergence p is smaller than n — ¢,
where # is defined as above. Then, for all complex z with |z — £] < p and Q(z) # O we
have

< 3 yelz— & <lim Y g = lim (& + 4) = Y& + p).
k=0

ATpk=0 Alp

W(z) =

T etz — &
k=0

Since this uniform bound for {/(z)| is in contradiction with the existence of a pole
of y on the circle {z|zeC, |z — | = p}, we conclude that p > # — ¢. Hence (z) can
be represented by the above Taylor series for all z€[£, 7). Term by term differenti-
ation shows that ¥ is absolutely monotonic on [£,#). |
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A similar result can be proved for the (scalar) K-function.

LemMa 3.2. IfK is absolutely monotonic at a given point £ € R, then K is absolutely
monotonic on the interval [&,n), where n satisfies ¢ <n < co and is defined by
n = inf{t|te(é, oo) and I — tA is singular}.

Proor. From the definition of the K-function it is not difficult to see that each
partial derivative 8" *2* - *™K /9741 67% ... 8zl is a rational function in the complex
variables z4,2,,...,2,, With denominator det{ — AZ)", where n =1 +1i; + i, +
...+ i,. If we evaluate this partial derivative at Z = tI for real values ¢, we obtain
a rational function ¥ in the variable ¢ with denominator det(I — tA4)". Since the
absolute monotonicity of K at & implies the absolute monotonicity of ¥ at £, it
follows from Lemma 3.1 that i is absolutely monotonic on [¢, ) with # as above. In
particular it follows that ¥ is nonnegative on [&,#). Since ¢ corresponds to an
arbitrarily chosen partial derivative of K, we conclude that K is absolutely mono-
tonic on [£, 7). ]

The following lemma deals with the sets 4 and &, defined by
(3.4) 2 = {{|EeR, I — £A4is nonsingular, there exists an index { with §({) = 0}
(3.5) & = {¢]1EeR, I — £A is nonsingular, there exists an index i with () = 0}.
We recall that (&) and ¢,(£) are defined in (2.4).

LeMMa 3.3. Let the sets B and & be defined by (3.4) and (3.5). Then & is finite. For
irreducible coefficient schemes the set # is finite if for at least one point £€R the
Sunction K is absolutely monotonic at £.

Proor. 1. First we show that & is finite. For real & such that I — £A4 is nonsingu-
lar, Cramer’s rule yields &{(&) = pi(&)/det(I — £A), where p; is a polynomial of
degree < m — 1. Since p{0) = 1, p; can only have a finite number of zeros. Hence
& must be finite.

2. Suppose that for at least one point ¢ e R the function K is absolutely mono-
tonic at £, and that 4 is infinite. We shall prove that (A4, b) is DJ-reducible. First note
that, in view of Lemma 3.2, we may assume that K is absolutely monotonic on some
nonempty open interval # < R. Since each f; is a rational function in one variable,
the assumption that 4 is infinite implies that there exists an index i such that
pi&) =0 for all éc#. Hence for this index and for all (€4 we arrive at
B8 = Bi& = Bi(&) = ... = 0. Using the fact that

dk

i BET = KIBETAE*  (for all integers k > 0 and all e %),



492 I. F. B. M. KRAAUEVANGER

we obtain
(36) Z Bilté)ailiz( ) 1213(6) lk llk(é)
(B1.82y 0 ey in)EME i =1
for all integers k > 1 and all £ e #. By using induction on k we shall prove that this
implies for all integers k > 1 and all {e.#:

BT B (O, i (O o 1 (Oe (&) =0 (for all (iy,is,...,0) € A" with i = 1),

Let ¢ e.# be fixed. For k = 1, (3.7) immediately follows from (3.6). Now assume
that, for some given n > 1, we have proved (3.7) for k = 1,2,...,n. We shall prove
(3.7) for k = n + 1. Note that we may assume that g{&} # 0 since otherwise (3.7)
trivially holds. From the Taylor series of K about Z = £, which can be obtained by
taking s = 1 in (2.6), it is easy to see that absolute monotonicity of K at £ implies

Z ﬁll(f)alllz(é) l,,,ln+ 1(6)8i,,+ 1(5) = 0

{1v-.erin in+ s} ispermutationof (Ji,..., fn, )
for all (ji,jzs...,Ju)€ 4" In view of (3.7) (with k= 1,2,...,n) and &(&) # O this
amounts to

(3.8) Y Bi (&)1, (&) . . o, (E)ed€) 2 O

{i1,i2....,in)is permutationof (j1,j2, ..., jn)

for all (1,2, . . ..ju) €A™ In combination with (3.6) (for k = n + 1) and the fact that

= ¥ ¥

(1820000 in)EMN G1odzserecdn)eMn (g ia. t,,)lspermutatmn
Jigjrs... <in of 17420+ -+ dr0)

it follows that equality holds in (3.8) for all (j,, j,, . . ., j,) € #". Now suppose that (3.7)
does not hold for k = n + 1. Then there exists (j,j,,...,/,) € A" such that

(3.9) B, (92, 1,(8) - . 2, dE)edE) # O.

Since we proved that equality holds in (3.8), there exists at least one permutation
(ih i29 ey ln) Of (]1 >j27 . 'ajn) Wlth (ila iZ’ vy ln) ;é (j17j27 . "jn) and

(3.10) ﬁil{é)d‘il, iz(f) ‘e O‘ini(f)gi(é) # 0.

Let 4 denote the smallestindex with i, # j,. Theni, = j, for some yu > 4. It follows
from (3.9) and (3.10) that

Bii(é)ai,,iz(é) azA Wi (‘f)ajwr’” 1( ) j”l(é)gl(é) # O

Since this contradicts our induction hypothesis (3.7} (withk =n + 1 — u + 1), we
have proved (3.7) for k = n + 1. This concludes the proof by induction of (3.7).

Note that the left hand side of (3.7) is a rational function in ¢ with denominator
det(I — EAY* 1. Since this rational function exists and vanishes for all {€.#, we
conclude that it must vanish at £ =0 as well, i.e. we have proved (2.7). An
application of Lemma 2.7 shows that (4,b) is DJ-reducible, which was to be
proved. |



CONTRACTIVITY OF RUNGE-KUTTA METHODS 493

Lemmas 3.2 and 3.3 are used in the proof of the following theorem, which
constitutes the main result of this subsection.

THEOREM 3.4. Let £€R be arbitrary. If the coefficient scheme is irreducible, then
K is absolutely monotonic at £ if and only if I is absolutely monotonic at .

Proor. For the “if-part” we refer to Lermnma 2.5. In order to prove the “only-
if-part”, we assume that K is absolutely monotonic at &. From Lemma 3.2 it follows
that K is absolutely monotonic on an interval & = [, ) withy > £ Hence, for any
te #, the Taylor expansion of K about Z = ¢l exists and has all coefficients
nonnegative. By considering (2.6) with s = 1 (and ¢ replaced by t) we arrive at

(3.11) o(t) = 0,
(3.12) Y B, (0%5,1,(0) ..y, ;. (65, (8) = 0

G1:d2000s Jr)is permutationof (i1, iz, ..., ix)

for all te .#, all integers k > 1 and all (iy,i,..., i) € A"
Define the set I' by

I'={t|te# and B(t)e;(t) = O for some ie.#}.
Let te #\I" be given. By considering (3.12) with k = 1 we see that
3.13) B:)e(ty >0 (forallie 4).

Consideration of {3.12) with k = 2 and i, =i, yields B (t)e{t) > O (for all
ie ). In view of (3.13) this implies

(3.14) wi{(t) =0 (for all ie.#).

Now let i,je.# be given with i#j By considering (3.12) with
(s ias.0 i) = (i,4,...,1,j) we obtain for all k > 2 the inequality

ﬁ ‘xk 2 1j8j + ﬁjaji ?1 + (k 2)13!“11“11 ii 81 = O

where the dependence on ¢ has been suppressed for shortness of notation. By taking
k = 2 it follows that

(3.15) Bioze; + Bjoe; = 0.

By taking k=3 if a; =0, or considering k — o if a; > 0, it follows that
Bio;o8; = 0. In view of (3.13), multiplication by fe; yields (B;x;;¢;)(8;:¢:) = 0.
Combination of this inequality with (3.15) shows that

(3.16) Bit)ou(t)es(t) = 0 (for all i,je.# with i # j).
Using (3.13), (3.14) and (3.16) it is easy to deduce that
(3. 17) ﬁil(t)(x,»liz(t) C O 1ik(t)8ik(t) >0 (for all k >1 and all (ils iz, vy ik) € ﬂk)
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Thus we have proved (3.17)for all t € £\I". Since by Lemma 3.3 the set I is finite, it
follows from continuity arguments that (3. 17y must hold for all t € #. Combined with
{3.11) this shows that K is absolutely monotonic on .#, and in particular at

g n

3.3. Equivalence of (3.1), (3.2) and (3.3).

In this subsection we will prove the equivalence of (3.1),(3.2) and (3.3) for arbitrary
r = 0. We start with two lemmas. The easy proof of the first lemma is left to the
reader.

LevMMA 3.5, Let p and o bereal mambers with p > 0. Then the following two propositions are equivalent.
(3.18) I — zA is nonsingular for all complex z with |z — o] < p;

(3.19) I — oA is nonsingular and spr(pA(I — cA)™*) < 1.

LeEmMMA 3.6. Let y = P/Q be a rational function in the complex variable z, where
P and Q are polynomials with real coefficients and no common zeros. Further, let
A and u be real numbers with A < . Suppose that  is absolutely monotonic at all
but a finite number of the points in [A, u). Then y is absolutely monotonic on all of

[4, ).

Proor. If [4, ) contains no poles of ¢, the assertion easily follows from a limit
argument. Therefore it is sufficient to prove that [£,#) contains no poles of .
Suppose ye[&,7) is a pole of Y. Then either y(z) < 0 or Y'(z) < 0 for all (real) z in
a right neighbourhood of y. In both cases we have a contradiction with the absolute
monotonicity of . n

The two lemmas above are used in the proof of the following result.

LEMMA 3.7. Let A and u be real numbers with A < y. Suppose that for a given
irreducible coefficient scheme (A, b) the function K is absolutely monotonic at all but
a finite number of the points in the interval [ A, u). Then K is absolutely monotonic on
all of [4, ). Further we have spr({A(&)]) < (u — &)~ for all €[ 2, p).

PRroOF. According to the assumptions, K is absolutely monotonic on [4, w\ T,
where I' is a finite subset of [4, u). Note that it follows from Lemma 3.3 that we
may assume, without loss of generality, that

(3.20) B{&)ed&) #0  (for all £e[A u\TI and all i e .4).

Let ¢ denote the rational function that is obtained from ¢ by removing all
removable singularities. Since K is absolutely monotonic on [4, w\T, it follows
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from Lemma 2.5 that ¢, and therefore also ¥, is absolutely monotonic on [A, w\I.
Using Lemma 3.6 we sce that i is absolutely monotonic on [4, ). From Lemma
3.1 we conclude that for any & € [4, u) the Taylor series of i about z = £ has a radius
of convergence > u — . As the Taylor series of ¢ about z = £ is easily obtained by
taking scalar Wy = W, = ... = W, in (2.6), we sce that

YE+D =0+ Y Y Bi(Ou,(0) ., (e (O
k=11ig,i2,..., i1
for all £e[A, W\I" and all § € [0, & — §). Note that it follows from Theorem 3.4 that
K is absolutely monotonic on [4, w\I, so that all terms of the above series are
nonnegative. But then we have

Z{'ﬂf‘é)‘*f‘f)' YD Y R IR 5} <o

ij k=1ig,iz, ..., ixiy=iig=]
for all £e[A, wW\I and all 6 [0, u — &). In view of (3.20) this implies

€

) > loti,1,(8) - - 0,5, (D) 6T < 00

k=1 it,dg..., iy =i ig=]
forall £e[A, w\I, 6 [0, u — &) and all i,j e 4. Noting that the left hand side of the
above inequality is the (i, j}-th element of the series

I+ S|A@E)| + 82 A + ...,

we conclude that this series converges for all £ €[4, y)\I" and all &[0, u — £). This
is known to be equivalent to

(3.21) spr(814()) < 1 (for all Ze[A u)\I" and all S [0, u — &),

implying spr(6A4(£)) < 1 (for all e [A, w\I" and all 6 € [0, u — &)). Lemma 3.5 shows
that the latter property is equivalent to the nonsingularity of I — zA4 for all complex
zsuch that|z — ¢| < dforsome &[4, w\I'and 6 €[0, u — ¢). Since I is finite, we can
take ¢ arbitrarily close to A here, which leads to the nonsingularity of I — zA for all
complex zwith |z — 4| < u — A.Inparticular we have proved that I — £ A4 is nonsingu-
lar for all £ €[4, u). Hence all partial derivatives of K exist and are continuous at all
points Z = ¢I with e [4, p). By using this continuity it follows that K is not merely
absolutely monotonicon [4, p)\I" but onall of [ 4, u). Further, it follows from (3.21), the
finiteness of I and the nonsingularity of I — ¢Aforall & e [4, u) thatspr(5|A(£)]) < 1for
alléel4d, m)andde[0, u — &), ie.sprA(Q)) < (u — & *forallée[4, p). ]

This lemma will be used in Sections 4 and 5. It also plays an important role in
the proof of the following result, which is the main result of this section.

THEOREM 3.8. Let (A4, b) be an irreducible coefficient scheme and r a nonnegative
real number. Then (3.1), (3.2) and (3.3) are equivalent.
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Proor. In view of Lemma 2.5 it is sufficient to prove (3.1)=(3.3).

1. We first consider the case that r = 0. Hence we may assume that K is abso-
lutely monotonic at 0 and have to prove that (4, b) is absolutely monotonic at 0,
i.e. A = O0and b = 0. First note that we may assume that K is absolutely monotonic
at 0 by Theorem 3.4, ie. b;a;;,...a;,_ ,;, =0 for all k>1 and all i;,i5,...,%.
Consideration of k = 1 immediately leads to b > 0. In order to prove 4 > 0 we
choose arbitrary i,je .#. Since the method is irreducible, it follows from Lemma
2.7 that for some k>1 and some indices iy,i,,...,5 with i, =i we have
b, .. a4, i > 0. Using the fact that b; a; ;,...a;, _;a;; = 0 we arrive at a;; > 0.

2. Now let r > 0 and assume (3.1). We shall prove (3.3). From Lemma 3.2 we
see that K is absolutely monotonic on [ —r, %) for some positive n. In view of Lemma

3.7 this implies spr{{4(¢)]) < (n — &)~ ! for all e[ —r,4), and hence
spr(—CA(E) < spr(|— €A < &~ &~ <1 (for all Le[—r,0]).
Combined with [I + £A()] ! = I — ¢4 we may conclude that
(3.22) —(A = —CAE) + E2A(8)? — EBAE® + ... (for all e[ —r,0]).

Next define the set Q = {&|Ee[—r,0], Bu&)e(l) # O for all ie #}. Let £ be
fixed, and define the index sets .#; and 4, by #, = {ilie.#, B(&) > 0} and
My = M\ M. Without loss of generality we may assume that i < j whenever i € .4,
and je .#,. Since K is absolutely monotonic at £ by Theorem 3.4, it follows that
b(&), e(£) and A{) must have the form

e/%{l */%2
[ >0 M| >0 M,
b(é)=ﬂ;[zo], e(é)=ﬂ:[zoJ, A(f)=ﬂ:[ig fg]

where, for example, ‘> 0" in b(£) means that §;(£) > O for all ie.#;. In view of (3.22)
this shows that — £A4 is of the same form as A(£). But then

0 >0 <0 0 0
oo -co-sv-[ 2 203 [2]

which is only possible if .#, = §. Hence we have proved that b(£) > 0, e(¢) > 0 and
A(¢) = Oforall £ Q. Further, I — £A is nonsingular and ¢(&) > Oforall £e[ —7,0]
by the absolute monotonicity of K on [—r,0]. Since Lemma 3.3 implies that
[ —r,0]\Q is finite, it follows from a continuity argument that (A4, b) is absolutely
monotonic on [ —r,0]. ]

4. Investigating absolute monotonicity of (4, 5).

4.1. The radius of absolute monotonicity.

In this section we study for coefficient schemes (4, b) the so-called radius of
absolute monotonicity R(A, b), defined by



CONTRACTIVITY OF RUNGE-KUTTA METHODS 497
(4.1) R(4,b) = sup{r|reR and (4, b) is absolutely monotonic on [ —r,0]}.

In this subsection we present two general results on R(4, b). In Subsection 4.2 we
concentrate on the special case R(4,b) = 0.

Our first general result on R(A4, b) is the characterization of all irreducible coef-
ficient schemes with R(4,b) > 0. For the formulation and proof of this result it is
convenient to give the following definition (cf. [1]).

DermNITION 4.1. For a given matrix F = (f;;) we define its incidence matrix

TueoreM 4.2. For irreducible coefficient schemes (A, b) we have R(A,b) > 0 if and
only if A 2 0,b > 0 and Inc(4?) < Inc(4).

Proor. Note that for real & close to zero the matrix I — £A4 is nonsingular and
(&) > 0, e(&) > 0. Further, for real & close to zero we also have

4.2) A = A + EA2 + 8243 + ...

We see immediately from (4.2) that A > 0 and Inc(4?%) < Inc(4) are necessary
conditions for A(£) = 0 to hold in a left neighbourhood of £ = 0. To see that these
two conditions are also sufficient for the latter property, we note that they imply
Inc(4%) < Inc(A) for all k > 2. From these inequalities, combined with 4 > 0 and
{4.2), the desired property easily follows.

Finally, for real & close to zero we have

4.3) BET = bT + EBTA + E2TA% + ...

We see immediately from (4.3) that b > 0 implies that b(&) > 0 for all £ in a left
neighbourhood of £ = 0. We conclude the proof of the theorem by showing that
R(A4,b) > 0 implies b > 0. Therefore, assume R(4,5) > 0 and note that we have
already proved that A > 0 must hold then. From (4.3) we obtain b > 0 and the
implication b; = 0= ;b;a;; = O for all je .#. In view of b > 0 and 4 > 0 we even
have b; =0=b;a;; =0 for all i,je.#. If we define the sets .# and .#, by
My = {ilie M and b; > 0} and #, = #\.#, we seec immediately that g;; = 0 for
all ie 4, and je.#,. From the irreducibility of (A, b) we conclude (cf. Subsection
2.3) that 4, = §,i.e. b > 0. |

In the proof of the following lemma we make use of M-matrices, which are defined
as follows (cf. [25]).

DEerFiNITION 4.3. A real square matrix F is said to be an M-matrix if F is
nonsingular, F~' > 0 and all the off-diagonal elements of F are nonpositive.

LEMMA 4.4. Let (A,b) be an irreducible coefficient scheme and r a positive real
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number. Then R(A,b) = r if and only if (A, b) is absolutely monotonic at ¢ = —r and
Az=0.

Proor. 1. Suppose R(4,b) = r. Then (4, b) is absolutely monotonic on (—r,0].
By Lemma 2.5, K is absolutely monotonic on (—r,0], and by Lemma 3.7 even on
[—r,0]. Theorem 3.8 shows that (4,b) is absolutely monotonic on [—,0]. In
particular, (4, b) is absolutely monotonic at ¢ = 0 (implying 4 > 0)and at & = —r.

2. Suppose (4, b) is absolutely monotonicat ¢ = —rand A = 0. From 4 > 0 and
A(—1) = A( + rA)~! > 0 we see that the matrix (I +rd)"* =T —rA(I + rA)"'is
an M-matrix. From [25, p. 531] it follows that spr(rA(I + r4)™!) < 1. In view of
Lemma 3.5 we may conclude that I — £4 is nonsingular for all (e[ —r,0]. Since
by Lemma 2.5 K is absolutely monotonic at £ = —r, we can apply Lemma 3.2 now
to obtain absolute monotonicity of K on [ —r,0]. By using Theorem 3.8 we arrive
at R(4,b) = r. ]

The above lemma is very useful from a computational point of view. It says that
for checking absolute monotonicity of (4, b) on a given interval [ —r, 0] it is sufficient
to consider the left endpoint £ = —r only.

4.2, Absolute monotonicity on {— 00,0].

In this subsection we characterize all coefficient schemes with R{4,b) = c0. We
begin with the case where A is nonsingular.

LeMMA 4.5. Let (A, b) be an arbitrary coefficient scheme. Suppose that A is non-
singular. Then R(A,b) = oo if and only if

(4.4a) At is an M-matrix,
(4.4b) A le >0,

(4.4¢) bTA~1 >0,

(4.4d) A le< 1.

Proor. 1. Suppose R(4,b) = oo. Then 4 > 0 by the absolute monotonicity of
(A,b) at £ = 0. Now (4.4) easily follows from the absolute monotonicity of (4, b) at
large negative ¢ since we have the following expansions as { — — o0,

AQ = —E =247+ 0T,
ef)=—¢tA e + 0(E7D),

BET = —E7TAT + 0(E7Y),
p&)=1-— bTd e + O(E7Y).
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2. Suppose that (4.4) holds and let {e(—0,0] be arbitrary. We will show
that (4, b) is absolutely monotonic at £. First note that (4.4a) implies that A™* — &I
is an M-matrix (cf. e.g [25, p. 532]). Hence I — ¢4 is nonsingular and
AG) = A —EA) ' =(A" ' =&~ >0. Using (4.4) we further obtain
e)=(U—¢A) te=AE)A te=0, B(ET=b"(I —EA) ' =b"A"1A()) 2 0 and
WE) =1+ I —EA) te=1—bTA"le + BTA 1 AOA e > 0. ]

The case where A is singular is considered in the next lemma.

LemMMA 4.6. There exists no irreducible coefficient scheme (A, b) such that A is
singular and R(A,b) = 0.

PRrOOF. Suppose (4, b) is an irreducible coefficient scheme with m > 1 stages such
that A is singular and R(4, b) = co. We will obtain a contradiction by showing that
A must have at least two identical rows, i.¢. (4, b) is HS-reducible (cf. Subsection 2.3).

First note that b > 0 by Theorem 4.2. Further, with the new variable A = —¢™%,
absolute monotonicity of (4, b) on (— c0,0] yields

(4.5a) A + Al is nonsingular (for all 2 > 0),
(4.5b) AA+ A" >0 (forall 2 > 0),
4.5¢) b4+ iD"1 >0 (for all A > 0),
(4.5d) (A+AiAD"te>0 (for all 1 > 0),
(4.5¢) b4+ Al le< 1 (for all 2 > 0).

From the singularity of A4 it follows that there exist an integer k > 1 and m x m
matrices ¥V and W with V # 0 such that

(4.6) (A+ D™ =27 + 27 IW + 0472 (A—0).

Consideration of (4.5¢), (4.5d) and (4.5¢) for small A > 0 shows that b™V >0,
Ve > 0 and b™Ve < 0. As b > 0, this leads to

(4.7a) bV =0,
(4.7b) Ve = 0.

Realizing that A(4 + AI) "' = (A + A) " 'A =1 — A + A)™ !, we see from (4.6)
that

4:8) AA+ A =" WA+ AT WA + 0 ) =
=1—=2"W 4+ 0% (A-0).
Combining (4.8) and (4.5b) we obtain
(4.9a) VA =0,
(4.9b) WA=0.
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Suppose k > 1. Then (4.8) and (4.9a) show that WA = — V. By using (4.7b) and
(4.9b) this leads to V = 0, which is a contradiction. Hence we may assume that
k = 1, so that (4.8) and (4.9a) yield

(4.10) WA=1~-V.

Note that the matrix WA satisfies
(4.11a) WAx =0 (for all xeKer{A4)),
4.11b) WAx = x (for all xeRange(4)),

where we have used (4.9a) and {4.10) to obtain (4.11b). It follows from (4.11) that
Ker(4) n Range(4) = {0}, so that

4.12) R™ = Ker(A4) @ Range{4),

where @ denotes the direct sum (cf. e.g. [25, p. 89]). From (4.11) and (4.12) we see
that W A is idempotent, i.e. (WA)? = W A. Further it follows from (4.7b), (4.9b) and
(4.10) that W 4 is stochastic, i.e. WA > 0 and W e = e. Finally, since (4.7a), (4.10)
and b > 0 imply "W A = b" > 0, the matrix W 4 has no zero columns. Hence we
have proved that WA is an idempotent stochastic matrix without zero columns.
Using the canonical form for idempotent stochastic matrices presented in [1, p. 66],
it follows that there exists a permutation matrix P such that PW APT is a block
diagonal matrix diag(S,, S,,. .., S,), where each block S; is an idempotent stochastic
matrix all of whose rows are identical. Note that the number of blocks r satisfies
r = rank (PW APT) < m, so that PW AP" and therefore also W4 has at least two
identical rows. Since (4.11b) implies 4 = (W A)A, we conclude that 4 has at least
two identical rows as well. n

Combining Lemmas 4.5 and 4.6 we arrive at the following theorem.

THEOREM 4.7. Let (4, b) be an irreducible coefficient scheme. Then R(A,b) = o if
and only if A is nonsingular and (4.4) holds.

5. Conditional contractivity.
5.1. Dissipative initial value problems.

In Section 1 we defined % to be the class of all pairs (f, || ||) such that f is
dissipative with respect to ||-||. In this subsection we will replace the defining
property (1.2) of the class & by equivalent conditions, which are easier to verify.

Suppose that an integer s > 1 and a norm |-} on R°® are given. For arbitrary
e R\{0} and x, y € R® we define

mz[xa.y] = Tﬁl[ﬂx + TYH - “x“]
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It is easy to verify (cf. e.g. [28, p. 37]) that
5.1) mJ[x,y] <m,[x,y] forall x,yeR and all 7,0 e R\{0} witht < a.

This guarantees the existence of the one-sided limits

m.[x,y] =limmlx,y], m_[x,y]=limm][x,y]
240 10

for all x, ye R*. Now we can formulate the following well-known theorem, which
can be proved by using the material in {28].

THEOREM 5.1. Supposethat s = 1is an integer, |- || a norm on R’ and f a continuous
function from R x R® into R®. Then the following four propositions are equivalent.

(5.2) (£ l-he 75

(5.3) m[%—x, f(t,) — ft,x)]] <0 forallt<0,teRand x, XeR
(5.4) m_{%—x,f(t,®) — f(t,x)] <0 forallteRand x,LcR5
(5.5) m X —x, f(t,H) — f(t,x)] <0 forallteR and x,XeR"

Note that it follows from (5.1) that m.[x,y] <m.[x,y] for all 1> 0 and all
x, ye R®. Hence the condition

(5.6) m[X —x, f(t,®) — f(t,x)] <0 forallteRand x,XeR°

is at least as strong as (5.5) for any fixed t > 0. Introducing p = t~! we can
reformulate (5.6) as a so-called circle condition (cf. [7], [33], [39], [30], {31]), i.e.

5.7 16, %) — f(t,x) + p(X — x)| < pliX —x|| forallreRand x,XecR".
DEerNtTION 5.2. For given p e(0, ) we define #(p) < # as the class of all pairs
(f, 1D satisfying (5.7), where f is a continuous function from R x R into R, s > 1
and |-} is a norm on R®.
Contractivity properties of Runge-Kutta methods on the class %#(p) will be

studied in this section. In Section 6 we will consider the class .#.

5.2. Main theorem on conditional contractivity.

In this subsection we present necessary and sufficient conditions on (4, b} to be
contractive on % (p) under a step size restriction 1 < H.

DErFINITION 5.3. A coefficient scheme (4, b) is said to be contractive for the step
size h and the pair (£, |- [|) if (1.5) holds whenever (1.3) and (1.4) are fulfilled.

For each integer s > 1 the maximum norm on R® is denoted by ||-|| ...
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THEOREM 5.4. Let p, He(0, o0) be given. Then, for any irreducible coefficient
scheme (A, b), the following three propositions are equivalent.

(P1) R(4,b) = pH;
(P2) (4, b) is contractive for all step sizes h < H and all pairs (f, | |)e F(p);

(P3) (A4, b) is contractive for all step sizes h < H and all pairs (f, |- | F(p) with
01 = I, and with a function f not depending on t.

The proof of the above theorem follows from the implications (P1)=(P2),
(P2) = (P3) and (P3) = (P1). The first implication will be proved in Subsection 5.3,
the second is trivial and the third will be proved in Subsection 5.4.

REMARK 5.5. We emphasize that Lemma 4.4 provides a simple algebraic char-
acterization of all irreducible coefficient schemes with property (P1).

REMARK 5.6. In[7] and [8] (see also [23] for an extension to irreducible schemes
with ¢; = ¢; for some i # j) Dahlquist and Jeltsch studied property (P2), confining
themselves to the case where the norms are generated by an inner product. They
arrived at a criterion weaker than (P1), namely that the K-function must satisfy
IK(Z)| < 1 for all Z = diag(zy,23,...,2,) With z;€C, |z; + pH| < pH and I — 4Z
nonsingular. For an algebraic characterization of this property we refer to loc. cit.

Remark 5.7. In [34] Spijker studied properties (P2} and (P3), confining himself
to the case in which f has the form f(t,x) = Lx, where L is a square matrix. He
proved that both properties are equivalent to a property weaker than (P1), viz.
absolute monotonicity of the stability function ¢ on the interval [ — pH, 0]. See also

[15], [21], [223, [24], [33], [35], [36], [37].

ReEMARK 5.8. Note that it follows from the above theorem that an irreducible
method is conditionally contractive on a given class #{p) if and only if R(4, b} > 0.
In view of Theorem 4.2 this is equivalent to the conditions 4 20, b >0 and
Inc(4?) < Inc(A). It is interesting to note that in the framework of inner product
norms (cf. Remark 5.6) Dahlquist and Jeltsch [7] arrived at the weaker criterion
b>0.

5.3. Absolute monotonicity implies contractivity.

In this subsection we prove the implication (P1) = (P2) of Theorem 5.4. We
extend the notation of the previous sections by writing [x;] for the vector
(I, xL,...,xT)T whenever x;,X,,. .., X, are given vectors in R* for some k > 1.

Suppose that (P1) holds and let (£, || ) e #(p) and h < H be given. Definer = ph.
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Since R(4, b) > r, it follows from Lemma 4.4 that (A4, b) is absolutely monotonic at
¢ = —rand 4 > 0. Now assume that relations {1.3) and (1.4) are fulfilled. Subtract-
ing (1.3) from (1.4) we obtain

(5.8a) dy=dpy + 3, bywy
i=1

(5.8b) v=dyoy + ) ayw; (L<i<m),
i=1

where dn =y — Uy, dn-l =Tyt — U1, U = J; — Vi and Wi = hf(tn—l + Cihsj;i) -
hf(t,—y + c;h,y,). From (f, |- |) € #(p) we have (cf. Definition 5.2)

(5.9) wi+rll <rilol (1 <ig<m).

Introducing v = [v;] € R™ and w = [w;] € R™ we can rewrite (5.8) as (cf. Subsec-
tion 2.1 for notation)

(5.102) dy=d,—y + b'w,
(5.10b) v=e®d,_; + Aw.
From (5.10b) it follows that
I+rAw=e®d,_; + Alw +rv).
In view of the nonsingularity of I 4 rA this implies
(5.11) v=(U+r4) "' ®d,-, + A(l +rA)" }(w + rv).
Consequently, using (I + r4)"*e > 0, A(I + r4)™* > 0 and (5.9),
Cilod] < ldu- o1 + rA) " e + AT + rA) ' [w; + rosl] <
<o oI+ rd) Yo + rA(I + rA) " [|o)]]], ie.
I +rA7 [oll] < ld-s 1T+ rA) e

Since 4 > 0 implies I +r4 >0, we have [Jo;||] < d,_||e. Hence we have
proved

(5.12) loil < lldp-all X <i<m)
Further, (5.10a) and (5.11) yield
dy=d,  +b'w=d, , —rbo+b"W +r) =
=dpy — BT +rA) ') ®d,— s + Al + rA) W + )} + bT(w + 1) =
= (1 — b + rd)'e)d,_, + b1 + rA)(w + o).
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In view of ¢(—r) = 0,b™(I + r4)~* > 0,(5.9) and (5.12) this implies
ldall < (1 —rb™( + rA)~ ') {dy— |l + BT + rA) " [lw; + roi] <
< =rbd +ra)y ') dy— || + b +rA) " [lo:] <
<(L=rb"I +rA) 7' dy—s ]| + (DU + rA) 7€) dy- 1l = -l

Thus we have shown contractivity (1.5) and the proof of (P1) = (P2) is complete.

5.4. Contractivity implies absolute monotonicity.

In this subsection we prove the implication (P3) = (P1) of Theorem 5.4. For any
real s x s matrix F = (f;;) we define the matrix norm || F|| , by [|F||,, = max{||Fx||,
[xe R, [[x]l o = 1}. It is well known that

(5.13) Fllo = max ) |fil

Further, for any re(0, c0), the set 2(r) is defined as the set containing all block
diagonal matrices Z = diag(Zy,Z,,...,Z,), where the blocks Z; are real square
matrices of the same (but arbitrary) order s > 1, such that | — AZ is nonsingular
and |Z; +rl ||, <r(1 <i<m).

In order to show (P3) = (P1) we start with a lemma which has the same flavour
as [18, Lemma 3.2] and [23, Lemma 3.6]. Roughly speaking, this lemma states that
any matrix K(Z) with Ze 2(r) will occur as ‘error propagation matrix’ in the
numerical solution of a suitably chosen nonlinear autonomous system of differential
equations (1.1a).

LEMMA 5.9. Suppose (A,b) is an irreducible m-stage coefficient scheme. Let
re(0, o), an integer s > 1, an ms x ms matrix Z € D(r) and vectors uy, tiy € R® be given
with ug # flg. Then there exist vectors y;, §; (1 <i < m) and a mapping g R° - ¥
such that

(5.14) i =Ho + ;aijg(yj)r Vi=1to + ;aijg(ij) (I<i<m),
(5.15) 19(X) — g(x) + X — X o <7 |X —x||oy (forall x,%eR),
and such that the vectors u, and iy, defined by

(3.16) Uy =1 + %‘,bjg(y;); dy = do + ;b;g(i;),

satisfy

(5.17) iy — uy = K(Z)(io — to)-
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Proor. Define v = [1;]eR™ by v = (I — AZ) e ® (dy — uo)), i.e.
Ui=ﬁ0—uO+ZaiijUj (lngm)
i
Let ¢ > 0 be defined as ¢ = max; ||v;]| .. Since (4, b) is irreducible, it follows from

Lemma 2.8 with y = (—2r)"! that there exist vectors p = (p1,P2,...,Pm)’ and
g =(41,92,-..,Gm)" in R™ such that g = Ap and

a4 # q; |pi— plg: — q;) +rl <r (foralli,j with i # j).

Let d be any vector in R° with ||d ], = 1. We define the vectors y = [y;], ¥ = [#:]
and w = [w;] in R™ by

y=eQuo+Ag®d, J=y+v, w=1p®Rd,
and the balls B; in R® by
B, ={x|xeR’, [x—ylo<e} (I1<i<m),
where 1&(0, co) is so large that these balls are pairwise disjoint and that

A-min|g; — ;| {r — [(p: — p)g; — q;) + rl} = 4er.

i#£j
Further, we define a mapping ¢ from V = B, U B, u...u B, into R* by
g(x) = Zi(x — y;) + w; (for alliand all xe B)).

From the above definitions it immediately follows that y;, §;¢ B, for all i, so that
g(y:) and g(y;) are well defined. A straightforward calculation shows that (5.14) is
fulfilled, that the vectors 4, and ii,, defined in (5.16), satisfy (5.17), and that

{5.18) g(X) — g(x) + (X — X} <7 lIX — x}|, (forall x,ge¥).

The proof of the lemma is completed by noting that the domain of g can be
extended from V to all of R® in such a way that (5.18) becomes (5.15) (see e.g. [32,
Corollary 3.9] or [40, p. 145}). n

Our next lemma is a result on the maximum value of the matrix norm [|K(Z)||,,
for Ze 9(r).

LEMMA 5.10. Let (4,b) be an arbitrary m-stage coefficient scheme and r €(0, ).
Suppose that I + rA is nonsingular. Then
sup {{K(D)| ., 1Z e 2(r)} =
lo(—n)l + Z Z 1Bi (=i, (=) oy, i (—Pe (—7)] r,

k=11iy,i2,..., i

where the functions a;;, B; and &; are defined in (2.4).
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ProoF. Let n > 1 be an arbitrary integer. We will construct a directed tree I',
with s = 1 + m + m? + ... + m" vertices P, P,,..., P, and with each edge P, - P;
labelled with one of the labels @4, @,, . . ., ®,,. The construction starts with the vertex
P,, the root of I',, and proceeds in # steps to the graph I',. In the first step we add
the m vertices P,, Ps,..., P, ., and the m edges P, > P,, Py > P3,..., Py > P4,
labelled with @, w,,. . ., ®,, respectively. We call these m new vertices the vertices
at level one. In the second step of the procéss we attach to each vertex at level one,
mnew edges, labelled with wy, w,, . . ., m,,, and pointing to m new vertices. This leads
to m? new vertices, the vertices at level two. Proceeding in this way we finally add
m" new vertices and the same number of edges in the n-th step to obtain I', (see
Figure 1).

Fig. 1. The graph I'; if m = 3.

For i = 1,2,...,s the ith standard basis vector in R® is denoted by e;. We define
the s x s matrices W, W,,..., W, by

(5.19) W = Y re;e]

i, jredge Pi~ PjoccursinI'y withlabel w;

for all [ = 1,2,...,m. One easily verifies that
(5.20a) |W|, =r forallle.#,
(5.200) W, W,,... W, =0 for all iy,15,...,ips1 €4,

(5.20c) IW, W,,... W, =r*e] forallk=1,2,....,nand all iy, i,...,i, where j is
the index of the vertex P; you arrive at when you start in P; and follow the
path labelled w; , w;,,..., @;,.

If we define the block diagonal matrix Z = diag(Z,,Z,,...,Z,) by

Z = —rl + W, where W is the block diagonal matrix W = diag(W,, W,,..., W,,), it

follows from the nonsingularity of I + rA4 and from (5.20b) that | — AZ is nonsin-

gular with inverse given by (2.5) (Take £ = —r here and note that the series in (2.5)
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is in fact finite with k running from O to n). Hence, in combination with (5.20a), we
have proved that Z e 9(r). Further it is easy to see now that K(Z) is given by (2.6)
(Take again ¢ = —r and note that only values k < » are relevant), so that the first
row of IK(Z) is given by

E}K(Z) (-——7‘)61 + Z Z ﬂll iiy alk llkslkeIW W VVika
k=1i1,i2,..., i
where the entries o;;, f; and ¢; are evaluated at £ = —r. Since different choices of
k=1,2,...,nand iy,i,,...,i; € # lead to different values of the index j in (5.20c), it
follows from (5.13), (5. 20c) and the above expression for e} K(Z) that

“K(Z)noo = l(P("'_r)i + Z Z ]ﬂll iyin” 1k llks kl rk'

k=1ig,i2,...,0

The fact that n > 1 was arbitrarily chosen concludes the proof. n

With the help of Lemmas 5.9 and 5.10 we will prove (P3) = (P1).

We assume that (P3) holds. Let r be an arbitrary number in (0, pH] such that
I + rd is nonsingular. Further, let an integer s > 1, an ms x ms matrix 7 e 9(r) and
vectors ug, i € R® be given with 4, s @i, We define the mapping g and the vectors
uy, 8y, ¥;, ¥ as in Lemma 5.9. One easily verifies that relations (1.3} and (1.4) are
fulfilled if we take n = 1, h = r/p, to, = 0 and f defined by

flt,x) = h"1g(x) (for all teR and xeR").

Since it follows from (5.15) that (f, || || )€ F(p) and from re (0, pH] that h < H,
an application of (P3) vields i, — uyll, < s — ugll . In view of (5.17) and the
fact that u, and i, were arbitrarily chosen (with uy # i), we may conclude that
K2l < 1. Since also Z e 2(r) was arbitrarily chosen, it follows from Lemma
5.10 that

(5.21) 1@(—r)i+§ Y (= (=n). (e (i < L.
k=11i1,i2,...,0k

Further, by taking £ = —rand scalar W, = W, = ... = W,,in (2.6) it follows that
the Taylor series of ¢ about z = —ris given by Y %, 7:(z + r), where

(5.22a)  yo=o(~r),

(5.22b)  y = Z Bi (=i (—1)...op o (—Pe (=) (for all k > 1),

i ‘2 k

In view of (5.21) we have Y = ¢ [,| 7 < 1, so that the radius of convergence of the
Taylor series is larger than r. Thus we have

Yt =00) = 1.
k=0
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In combination with (5.21) and (5.22) this implies that ¢{—r) and all terms of the
sum in the right hand side of (5.22b) are nonnegative (for all k > 1), i.e. we have
proved absolute monotonicity of i at £ = —r (cf. Definition 2.3). By Lemma 2.5,
K is absolutely monotonic at £ = —r as well. Since r was an arbitrary number in
(0,pH7] such that I + rA is nonsingular, it follows from Lemma 3.7 that K is
absolutely monotonic on [ — pH,0). Using Lemma 3.2 we see that K is absolutely
monotonic on [ — pH, 0]. An application of Theorem 3.8 shows that R(4, b) > pH,
i.e. (P1) holds. This completes the proof of (P3) = (P1).

6. Unconditional contractivity.

In this section we will give necessary and sufficient conditions on {4, 5) to be
contractive on & for all step sizes h > 0.

THEOREM 6.1. For any irreducible coefficient scheme (A,b) the following three
propositions are equivalent.

(Q1) R(4,b) = o0,
(Q2) (A, b) is contractive for all step sizes h > 0 and all pairs (f, |- ) e #;

(Q3) (A,b) is contractive for all step sizes h >0 and all pairs (f,||-|)e F with
Il = ' | and with a function f not depending on t.

Proor. The implication (Q2)=>(Q3) is trivial. To prove the implication
(Q3)=(Q1), we note that (Q3) implies (P3) for all p, He(0, cv). The implication
(P3)= (P1) in Theorem 5.4 then establishes (Q3) = (Q1). '

We complete the proof of the theorem by showing (Q1) = (Q2). Assume that (Q1)
holds. It follows from Theorem 4.7 that A4 is nonsingular, 47' is an M-matrix,
A le=0,b"4A"' >0 and b'4 e < 1. We choose a real number 2 > 0, which is
so large that

(6.1) A —A4"t>0

To prove (Q2) we assume that (f, |- ||)e # and h > 0 are given, and that relations
(1.3) and (1.4) are fulfilled. Using the same notation as in Subsection 5.3 we see that
(5,10) bolds. In view of Theorem 5.1 we have (5.3), so that

6.2) s — doil = Allel (1< i< m)
From (5.10b) it follows that
w—Av=—(A"')®d,_; — (Al — A" Y.
In combination with (6.2), 4 'e > 0 and (6.1) this implies
Alol] < Ndu- 1l A7 e + (A — A7H[wi], e
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Aol < ldp- 1l A7 e,
Since A > 0 we have [|v;||] < ||d,-le. Hence we have proved
(6.3) ot < llda-off A< i< m).
Further, (5.10) yields
dy=dy_ 1 +b"A v —(A 'O ®d,_) = (1 — b4 e)d, ; + BTA n.
Using b"A e < 1,bT4A"! > 0 and (6.3) we obtain
I < (1 = bTA7 ) d,- o] + DTAT [fuif] <
<(L=b'47"e) [dy- | + BTA7 ) [dyes]l = [dns -

Thus we have shown contractivity (1.5) and the proof of (Q1) =(Q2) is com-
plete. n

REMARK 6.2. We emphasize that Theorem 4.7 provides a simple algebraic char-
acterization of all irreducible coefficient schemes with property (Q1).

REMARK 6.3. Burrage and Butcher [3] and Crouzeix [6] (see also [18] for an
extension to irreducible schemes with ¢; = ¢; for some i # j) studied property (Q2),
confining themselves to the case where the norms are generated by an inner product.
They arrived at a criterion weaker than (Q1), namely that the K-function must
satisfy |[K(Z)| < 1 for all Z = diag(zy,z;,...,2,) with z;e C,Re(z;) < 0 and I — AZ
nonsingular (cf. also Remark 5.6). For an algebraic characterization of this property
we refer to loc. cit.

REMARK 6.4. Spijker [34] studied properties (Q2) and (Q3), confining himself to
the case in which f has the form f(, x) = Lx, where Lis a square matrix. He proved
that both properties are equivalent to a property weaker than (Q1), viz. absolute

monotonicity of the stability function ¢ on the interval (— oo, 0] (cf. also Remark
5.7).

7. Solvability of the systems of equations.

In Theorems 5.4 and 6.1 we presented necessary and sufficient conditions for
conditional contractivity on % (p) and unconditional contractivity on %, respect-
ively. It should be realized that the property of contractivity, as defined in Definition
5.3, does not comprise the (unique) solvability of the systems of equations (1.3b)
and (1.4b). Contractivity only means that (1.5) holds whenever (1.3) and (1.4) are
fulfilled. Obviously, the mere property of contractivity, without solvability of the
systems of equations, is of little value. It is therefore a lucky circumstance that the
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conditions which are necessary and sufficient for contractivity, turn out to be
sufficient for unique solvability of the systems of equations.

THEOREM 7.1. Let (A, b) be a given irreducible coefficient scheme.
(@) If p,he(0, o) and R(A,b) = ph, then (1.3b) has a unique solution y = [y;] when-
ever (f, |-} e #(p);
(b) If R(A,b) = o, then (1.3b) has a unique solution y = [y;] whenever (f, |-|)e #
and h > 0.

Proor. (a) Let p,he(0, ), (£, 1) e #(p), t,-1€R and u,_, €R° be given and
assume R(A, b) = ph. We will prove that (1.3b) has a unique solution y = [y;]e R™
by showing that G(y) = 0 has a unique solution. Here G: R™ — R™ is defined by

G() =[Gyl =y — e®u,—y — AF(y) (forall y =[y,]eR™),
where F: B™ — R™ is defined by
F(y)=[Wf(ta-1 +chy)]  (forall y =[y;]1eR™).
Suppose that y = [y;], § = [§;] and d = [d;] are given in R™ such that

G — Gly) = d.
Introducing v = [v;] = § — y and w = [w;] = F(§) — F(y), we find
(7.1 d=v—Aw={ +rAp — Aw + rv),

where ‘r is defined as r = ph. As in the proof given in Subsection 5.3, we may assume
that (5.9) holds, that (4, b) is absolutely monotonic at ¢ = —r and that 4 > 0. By
(7.1) and the nonsingularity of I + r4,

v=(1+rA)"1d + A + rA) " (w + rv).
In view of A(I + rA)™! > 0 and (5.9) this implies
vl < I+ rA) Y [Id:] + rAT +rA) " o], ie.
I+ rA™ ' [ol] < I+ rA) L.
Using I + r4 = 0 we obtain
(7.2) Lol < I + rA I + rA) 7 Ll
Hence we have proved that for all y, € R™ we have

(7.3) g — Ml < ylIGE) — Gl

where y = |(I + rA)[(I + r4)" Y |, (cf. (5.13)) and where the norm |||-||| on R™ is
defined by |||z]ll = max; <; < | z:] for all z = [z;] e R™. It follows from [19, Lemma
4.2] (take ¢(z;1) = yt here) that G(y) = 0 has a unique solution ye R™. This com-
pletes the proof of part (a).
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) Let (L|-heF, h>0, 1,_.€R and u, ,eR’ be given and assume
R(A, b) = co. Suppose that y, §, d, v, w and G are defined as above. As in the proof
of Theorem 6.1 we may assume that 4 is nonsingular, that 4 > 0 and that(6.1) and
(6.2) hold for some real number A > 0. Since (7.1) holds with r = — 4, it follows from
the nonsingularity of A that

w—Av=—A"d - -A Y.
Using {6.2) and (6.1) we obtain
Aol < 1A7HTN4D + AT — A7Hwl], e
A7 o] < 1471 D0,
But then 4 > 0 yields
(7.4) Cloll] < A1A™ DN,

so that (7.3) follows with y = [|4]4 7! || .. As in the proof of part (a), this implies
that G(y) = 0 has a unique solution ye R™. This completes the proof of part
(b). |

For a given approximation u,_ , it is usually impossible in practical computations
to find u,, y1, ¥2,.. ., ¥ such that the relations (1.3a) and {1.3b) are satisfied exactly.
Instead we find 4, 74, 92, ..., §,, satisfying

(7.5a) Uy=1thy 1 +h Y bftas +cih,§) + 6,
j=1

(7.5b) Ji=tpy +hY ajflte-1+ ) +di (1<i<m).
=1

It is important to know whether the effect of the residuals 4 and d, is moderate.
We are interested in bounds for ||§; — y;l| and ||, — u,]|.

THEOREM 7.2. Let (A, b) be a given irreducible coefficient scheme.
(a) Suppose that p,he(0, o) satisfy ph < R(A,b) and that (f, |- ) e Z (p).
If (1.3) and (7.5) are fulfilled, then we have the bounds

(7.6a) L5 = w1 < A+ e A+ rA) Y D,
(7.6b) I, — | < 81+ rb™{(I +rA) ™ + (I + rA)” LI,
where r = ph.

(b) Suppose that (f,|-)eF. h > 0 and R(A4,b) = . If (1.3} and (7.5) are fulfilled,
then we have the bounds

(7.72) 9 = yill1 < A1AT*ITlds 01,
(7.7b) Mty — unll < 18} + BT{A™" + AT LIl
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Proor. (a) Inequality (7.6a) follows immediately from (7.2). Further, using the
same notation as in the proof of Theorem 7.1, we have

Gy —u, =06+ b"w =25+ b0 + rA)"Y(w + rv) — rb™(1 + rA) 1d.

In view of b"(I + rA4) ™! =0, (5.9) and (7.2) this implies
Ve — syl < 18] + 6T + rA) ' [Nwel] + rb"T + rA) T[] <
< I8l + rbT (I + rA) T [ldi ] + rb* (T + rA)"'[1d:]],

which establishes (7.6b).
(b) Inequality (7.7a) follows immediately from (7.4). Further, using the same
notation as in the proof of Theorem 7.1, we have

fy—t, =0+ b'w=35+b"A v — bTA 14
In view of bTA ™! > 0 and (7.4) this implies
I, — uall < 18] + BTAT o]l + bTAT [ di)] <
< [i6] + 7147 [Id:] + bTA[Idil],

and the proof of the theorem is complete. |

ReMaRK 7.3. We mention that the error bounds {7.6) and (7.7) are best possible
in the sense that all entries of (I + rA)|(I + r4) ', bV (I +r4) ™' + | +r4) "1},
AlA"Y and bT{A"' + |47 !|} are minimal. This can be proved by adapting the
results on K(Z), presented in Lemmas 5.9 and 5.10, to the case of (1 — AZ)"! and
b¥Z(l — AZ)~ 1. Note that it follows from the sharpness of the bounds (7.6a) and
(7.6b), combined with the fact that #(p) ¢ # (o) whenever 0 < p < ¢ < co, that the
entries of (I + rA)|(I + rA) Y and rbT{(I + r4)~ ' + |(I + rA) |} are nondecreas-
ing functions of #. This can also be proved directly, by exploiting the absolute
monotonicity of (4, b).

REMARK 7.4. We emphasize that (7.6) and (7.7) are error bounds that hold
uniformly for all (£, []]) in #(p) or &, respectively. Following the terminology
introduced by Frank, Schneid and Ueberhuber in [12] (see also [9]), the error
bounds (7.6a) and (7.7a) can be regarded as BSI-stability bounds on the classes
F(p) and F, respectively, and the error bounds (7.6b) and (7.7b} as BS-stability
bounds on these classes.

REMARK 7.5. Note that in the situation of part (b) of Theorem 7.2 the matrix 4!
is an M-matrix (cf. Theorem 4.7), so that we can write A~ ! = diag(4~!) — E, where
diag(4 1) > 0Ois the diagonal of 4™ " and E > 0 has zero diagonal. Hence the error
bounds (7.7a) and (7.7b) can be reformulated by using A |47 !| = 24 diag(4 ™) — I
and A™! + |47 = 2diag(4 ™ "). Similarly, the error bounds (7.6a) and (7.6b) can be
reformulated by using (I + rA)|(I + r4)™ ! = 2(I + rA)diag(( +r4)™") — I and



CONTRACTIVITY OF RUNGE-KUTTA METHODS 513

(I +rd)" + | + rA)~Y = 2diag((I + rA)~"),since (I + r4)™" is an M-matrix as
well (cf. the proof of Lemma 4.4).

8. Orders of accuracy.
8.1. Classical order p and stage order p.

In this section we consider the impact of the conditions R(A4, b) > 0 (for condi-
tional contractivity, cf. Theorem 5.4) and R(4, b) = oo (for unconditional contrac-
tivity, cf. Theorem 6.1) on the order of accuracy. We will distinguish between two
different orders of accuracy.

The first order of accuracy we will consider is the classical order of consistency p,
which is defined as the maximum integer such that for all problems (1.1) with
a sufficiently smooth function f (all partial derivatives of order at most p + 1 must
exist and be continuous in a neighbourhood of the solution trajectory), the error
after the (fictitious) step 4, ., = U(#,-;) — @i, can be bounded by

(8.1) U(t,) — )| < Ch***  (for all he (0, H]).

Here the constants C and H may depend on the problem, in fact on the magnitude
of the partial derivatives of f. For more details we refer to the books [5], [17] and
[38]. In the situation that (f, |- |)e #(p) or (£,]I- )€ #, we can combine contrac-
tivity (cf. Theorems 5.4 and 6.1) and consistency of order p (cf. (8.1)) in a standard
way (cf. e.g. [11, pp. 761-762]) to obtain a bound for the global error,

8.2) WUGt,) — u,|| < (t, — to)Ch?  (for all he(0, H]).

If the function f is not smooth, the constant C in (8.1) and (8.2) may become very
large (and the constant H very small), even if the exact solution U is smooth. In
this case the above error bounds are useless, and we have to replace them by robust
error bounds, which are not affected by a lack of smoothness of f. Robust error
bounds can be obtained by considering the stage order p of (A, b), which is defined
as the maximum integer [ such that B{l} and C(I) hold. Here the so-called simplifying
conditions B(l) and C{/) are defined by

i 1
Y bkt = (forallk=1,2,...,]) and

=z 1
Y ayckTt = ?Ci‘ (foralli=1,2,...,mand k =1,2,...,1),
j=1

respectively. It is well known that j < p (cf. e.g. [9]). Combining the results on
contractivity (Theorems 5.4 and 6.1) with those on BS-stability (Theorem 7.2) in
a standard way (cf. e.g. [9]), we arrive at the following theorem.
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THEOREM 8.1. Let (A, b) be a given irreducible coefficient scheme with stage order p.
(a) Suppose that p, He (0, 00) are such that pH < R(A, b). Then, for all problems (1.1)
with (f, || -1 e #(p) and with a p + 1 times continuously differentiable solution U,
the error bounds (8.1) and (8.2) hold with p replaced by p and with C = au, where
o is a constant depending only on (A, b) and u is an upper bound for |UC* (1))
forallt > t,.
(b} Suppose that R(A,b) = oo and He(0,0). Then, for all problems (1.1) with
(£, - eF andwithap + 1 times continuously differentiable solution U, the error
bounds (8.1) and (8.2) hold with p replaced by p and with C as in part (a).

Clearly the concept of stage order fits very well in our framework, and we have
derived an error bound (8.2), where the constant C depends only on the smoothness
of the exact solution U, and where the maximum step size in case (a) is given by
H = R(A, b)p~ 1. We emphasize that this error bound does not require any smooth-
ness of the function f, apart from (f, |- N e F(p) or (f, | ') #, and that the bound
does not depend on problem dependent quantities like the dimension s or the norm
||-{|. Further we mention that in case (a) the step size restriction h < R(4,b)p ™ * can
become very severe if p is large, which is the case, for instance, if (1.1} is stiff.

ReMaARrk 8.2. Following the terminology introduced by Frank, Schneid and
Ueberhuber (cf. [13], [11], [9]), the error bounds of Theorem 8.1 can be regarded
as (optimal) B-convergence bounds on the classes #(p) and # (cf. also Remark 7.4).

For unconditional contractivity we mention the following negative result.

THEOREM 8.3. Let (4, b) be an arbitrary coefficient scheme with R(A,b) = co. Then
p < 1 (and hence also p < 1).

ProoF. If R(4, b) = o then it follows from Lemma 2.5 that the stability function
¢ is absolutely monotonic on (— o0,0]. Further we have ¢(z) = exp(z) + 0(z"*")
as z— 0 (cf. e.g. [5, pp. 241-242]). 1t follows from [2, Lemma 2] (see also [34,
Theorem 2.5 or {9, Lemma 2.3.6]) that p < 1. ]

As an illustration to the above theorem we consider the class of methods with
tableau

6,0
1

where 8 e R. Using Theorem 4.7 one easily verifies that R(4, b) = oo if and only if
f > 1. In this case we have p = i = 1,

In view of the order barrier § < p < 1 for coefficient schemes with R(4,b) = oo,
the question arises whether there exist order barriers for coefficient schemes with
R(A, b) > 0. This question will be answered in Subsections 8.2 and 8.3.
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REMARK 8.4. The order barrier § < p < 1 for unconditional contractivity on
F disappears if we would have restricted ourselves to inner product norms (cf.
Remark 6.3). For example, the well-known Gaussian Runge-Kutta method with
m > 1stages is unconditionally contractive for all (£, || |) e & where |- | is generated
by an inner product, and is known to have stage order § = m and classical order
p = 2m(cf. e.g. [9]).

8.2. Barriers for the stage order f when R(A,b) > 0.

In this subsection we determine the maximum stage order j for coefficient
schemes with R(A4, b) > 0. The following theorem was pointed out to us by J. C.
Butcher.

THeoreM 8.5. (J. C. Butcher; private communication 1989). Let (4,b) be an
arbitrary coefficient scheme with A > 0. Then the stage order p is at most 2. Further,
if p =2 then A has a zero row.

PROOF. Suppose (4, b) is such that 4 > 0. We shall prove that § > 2 implies that
A has a zero row, and that § > 3 is impossible.

1. Suppose that j = 2. Without loss of generality we may assume that
0<c¢y <¢; ... <cp. From C(2) we obtain

J

(8.3) j-o g(x)dx = laijQ(cj)
for all polynomials g of degree at most one and all i = 1,2,...,m. Takingi = 1 and
g(x) = x — ¢, it follows that the right hand side of (8.3) is nennegative. With this
choice the left hand side is nonnegative only if ¢, = 0. Hence ¢; = 0, so that the
first row of 4 must be zero.

2. Suppose that § > 3. Then B(3) holds, so that not all ¢; are zero. In view of part
1 we may therefore assume that there exists an index i>2 such that
O=ci=...=¢_1<¢<... < cp From C(3) it follows that (8.3) holds for all
polynomials g of degree at most 2. Taking g(x) = x(x — c;), the left hand side of
{8.3) is seen to be negative, whereas the right hand side is nonnegative. This is
a contradiction and the proof of the theorem is complete. |

We see immediately from the above theorem that coefficient schemes (A4, b) with
R(A,b) > 0O suffer from an order barrier § < 2. That the order f = 2 can be attained,
follows from consideration of the family

0 0 0
1071 407t Lo

'1-6

3
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where Ae(0,1). All these methods have stage order p = 2, and it follows from
Theorem 4.2 that their radius of absolute monotonicity R = R(6) is positive as well.
In fact we have R(f) =46 (if 0 <8< 2/3) and R(6) = 46(1 — (26 — 1)~ (if
2/3 < 8 < 1). The maximum value R = 8/3 is attained for 8 = 2/3. If we select the
value # = 1/2, we get the familiar trapezoidal rule with R = 2. A method with
classical order p = 3, due to Hammer and Hollingsworth (cf. e.g. [ 17, pp. 200-2017),
is obtained by cHoosing 8 = 3/4, leading to the value R = 3/2.

For explicit methods (i.e., methods with a;; = 0 when j > i) we note that their
stage order p can never exceed one (cf. e.g. [7, Theorem 4.4]).

8.3. Barriers for the classical order p when R(4,b) > 0.

In this subsection we derive an upper bound for the classical order p for explicit
and implicit methods with R(4,b) > 0.

LemMa 8.6. Let (A4, b) be an arbitrary coefficient scheme with b > 0. If the classical
order satisfies p = 2k + 1, for some integer k > 0, then the stage order p is at least k.

Proor. It is well known that if p is the classical order, then B(p) holds (cf. e.g.
[4]), and hence also B(k). Further it was proved in [16] thatifb > Oand p > 2k + 1,
then C(k) holds. |

COROLLARY 8.7. Let (A,b) be an arbitrary coefficient scheme with A >0, b >0
and classical order p. Then we have p < 6 for implicit schemes and p < 4 for explicit
schemes. Further, if p = 5 then A has a zero row.

Proor. For explicit methods the assertion follows from Lemma 8.6 and the fact
that the stage order cannot exceed one (see the end of Subsection 8.2). For implicit
methods the assertions are established by a combination of Theorem 8.5 and
Lemma 8.6. n

A combination of Corollary 8.7 and Theorem 4.2 shows that the property
R(A, b) > 0induces an order barrier p < 4 for explicit methods, and an order barrier
p < 6 for implicit methods. The bound for explicit methods is sharp, as can be seen
from the method

0
25 | 2/5

35 | 110 172

12 | 1/16  1/16  3/8

1 |1/10 1/10 4/15 8/15

5/32 25/96 25/96 1/6 5/32
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This method has classical order p = 4, while Theorem 4.2 shows that R(4,b) > 0.
For implicit methods it is not known whether p = 6 can be achieved, but p = 5 is
certainly possible, as is seen from the following method, which was constructed with
the help of J. C. Butcher (private communication, 1989),

0 |0
14|18 1/8

12| 1/24 512 124
34132 716 5/32 178

1 314 17 114 47 0

7/90 16/45 2/15 16/45 7/90

It follows from Theorem 4.2 that this method with classical order p = § satisfies
R(A,b) > 0.

REMARK 8.8. In case we would have restricted ourselves to inner product norms,
the condition R(A4, b) > 0 for conditional contractivity on & (p) would be weakened
to the condition b > 0 (cf. Remark 5.8). In this case the order barrier p < 4 for
explicit methods remains valid (cf. [7]), but the order barriers j < 2 and p < 6 for
implicit methods disappear (cf. Remark 8.4).

9. Optimal explicit methods.

In this section we study, for given integers m and p, the maximum of R(A4, b) on
the class of explicit Runge-Kutta methods with m stages and classical order at least
p. In Subsections 9.1 and 9.2 we solve this optimization problem completely for the
cases p = 1 and p = 2, respectively. In Subsection 9.3 we determine the optimal
methods for p = 3 and m = 3,4. Finally, in Subsection 9.4, we present results for
the maximal order p = 4 (cf. Subsection 8.3) and m = 4, 5.

The following lemma will be the key result for solving our optimization problems
incasep = 1,2,3.

LEMMA 9.1. Let (A, b) be an arbitrary explicit coefficient scheme with m stages and
classical order at least p, where 1 < p < m. Then R(A,b) <m —'p + 1. Further, if
R(A,b) = m — p + 1 then, for all integers k withp — 1 <k <m — 1, all k-th order
partial derivatives of the K-function at Z = —(m — p + 1)I are zero.

PROOF. Let (4, b)denote an explicit coefficient scheme with m stages and classical
order at least p, where 1 < p < m. Then the stability function @ is a polynomial of
degree at most m satisfying ¢(z) = exp(2) + O(z?*1) (as z - 0) (cf. eg. [5 pp.
241-242]). By Lemma 2.5 the stability function ¢ and the K-function K are
absolutely monotonic on (—r,0], where r = R(A, b). It follows from Theorem 2.1
in [21] that r < m — p + 1. Further it is easy to see from the proof of this theorem
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that r=m—p+ 1 is only possible if ¢®(—r) =0 for all integers k with

p — 1 < k < m— 1. Using the absolute monotonicity of K at £ = —r and the fact
that ¢{z) = K(z,z,...,z), we see that in this case the kth order partial derivatives of
K at Z = —rI must be zero as well for these integers k. u

9.1. Optimal methods with p = 1.

In this subsection we maximize R(4, b) over the class of explicit Runge-Kutta
methods with a fixed number of stages m. We assume that p > 1 (or, equivalently,
p=1ie.

©.1) by 4+ by+...+b, =1

THEOREM 9.2. Let m > 1 be given. Then we have R(A,b) < m for all explicit
m-stage coefficient schemes (A,b) with classical order p > 1. Further we have
R(A,b) = m for exactly one of these coefficient schemes. This scheme is defined by
gi=1mQl<j<i<myandb;=1/m(l <i<m)

Proor. First note that the scheme specified above has order p =1 and a K-
function given by

9.2) K(Z) = (1 + zofm)(1 + zo/m)... (L + z,u/m).

Clearly this function is absolutely monotonic on [ —m,0]. It follows from The-
orem 3.8 that R(A, b) > m for this scheme.

Now suppose that (4, b) is an arbitrary explicit m-stage coefficient scheme with
p>1 and R(4,b) > m. Then Lemma 9.1 shows that R(4,b) = m and that the
K-function has the form

K(Z) = y(z; + m)(z; + m)... (2, + m),
where 7 is a real (nonnegative) constant. Since K(0) = 1, we have y = m™", so that

K is given by (9.2), i.e.
KZy=1+m 'Yz +m 2y ziz; + ...

i>j
Comparing the latter expansion with the expansion that is obtained after substi-
tution of ¢ =0 and s = 1 in (2.6},

(9.3) K(Z)y=1+ Y bz + ) bayziz; + ...,
i i>j
we conclude that (4, b) must be equal to the scheme specified in the theorem. u

Note that the optimal method in Theorem 9.2 is nothing but a cyclic application
of Euler’s method with step size i/m. This method was found to be optimal within
the framework of inner product norms as well, cf. [7, Theorem 5.1].
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9.2. Optimal methods with p = 2.

In this subsection we maximize R(A4,b) over the class of explicit Runge-Kutta
methods with a fixed number of stages m and with classical order at least 2,1.e. (9.1)
holds as well as

(9'4) blcl + bZCZ + cen + bmcm = %‘

THEOREM 9.3. Let m = 2 be given. Then we have R(A,b) < m — 1 for all explicit
m~stage coefficient schemes (A, b) with classical order p > 2. Further we have
R(A,b) = m — 1 for exactly one of these coefficient schemes. This scheme is defined
byay=m-1)""(A<j<i<mandb;=m (1 <i<m)

Proor. First note that the scheme specified above has order p = 2 and is abso-
lutely monotonicat & = —{(m — 1). 1t follows from Lemma 4.4 that R(4,b) > m — 1
for this scheme.

Now suppose that (4, b) is an arbitrary explicit m-stage coefficient scheme with
p = 2and R(4,b) > m — 1. Then Lemma 9.1 shows that R(4,b) = m — 1 and that
the K-function has the form

K(Z)y=9y,+ 71 +m—Dzz+m—1)...zn+m—1),

where y, and y, are real (nonnegative) constants. Since (9.1) and (9.3) imply K(0) = 1
and Y ;(0K/0z;)(0) = 1, we obtain y; = m™ ' and y, = m~'(m — 1) ™™, so that

1 m—1 Zq Z3 Zm
K(Z) = —
2) m+ m (1+m——1><1+m—1) (1+ ——1)

=1+— Zz, (m—l),zzzj

Comparing the latter expansion with (9.3) we conclude that (4, b)) must be equal
to the scheme specified in the theorem. n

Note that for m = 2 stages the optimal method in Theorem 9.2 is the well-known
improved Euler method, which is also known as the (second order) Heun method
and the explicit trapezoidal method.

9.3. Optimal methods with p = 3.

In this subsection we maximize R(A, b) over the class of explicit Runge- -Kutta
methods with a fixed number of stages m and with classical order at least 3, i.¢. (9.1)
and (9.4) hold and

(9.5a) bic? + bycl + ...+ byt =14,
(9.5b) BT A%e = L.
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In the following two theorems we consider the cases m = 3 and m = 4, respect-
ively. It is interesting to note that the optimal method in Theorem 9.4 was con-
sidered by Fehlberg in [10] (see also [5, p. 305] and [17, p. 170]).

THEOREM 9.4. For all explicit 3-stage coefficient schemes (A, b) with classical order
p =23 we have R(A,b) < 1. Further we have R(A,b) = 1 for exactly one of these
schemes. This scheme is defined by the tableau

0
1|1
12 | 1/4 1/4

(16 16 23

Proor. First note that the scheme specified above has order p = 3 and is abso-
lutely monotonic at ¢ = — 1. It follows from Lemma 4.4 that R(4, b) > 1 for this
scheme.

Now suppose that (4, b) is an arbitrary explicit 3-stage coefficient scheme with
p = 3 and R(4,b) > 1. Then the order conditions (9.1), (9.4) and (9.5) reduce to

(9.62) by + by + by = 1,
(9.6b) bycy + bycs = 12,
(9.6¢) b,c3 + bscl = 1/3,
{9.6d) biagsas; = 1/6.

Further, substitution of ¢ = 0 and s = 1 in (2.6) shows that the K-function equals
K(Z) =14 byzy + byzy + b3z3 + b3aszaz3z; + baazizazy +
+ bya312325 + b3a32a21232,2;.

Using Lemma 9.1 we find that R(4,b) = 1 and that all second order partial

derivatives of K at Z = —1 are zero, i.e. byay, = byaa; = byay, = baassas,. In
view of (9.6d) this yields bsas; = bsas; = bya,, = 1/6. Combined with (9.6) these
relations lead immediately to the scheme specified in the theorem. ]

THEOREM 9.5. For all explicit 4-stage coefficient schemes (A, b) with classical order
p >3 we have R(A,b) < 2. Further we have R(A,b) =2 for exactly one of these
schemes. This scheme is defined by the tableau

0
1/2 | 12
1 |12 12

12|16 16 16
16 |1/6 16 1/6 1,2
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Proor. Firstnote that the scheme specified above has order p = 3 and is absolute-
lymonotonicat ¢ = —2. Itfollowsfrom Lemma 4.4 that R(4, b) > 2for this scheme.

Now suppose that (4, b) is an arbitrary explicit 4-stage coefficient scheme with
p = 3 and R(4,b) > 2. Then the order conditions (9.1), (9.4) and (9.5) reduce to

(973,) b1 + bz + b3 + b4 = 1,

(9.7b) b202 + b3C3 + b4C4 = 1/2,
(9.7¢) byc + bact + back = 1/3,
(9.7d) b3a3»a51 + baG420s; + bsasszass + bsassas, = 1/6.

Further, substitution of £ = 0 and s = 1 in (2.6) shows that the K-function equals

4
K(Z) = 1 -+ z Z biiagliz...a
k=1iy>iz>...>ix
Using Lemma 9.1 we find that R(A4, b) = 2 and that all second and third order
partial derivatives of K at Z = —2I are zero. Combined with (9.7d), the condition
on the third order partial derivatives leads to

i 1ikziﬁziz ‘s Z;k.

(9.8)  baa43G3; = bsG43a31 = baasz021 = b303,05; = 2b4a43a3,05; = 2%1‘-
It follows from (9.8) and the condition on the second order partial derivatives that
9.9 baass = baasy = bsasy = bzaz, = byazy = byay = Tli

It is easy to show that relations (9.7), (9.8), (9.9) lead to the scheme specified in
the theorem. ]

In view of Theorems 9.2, 9.3, 9.4 and 9.5 one might conjecture that the maximum
radius of absolute monotonicity is R(4,b) = m — 2 for explicit m-stage coefficient
schemes with classical order p > 3. For m > 5 this conjecture is false. It follows from

21, Theorem 5.2] that R(A4,b) < m — ﬁ for these schemes whenever m > 5.

9.4. Optimal methods with p = 4.

In this subsection we study the maximum of R(4,b) on the class of explicit
Runge-Kutta methods with a fixed number of stages m and with classical order (at
least) 4. We will consider the cases m = 4 and m = 5 only.

THEOREM 9.6. There exists no explicit 4-stage coefficient scheme (A, b) with clas-
sical order p = 4 and R(4,b) > 0.

ProOF. Using the general form of explicit 4-stage schemes with p = 4, presented
in [5, pp. 179-180], it can be verified that the only method of this type with 4 > 0
and b > 0 is the well-known classical Runge-Kutta method. For this method the
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only nonzero entries of 4 are a,; = a;, = 1/2 and a4 = 1, so that the condition
Inc(4?) < Inc(4) is violated. Since this method is irreducible, it follows from
Theorem 4.2 that R(A, b) = 0 here, ]

It follows from the theorem above that we need at least five stages to construct
an explicit method with p = 4 and R(4, b) > 0. It can be shown that, under the mild
assumption that all ¢; are distinet and bybs[calcs — ¢)(4es — 3} + 2¢,(3 — 4¢; —
4¢s + 6c,05)a3, ] # 0, the general explicit S-stage Runge-Kutta method withp = 4
can be obtained as follows:

Step 1: Select distinct ¢; = 0, ¢3, ¢3, €4, Cs.
Step 2. Select b, arbitrarily and solve by, b3, bs, bs from B(4) (cf. Subsection 8.1).
The only restriction on by is that the resulting b, and bs must not vanish.
Step 3: Select as, arbitrarily and a3, such that
calcs — e des — 3y 4 2¢,(3 — ey — des + 6c305)a3, # 0.
Step 4: Define a5, by
(ss = bylcs — ca)ca(cs — ca) + 2c5(2¢; — 1)az,] .
bs[cslcs — c2)(des — 3) + 2¢,(3 — 4ey — 4es + 6¢2¢5)asz ]
Step 5. Define as,, asz and ay, by
sy = (4 — As4Cq — A53C3)/Cay
as3 = (B — bsass)/bs,
bsassc; — baasacy — abs — fes + 1/6
bsc,
- 3 — dcy + 24bsas,cafcs, — ¢a) g = 1 — 2¢, — 12bsassca(cs — €3)
24bs(cs — ca) ’ 12¢3(c5 — ¢2) ‘
Step 6: Select ayy, asy, asq, asy to satisfy ¢; =Y ;a; (2<i<5)

, where

A4y =

Numerical investigations seem to indicate that the maximum of R(4, b) equals
r ~ 1.50818 and that the maximum value r, together with the seven free parameters
€3, C3, C4, Cs, by, as3, az, are determined by the eight equations

by =rbycy, by =rbsass, aszy =razc;, a1 =Tds;Co,
Qgg = Fa3d33, Qs1 = Fdseday, Gsy = FPsqdyp, sz = Tds40as,

leading to

r =~ 150818 00491 89837 92280 as =C3

b; ~ 0.14681 18760 84786 44956 as, ~ 021766 90962 61169 21036
b, ~ 0.24848 29094 44976 14757 as, =~ 0.36841 05930 50372 02075
by ~0.10425 88303 31980 29567 as, ~ 008269 20866 57810 75441
by ~ 027443 89009 01349 45681 asr ~0.13995 85021 91855 73938
bs ~0.22600 74832 36907 65039 as3 =~ 025189 17742 71692 63984
c, ~0.39175 22265 71889 05833 as, =~ 0.06796 62836 37114 96324
¢y ~0.58607 96893 11541 23111 as, ~ 0.11503 46985 04631 99467
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¢, ~ 047454 23631 21399 13362 as; ~ 020703 48985 97384 71851
cs ~ 093501 06309 67651 59845 asq > 0.54497 47502 28519 92204

10. Numerical illustration,

In this final section of the paper we illustrate the theory with three examples. In
these three examples we compare Heun’s third order scheme (cf. e.g. [9, p. 193] or
[17,p. 133}

0
1/3 | 1/3
27310 23

|14 0 34

with the optimal third order 3-stage scheme presented in Theorem 9.4. We will refer
to these schemes as Heun’s scheme and Fehlberg’s scheme, respectively. Note that
Heun’s scheme has radius of absolute monotonicity Ryeu, = 0 (cf. Theorem 4.2),
whereas Fehlberg’s scheme has radius Repipery = 1 (cf. Theorem 9.4).

10.1. A constructed initial value problem in eight dimensions.

Consider the linear non-autonomous test problem (2.3), where t, = 0 and L(1) is
areal 8 x 8 matrix depending continuously on r. We assume that (cf. (5.13))

(10.1) IL(t) + Lkll, <1 (forallteR).

This means that, if we write the initial value problem in the form (1.1), the function
S satisfies (f, ||| ) € #(p) with p = 1 (cf. Definition 5.2), so that f is dissipative with
respect to the maximum norm. It follows from Theorem 5.4 that we will have
contractivity (1.5) in the maximum norm if we use Fehlberg’s scheme with step size
h < 1. However, if we use Heun’s scheme with step size h = 1, we will show that we
can have

(10.2) iy — uillew = 3 ldo — tol o

for some @iy # uo. To see that (10.2) can occur, we note that it follows from
Subsection 2.1 that 4; — u; = K(Z)}(iF, — uo), where K is the matrix-valued K-
function and Z is the block diagonal matrix Z = diag(Z,,Z,, Z;) with Z, = L(0),
Z, = L(1/3)and Z3 = L(2/3). Writing Z;, = — I3 + W, (i = 1,2, 3) we obtain
(10.3) K(Z) = 315 + W, — 3W, + W5 — §Wa W, — LW W,
+ W W, + i W3 WL Wy,
In view of (10.1) the matrices Wy, W,, W, satisfy

(10.4) Wille<1 (i=123)



524 J. F. B. M. KRAAIJEVANGER

On the other hand, if we are given 8 x 8 matrices W, W,, W; satisfying {10.4),
we can easily find an interpolating mapping ¢ — L(t) satisfying (10.1). We will
consider the choice

W, = ejel + ezel + eqer + eqel,
VVZ = eieg + 6485,
Wg = eleza

wheree;, i = 1,2,...,8, are the standard basis vectors in R8. Here we closely follow
the proof of Lemma 5.10. In fact, our choice of W}, W,, Wj is obtained from formula
(5.19) (with 7 = 1 and n = 3), where — due to the explicitness of the scheme — the
graph I'; is simplified to the graph in Figure 2.

Fig. 2. The graph that defines W,, W,, W;.

Using (10.3) one readily verifies that the first row of i{(Z) is given by
).

Consequently, if we choose iy — o = (1, 1, —1, 1, —1, —1, 1, )T, we obtain
el(fi, — u;) = 7/3, which proves (10.2).

=

T _ (1 5 ~1 5 -1 —1 1
eKZ) =G 5 551> 66>

10.2. A partial differential equation of parabolic type.

Consider the following initial-boundary value problem
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4 Vv = étj-z—V(’g’ t)
(105) {5 (éat)_a( ’ )862 s bhs

where a(&, 1) = 45 + 5 cos? (30¢ + 8001). If v, is sufficiently smooth and satisfies the

compatibility conditions v4(0) = v5(0) = v4(1) = v5(1) = 0, then this problem has
a unique classical solution V (cf. [ 14, p. 65]). This solution has the property that

{10.6) max |V 0 < max jpo(&)] (forallt = 0).

0xf=1 0<é<1

By approximating the second order spatial derivative in (10.5) by a central
difference quotient, we obtain an initial value problem of type (2.3) where

—2a(¢3,1) a(1,1) 0
aet)  -2aE)  aEy)
L) = (49 :
a(és—lat) "‘2&(65_1, t) a(gs—ls t)
0 (¢, 1) —2a(¢, 1)

Al =(s+ 1)1 & =il (1 <i <), to =0and ug = (vo(&4), vo(E2),..., vo(E)T. Tts
sotution U(f) approximates (V(&y,1), V(Ey,1),..., V(E, 1) for ¢t > 0. Writing the
initial value problem (2.3) in the form (1.1), we see that the function f satisfies
('l o) e F(p) with p = 2(4&)~? (cf. Definition 5.2). Hence f is dissipative with
respect to the maximum norm and it follows that the semi-discrete problem (2.3)
has the property

(10.7) U@l < lluoll, (forallt >0),

reflecting property (10.6) of the parabolic problem (10.5). If we use Fehlberg’s scheme
withstepsize h = At < 3(4¢)? for the numerical solution of the semi-discrete problem
(2.3),itfollows from Theorem 5.4 that the obtained approximations u, >~ U(nh) satisfy

(10.8) ltnllo < ol (n>1),

which constitutes a fully discrete analogon to properties (10.6) and (10.7). For
Heun’s scheme we cannot expect property (10.8) in view of Theorem 5.4 and the
fact that Ryeu, = 0. Indeed, if we take s = 19 and h = $(4¢)?, the first step ug — u;
is given by u; = Guo, where the 19 x 19 matrix G has a norm |G|, ~ 1.022 (cf.
(5.13)). Further it is interesting to note that G has some negative entries, so that we
do not have the property

(10.9) Uz 0=>u, 20 (m=1),

although the corresponding semi-discrete and fully continuous versions of this
property are present for problems (2.3) and (10.5), respectively. For Fehlberg’s
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scheme, property (10.9) holds for all step sizes h < 3(4¢)%. For linear autonomous
problems this property was studied in [2].

10.3. A partial differential equation of hyperbolic type.

Consider the following initial-boundary value problem

p 0
= V(E, 1) = e [a(é, V(E 0],

(10.10) {
VO,)=0, V(0 =00()) 0<¢<1, t>0),

where a(é, ) = —cos? (20¢ + 80¢). If v, is continuously differentiable on [0, 1] and
16(0) = v,(0) = 0, then one can show (e.g., by making use of characteristics, cf. [20])
that this problem has a unique classical solution V. This solution has the property
that

(10.11) f V(D dE < jl lvo(&)| dE  (for all ¢ > 0).
0

o]

By approximating the spatial derivative in (10.10) by a backward difference
quotient, we obtain an initial value problem of type (2.3), where

a(élat) 0
”a(élat) a(il, t)

L = (49" —a(é21) a(&s,1)

0 e dE)

A6 =571 & =idE (1 <i<9), to=0and ug = (vo(&1), Vo(E2),---» Vo(&s)" Its sol-
ution U(z) approximates (V{(¢,,1), V(&2,1),..., V(E,, 1) for t > 0. Writing the initial
value problem (2.3) in the form (1.1), we see that the function f satisfies
(£ 1-1)eZ(p) with p = (4&)™* (cf. Definition 5.2), where the norm |||, is the
(weighted) I; norm, defined by

lxlhy = 4¢ Y, x| (for all x = (xy, Xz,..., %) €RY).
i=1
Hence f is dissipative with respect to the (weighted) /; norm and it follows that
the semi-discrete problem (2.3) has the property

(10.12) IO, < luglly (forallt >0,

reflecting property (10.11) of the hyperbolic problem (10.10). If we use Fehlberg’s
scheme with step size h = At < A¢ for the numerical solution of the semi-discrete
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problem (2.3), it follows from Theorem 5.4 that the obtained approximations
u, ~ U(nh) satisfy

(10.13) lualls < lutolly (2= 1),

which constitutes a fully discrete analogon to properties (10.11) and (10.12). Heun’s
scheme, however, does not have property (10.13) if we take h = A¢ and, e.g., s = 20.
In this case we have u; = Gu,, where the 20 x 20 matrix G = (g;;) has induced
matrix norm |G|, = max{|Gx|; |xe R*, |x|; = 1} = max;) ;|g;| = 1.511. Fur-
ther we note that, as in the previous example, Heun’s scheme does not have property
(10.9), whereas Fehlberg’s scheme does, and that the corresponding semi-discrete
and fully continuous versions of this property are present for problems (2.3) and
(10.10), respectively.

Acknowledgements.

I would like to thank K. Burrage and J. C. Butcher for their help with the order
conditions, J. A. van de Griend and M. N. Spijker for their constructive criticism, T.
Murdoch and J. T. Ratnanather for their assistance with the numerical com-
putations in Section 9 and R. Pluis for his assistance with the graphic illustrations.
Further I would like to thank K. W. Morton for his kind hospitality during my stay
at the Oxford University Computing Laboratory in the period July 1987-June 1988.

REFERENCES

1. Berman, A. and Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences. New York
San Francisco London: Academic Press 1979,

2. Bolley, C. and Crouzeix, M.: Conservation de la positivité lors de la discrétisation des problémes
d’évolution paraboligues. RATIRO Anal. Numér. 12, 237-245 (1978).

3. Burrage, K. and Butcher, J. C.: Stability criteria for implicit Runge-Kutta methods. SIAM J. Numer.
Anal. 16, 46-57 (1979).

4. Butcher, J. C.: Implicit Runge-Kutta processes. Math. Comp. 18, 50-64 (1964).

5. Butcher, J. C.: The Numerical Analysis of Ordinary Differential Equations. Chichester New York
Brisbane: John Wiley 1987.

6. Crouzeix, M.: Sur la B-stabilité des méthodes de Runge-Kutta. Numer. Math. 32, 75-82 (1979).

7. Dabhlquist, G. and Jeltsch, R.: Generalized disks of contractivity for explicit and implicit Runge-Kutta
methods. Report TRITA-NA-7906, Dept. of Numer. Anal. and Comp. Sci., Royal Inst. of Techn.
Stockholm (1979).

8. Dahlquist, G. and Jeltsch, R.: Shified Runge-Kutta methods and transplanted differential equations.
In: Strehmel, K. (ed.) Numerical Treatment of Differential Equations, proceedings, Halle, 1987, PP
47-56. Leipzig: Teubner 1988.

9. Dekker, K. and Verwer, J. G.: Stability of Runge-Kutta Methods for Stiff Nonlinear Differential
Equations. Amsterdam New York Oxford: North-Holland 1984.

10. Fehlberg, E.: Klassische Runge-Kutta-Formeln vierter und niedrigerer Ordnung mit Schrittweiten-
Kontrolle und ihre Anwendung auf Wirmeleitungsprobleme. Computing 6, 61-71 (1970).

11. Frank,R.,Schneid, J. and Ueberhuber, C. W.: The concept of B-convergence. SIAM J. Numer. Anal.
18, 753-780 (1981).

12. Frank, R., Schneid, J. and Ueberhuber, C. W.: Stability properties of implicit Runge-Kutta methods.
SIAM J. Numer. Anal. 22, 497-514 (1985).

1



528 3. F. B. M. KRAAIJEVANGER

13.
14.
15.
16.
17.
18,
19.
20.
21

22,

23.

24,

25.
26.
27.
28.
29,
30.
31.

. Schonbeck, S. O.: On the extension of Lipschitz maps. Arkiv fér Matematik 7, 201209 (1967).
33.

34.
35.
36.
37.
38.

39.
. Wakker, P. P.: Extending monotone and non-expansive mappings by optimization. Cahiers du

Frank, R., Schneid, J. and Ueberhuber, C. W.: B-convergence: a survey. Appl. Numer. Math. 5,
51-61 (1989).

Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs, N.J.: Prentice-Hall
1964.

Griend, J. A. van de and Kraaijevanger, J. F. B. M.: Absolute monotonicity of rational functions
occurring in the numerical solution of initial value problems. Numer. Math, 49, 413-424 (1986).
Hairer, E.: Highest possible order of algebraically stable diagonally implicit Runge-Kutta methods.
BIT 20, 254-256 {1980).

Hairer, E., Norsett, S. P. and Wanner, G.: Solving Ordinary Differential Equations I. Berlin Heidel-
berg New York: Springer 1987.

Hundsdorfer, W. H. and Spijker, M. N.: 4 note on B-stability of Runge-Kutta methods. Numer.
Math. 36, 319-331 (1981).

Hundsdorfer, W. H. and Spijker, M. N.: On the algebraic equations in implicit Runge-Kutta methods.
SIAM J. Numer. Anal. 24, 583-594 (1987).

Yohn, F.: Partial Differential Equations. Appl. Math. Sciences, Vol. 1. New York Heidelberg Berlin:
Springer 1971

Kraaijevanger, J. F. B. M.: Absolute monotonicity of polynomials occurring in the numerical solution
of initial value problems. Numer. Math. 48, 303-322 (1986).

Kraaijevanger, J. F. B. M., Lenferink, H. W. J. and Spijker, M. N.: Stepsize restrictions for stability
in the numerical solution of ordinary and partial differential equations. J. Comp. Appl. Math. 20,
67-81 (1987).

Kraaijevanger, J. F. B. M. and Spijker, M. N.: Algebraic stability and error propagation in Runge-
Kutta methods. Appl. Numer. Math. 5, 71-87 (1989).

Kraaijevanger, J. F. B. M.: Contractivity in the maximum norm for Runge-Kutta methods. Report
TW-89-06, Dept. of Math. and Comp. Sci., Leiden Univ. 1989. To appear in the proceedings of the
1989 IMA conference on computational ordinary differential equations, London. Oxford Univ.
Press (editors: Cash, J. R., Gladwell, L).

Lancaster, P., Tismenetsky, M.: The Theory of Matrices, 2nd Ed. Orlando San Diego New York
London: Academic Press 1985,

Lenferink, H. W. 1.: Contractivity preserving explicit linear multistep methods. Numer. Math. 55,
213-223 (1989).

Lenferink, H. W. I.: Contractivity preserving implicit linear multistep methods. Math. Comp. 56,
177-199 (1991).

Martin, R. H., Jr.: Nonlinear Operators and Differential Equations in Banach Spaces. New York
London Sydney: John Wiley 1976.

Nevanlinna, O. and Liniger, W.: Contractive methods for stiff differential equations. BIT 18, 457-474
{1978); BIT 19, 53-72 (1979).

Sand, J.: Circle contractive linear multistep methods. BIT 26, 114-122 (1986).

Sand, J.; Choices in contractivity theory. Appl. Numer. Math. 5, 105-115 (1989).

Spijker, M. N.: Contractivity of Runge-Kutta methods. In: Dahlquist, G., Jeltsch, R. (editors}
Numerical Methods for Solving Stiff Initial Value Problems, proceedings, Oberwolfach, 28.6-
4.7.1981. Institut fiir Geometrie und Praktische Mathematik der RWTH Aachen, Bericht Nr. 9,
1981.

Spijker, M. N.: Contractivity in the numerical solution of initial value problems. Numer. Math. 42,
271-290 (1983).

Spijker, M. N.: Numerical contractivity in the solution of initial value problems. In: Strehmel, K. (ed.)
Numerische Behandlung von Differentialgleichungen, proceedings, Halle, 1983, pp. 118-124. Martin-
Luther-Universitiit, Halle-Wittenberg 1984.

Spijker, M. N.: On the relation between stability and contractivity. BIT 24, 656666 (1984).

Spijker, M. N.: Stepsize restrictions for stability of one-step methods in the numerical solution of initial
value problems. Math. Comp. 45, 377-392 (1985).

Stetter, H. J.: Analysis of Discretization Methods for Ordinary Differential Equations, Berlin Heidel-
berg New York: Springer 1973.

Vanselow, R.: Nonlinear stability behaviour of linear multistep methods. BIT 23, 388-396 (1983).

C.E.R.O. 27, 141-149 (1985).



