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CONTRACTIVITY OF RUNGE-KUTTA METHODS 
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Department of Mathematics and Computer Science, University of Leiden, 
P.O. Box 9512, 2300 RA Leiden, The Netherlands 

Abstract  

In this paper we present necessary and sufficient conditions for Runge-Kuna methods to be contrac- 
tive. We consider not only unconditional contractivity for arbitrary dissipative initial value problems, 
but also conditional contractivity for initial value problems where the right hand side function satisfies 
a circle condition. Our results are relevant for arbitrary norms, in particular for the maximum norm. 

For contractive methods, we also focus on the question whether there exists a unique solution to the 
algebraic equations in each step. Further we show that contractive methods have a limited order of 
accuracy. Various optimal methods are presented, mainly of explicit type. We provide a numerical 
illustration to our theoretical results by applying the method of fines to a parabolic and a hyperbolic 
partial differential equation. 

Subject Classifications: AMS (MOS): 65L05, 65L20, 65M10. 

1. Introduction.  

W e  cons ide r  in i t ia l  va lue  p r o b l e m s  for sys tems of s > 1 o r d i n a r y  different ia l  

e q u a t i o n s ,  

d 
(1. la)  dt  U(t) = f ( t ,  U(t)) (t > to), 

(1. l b )  U(to) = Uo. 

W e  a s s u m e  here  tha t  to ~ ~,  Uo ~ ~" a n d  

(1.2a) f is a c o n t i n u o u s  f u n c t i o n  f rom ~ x ~" in to  ~ ;  

(1.2b) for each toEl~ a n d  u o ~ l ~ '  p r o b l e m  (1.1) has a u n i q u e  so lu t i on  

U: [to, ~ )  --' ~ ;  

(1.2c) I['ll is a n o r m  on  ~ such tha t  for a n y  to ~ ~ a n d  a n y  two so lu t ions  U,/_7 to 

(1.1a) we have  HU(t) - U(t)ll < II/-7(to) - U(to)lt (for all t _> to). 
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The class consisting of all pairs (f, I['11) satisfying (1.2) (for some appropriate s) is 
denoted by Y.  If ( f  II'tl) e f f  we say that f is dissipative with respect to H'tI• In this 
case the initial value problem (1.1) is said to be dissipative as well. 

In the present paper we study Runge-Kutta methods for the numerical solution of 
(1.1). In these methods we select a step size h > 0, and generate approximations 
u, -~ U(t,), n = 1, 2, 3 . . . . .  in a step by step fashion, starting with the initial value 
Uo = U(to). Here the grid points t. are defined by t, = t,_ 1 + h. More precisely, if 
u,_ 1 has already been computed, u, is defined to be 

(1.3a) u. = un-1 -t- h~,~n= 1 b j f ( t , - i  + cjh, yj), 

where the vectors Yl, Yz . . . .  , y,, ~ R" are a solution to the system of equations 

(1, 3b) Yi = u , - t  + h ~}"=1 ai j f ( t ,_ l  + cjh, y j) (1 _< i _<_ m). 

The coefficients aii, b j, cj (i,j = 1, 2 . . . . .  m) are real numbers specifying the Runge- 
Kutta  method. The number m is called the number of stages. We always assume that 

ci = ail + aiz + . . .  + aim (1 < i < m). 

In view of this assumption we can represent a Runge-Kutta method by its 
coefficient scheme (A, b), where A denotes the m x m matrix A = (a~i) and b the 
m-dimensional column vector b = (bl, b~_ . . . . .  b,,) T. Usually one displays the coeffi- 
cient scheme (A, b) and the values c~ in the tableau 

Cl  

Cm 

a l l  . . .  a i m  

a m l  • . .  amm 

b i . . .  b,, 

Suppose that, instead of u,_ 1, we are dealing with a perturbed approximation 
~,-  1. Then the Runge-Kutta step will generate ~7, satisfying 

(1.4a) t7, = t7,_1 + h~,im=lbjf(t ._l + cjh,~j), 

(1.4b) )7i = t~,-1 +h~, '~=lai j f ( t ,_  1 +cjh,  f~j) (t <_i<_m). 

If f is dissipative with respect to a given norm tl'Jl, it is natural to require 
contractivity of the numerical method, i.e. 

(1 .5 )  I la .  - u.II -< II~/.-1 - u . - l [ I .  

This very favourable stability property of the method has been studied by many 
authors• For the case where the norm II'll is generated by an inner product ( . , .  >, i.e. 
tl x II = <x ,  x> x/2 for all x e R ~, there exists a satisfactory theory providing necessary 
and sufficient conditions for contractivity. This theory comprises not only uncondi- 
tional contractivity, i.e. contractivity for all step sizes h > 0, but also conditional 
contractivity, i.e. contractivity under a step size restriction h < H. In the case of 
unconditional contractivity, arbitrary functions f are considered, which are dissi- 
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pative with respect to an inner product norm, cf. [3], [6], [18] (see also [5], [9]). In 
the case of conditional contractivity, it is assumed that f satisfies a stronger 
condition than dissipativity, namely a circle condition (5.7) with a given radius 
p > 0, cf. [7], [8], [23] (see also [9]). 

For norms not generated by an inner product, there exists no general theory for 
contractivity. Only for linear autonomous differential equations, necessary and 
suffÉcient conditions for unconditional and conditional contractivity are known 
[34] (see also l~emarks 5.7 and 6.4). For more details and further results in this 
situation we refer to [15], [21], [22], [33], [35], [36], [37]. 

In this paper we shall present necessary and sufficient conditions on a Runge- 
Kut ta  method to be contractive in arbitrary norms. We will consider unconditional 
contractivity on the class f f  as well as conditional contractivity on subclasses of 

( f  must satisfy a circle condition (5.7)). As in [34], special attention is given to the 
important maximum norm. We mention that some of our results were already 
stated, without proof, in [24]. For related results on contractivity for linear multi- 
step and one-leg methods we direct the reader to [26], [27], [29], [30], [31], [34], 
[39]. 

In the following we give a brief outline of the paper. Section 2 is of preliminary 
nature. Here we introduce the concept of absolute monotonicity for the well-known 
stability function ~0 and K-function K of a Runge-Kutta method, and also for the 
so-called matrix-valued K-function, denoted by ~. For the investigation of absolute 
monotonicity of the functions K and N, it is convenient to consider certain algebraic 
conditions on the coefficient scheme (+4, b). These algebraic conditions are referred to 
as absolute monotonicity of the scheme (A, b). 

In Section 3 it is proved that absolute monotonicity of K, ~ and (A, b) are 
equivalent. 

In Section 4, the radius of absolute monotonicity R(A, b)~ [0, ~ ]  is defined and 
studied for arbitrary Runge-Kutta schemes (A, b). One of the results, cf. Theorem 
4.2, is that only schemes (A, b) with A > 0 and b > 0 can have a non-vanishing radius 

R(A, b). 
In Section 5 we study conditional contractivity of Runge-Kutta schemes. It is 

assumed that the function f satisfies a circle condition (5.7), where II II is an arbitrary 
norm and p > 0 is fixed. The main result, cf. Theorem 5.4, is that the maximum step 
size H for which we have contractivity is given by H = R(A, b)p- t. 

In Section 6 we study unconditional contractivity on the class o~, which is proved 
to be equivalent to R(A, b) = oe, cf. Theorem 6.1. 

In Section 7 it is proved that the system of Runge-Kutta equations (1.3b) has 
a unique solution whenever the conditions that guarantee contractivity are fulfilled. 
Moreover it is shown that there is stability with respect to perturbations of these 

equations. 
In Section 8 we consider the impact of the conditions R(A, b) > 0 and R(A, b) = oo 

on the order of accuracy of the method. A distinction is made between the classical 
order of consistency p and the stage order /~. We mention the negative result 
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i0 < p ___ 1 for unconditionally contractive methods, i.e. methods with R(A, b) = ~ .  
This order barrier was already derived in [34] by considering only linear auton- 
omous problems. Further we have for conditionally contractive methods, i.e. 
methods with R(A, b) > 0, the order barriers p __. 6 and i6 < 2. Explicit methods, for 
which always/5 < 1, suffer even from an order barrier p < 4 in case R(A, b) > 0. This 
last negative result was also found in [7], where only inner product norms were 
considered. We also present convergence estimates for methods with R(A, b) > O, cf. 
Theorem 8.1. 

In Section 9 we study, for given integers m and p, the maximum of R(A, b) on the 
class of explicit Runge-Kutta methods with m stages and classical order at least p. 
Several optimal explicit methods are presented. 

In Section 10 a numerical illustration is given. Heun's third order scheme (with 
R(A, b) = 0) is compared with the optimal third order 3-stage scheme derived in 
Section 9 (with R(A, b) = 1). Both methods are applied to three initial value prob- 

lems which are dissipative with respect to the maximum norm (l~ norm) or 
(weighted) sum norm (11 norm). The latter two problems come from a space 
discretization of a parabolic and a hyperbolic partial differential equation with 
coefficients varying in space and time. 

2. Preliminaries. 

2.1. Definition of  the functions q~, K and ~ .  

Let a Runge-Kutta method be given with m _> 1 stages and coefficient scheme 
(A, b). If we apply this method to the linear scalar autonomous test problem 

d 
(2.1) ~ U(t) = 2U(t) (t > to), U(to) = Uo, 

it is well known (cf. e.g. [5], [9], [38]) that (1.3) reduces to the simple recurrence 
relation u, = q~(h2)u,_ 1 (n _> 1), where ~o is the so-called stability function of the 
method. The stability function ~o is a rational function in one complex variable 
z with numerator  d e t ( I -  z ( A -  ebT)) and denominator d e t ( I -  zA), where 
e = (1, 1 . . . . .  1) T e N" and I stands for the m x m identity matrix. Although we shall 
deal with differential equations in real vector spaces only, implying that the argu- 
ment z = h2 is real, it is convenient to define q~(z) for complex values z as well. We 
note that it is possible that ~o has removable singularities, namely if the numerator 
and denominator of ~0 have a common zero (in C). Finally, it is well known that q~(z) 
can be written as 

q~(z) = 1 + zbT(I -- zA ) - l e  (if I -- zA is nonsingular). 
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I f  we apply  the R u n g e - K u t t a  me thod  to the more  general, linear scalar non- 

a u t o n o m o u s  test p rob lem 

d 
(2.2) d--7 U(t) = ).(t)U(t) (t > to), U(to) = Uo, 

it is well k n o w n  (cf. e.g. [3], [5], [9]) tha t  (1.3) reduces to the recurrence relation 
u. = K ( z l ,  z2 . . . . .  zm)u. ~ (n >_ 1), where K is the so-called (scalar) K- func t ion  of the 
me thod  and z, ,-=- h2(t n_ 1 + e,h), i = 1, 2 , . . . ,  m. The K-funct ion  is a ra t ional  function 

in the complex  variables z l ,  z 2 , . . . , z m  with n u m e r a t o r  d e t ( I -  ( A -  ebT)Z) and 
d e n o m i n a t o r  de t ( I  - A Z ) ,  where Z is the d iagonal  matr ix  Z = di~rg(z,, z2 . . . . .  z,,). 
We shall use bo th  nota t ions  K ( z , ,  z 2 . . . . .  z~,) and K ( Z ) .  I t  is well known that  

K ( Z )  = 1 + b~Z(I  - A Z ) - l e  (if I - A Z  is nonsingular).  

We note that  the K-funct ion  reduces to the stability function ~o if we take 
z,  = z2 . . . . .  z,,. Fur the r  we emphas ize  tha t  all variables z l , z 2 , . . . , z , ,  of the 
K-funct ion  are considered to be independent ,  a l though in the appl icat ion of the 

me thod  to (2.2) we always have zi = z j  whenever  ci = cj. 

Let s be a posit ive integer and consider the linear n o n - a u t o n o m o u s  test p rob lem 

d 
(2.3) d--t- U(t) = L( t )U( t )  (t >_ to), U(to) = Uo, 

where L(t) is a real or  complex  s × s mat r ix  depending on t. In this case (1.3) reduces 

to the recurrence relat ion un = ~(Z1,  Z2 . . . . .  Zm)U,-  1 (n >_ 1), where ~ is a matr ix-  
valued funct ion and Zi = hL(t~_ 1 + cih), i = 1,2 . . . . .  m. We define 7/to be the block 

diagonal  mat r ix  g -- d i ag (Z  1, Z2 , . . . ,  Z~). Both nota t ions  ~ ( Z 1 , Z z  . . . .  , Zm) and 

~(7/) will be used. One  easily verifies tha t  

~ ( Z )  ---- ~ + bTZ(U -- A Z ) - l e  (if B - A g  is nonsingular),  

w he re /~  = A ® I s ,  b = b ® I ~ ,  e = e ® I s ,  0 = I ® I ~  and 1 = (1) ® Is = I~. Here  I, 

s tands  for the s x s identi ty mat r ix  and ® for the Kronecke r  p roduc t  (cf. e.g. [25], 
[9]). We shall refer to [K as the matr ix -va lued  K , f u nc t i on  of the method.  This function 

is defined for all b lock d iagonal  matr ices  7/_- d iag (Z  t, Z2 . . . . .  Zm) for which ~ - A Z  
is nons ingular  and where the blocks Zi  are square matr ices of  the same (but arbi trary)  

order  s > 1. If s = 1, the blocks become scalars, Zi  = (zi) (i = 1, 2 , . . . ,  m), and the 
b lock diagonal  mat r ix  Z becomes  a d iagonal  mat r ix  Z = diag(zl ,  z2 . . . . .  zm). In this 
case the mat r ix -va lued  K-funct ion  ~(7/) reduces to the scalar K-funct ion K(Z) .  

2.2. Abso lu te  monoton ic i t y  o f  q~, K ,  ~ and (A, b). 

In  this subsect ion the functions q~, K and ~ are as in Subsect ion 2.1. For  these 
three functions, and  for the coefficient scheme (A, b) itself, we shall define the concept  
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of absolute monotonicity. We begin with defining absolute monotonicity for ra- 
tional functions ~ = P/Q,  where P and Q are polynomials in the complex variable z, 
both with real coefficients. Note that the stability function ¢ is of this type. 

DEFINITION 2.1. ~ is said to be absolutely  monotonic  at a given point ~ s N if 
Q(¢) ¢ 0 and (dk~,/dzk)(~) _> 0, k = 0, 1, 2 . . . . .  Further, ~ is said to be absolutely 
monotonic on a given set f2 ~ ~ if ~ is absolutely monotonic at each ¢ s f2. 

For  the (scalar) K-function K, depending on the complex variables z~, z2 . . . . .  Zm, 
the definition of absolute monotonicity is as follows. 

DEFINITION 2.2. K is said to be absolutely  monotonic  at a given point ~ ~ E if 
I -  ~A is nonsingular and (Oi~+a++~'K/Oz]~Oz~ . . .~z~" ) (~ ,~  . . . . .  4) >-0 for all 
nonnegative integers i~, i2 . . . . .  ira. Further, K is said to be absolutely monotonic on 
a given set O ~ ~ if K is absolutely monotonic at each ~ ~ O. 

Note that in the two above definitions, absolute monotonicity of the scalar 
functions ~0 and K at a real point ~ amounts to the nonnegativity of all coefficients of 
the Taylor expansion about z -- ~ and Z = (I,  respectively. In this light it is natural 
to define absolute monotonicity of the matrix-valued function ~( at a point ~ e R as 
the nonnegativity of all coefficients of the expansion of ~(Z) about Z = ~U. In order 
to find the coefficients of this expansion, we introduce the following notation, 
provided that I - ~A is nonsingular, 

(2.4a) A(~) = (~j(Q) = A(I  - ~ A ) - 1 ,  

(2.4b) b(~) T = (fl~(~), f12(~),..., fl,,(~)) = bV( I -- ~ a ) -  ~, 

(2.4c) e(~) = (~1((), e2(~) . . . . .  em(()) T = (I -- ~ A ) -  l e. 

Let s be a positive integer and write A(~)= A(~)®Is, b(~)= b(~)® 1~, 
e(~) = e(Q ® I~. Suppose W is a block diagonal matrix W = diag(W1, W2 . . . . .  W,,), 
where each W~ is a real (or complex) s x s matrix. If Z = ~fl + W, and W is 
sufficiently close to zero, it is easy to prove that B - AZ is nonsingular with inverse 

(2.5) (1 - Az) -~  = ~ [ A ( ~ ) w y  [~ - CA]-~ 
k=O 

A straightforward computation 

(2.6) ~(Z) = q~(~)I~ + 
k = l  

= ¢(¢)Is  + 

shows that this leads to 

b(~)TW[A(¢)Wy- 1 e(¢) = 

k = l  i l , i 2  . . . . .  ik  
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where we have suppressed the dependence of the entries 7~i, fl~ and e~ on the 
parameter ~ for shortness of notation. This expansion gives rise to the following 

definition. 

DEFINITION 2.3. 0{ is said to be absolutely monotonic at a given point ~ e ~ if 
I - ~A is nonsingular, q~(~) >_ 0 and f l~%~%~. . .~_ ,~f i i~  _> 0 for all k > 1 and 
il, i2,. . .  , i k. Further, 0{ is said to be absolutely monotonic on a given set (2 = E if ~ is 

absolutely monotonic at each ~ ~ f2. 

For  the investigation of absolute monotonicity of the functions K and ~, the 
following property of the coefficient scheme (A, b) is of great importance. 

DEFINITION 2.4. The coefficient scheme (A, b) is said to be absolutely monotonic at 
a given point ( ~ ~ i f / -  CA is nonsingular, q)(() > 0, A(~) > 0, b(() _> 0 and e(~) > 0. 
Further, the coefficient scheme is said to be absolutely monotonic on a given set 
O c ~ if it is absolutely monotonic at each ( ~  ~2. 

In the above definition the inequalities involving A(~), b(Q and e(() should be 

interpreted component-wise. 
A relation between the four concepts, introduced in the definitions above, is given 

in the following lemma. Its easy proof is omitted. 

LEMMA 2.5. Suppose that f2 is a subset of  E. Then,for any coefficient scheme (A, b), 

we have (a) =~ (b) =~ (c) ~ (d), where 
(a) (A, b) is absolutely monotonic on f2; 
(b) ~ is absolutely monotonic on (2; 
(c) K is absolutely monotonic on O; 
(d) q~ is absolutely monotonic on f2. 

We conclude this subsection with a remark. 

REMARK 2.6. AS is done in [24], it is possible, and probably more natural, to 
define absolute monotonicity of the K-function on sets f2' c W" rather than - as is 
done in Definition 2.2 - on sets O c ~. In this alternative definition, K is said to be 
absolutely monotonic on a given set O' c W" if the Taylor expansion of K about 
each point in f2' exists and has nonnegative coefficients. The reason why we did not 
adopt this definition is that the presentation of many of our results would have 
become considerably more complicated. This disadvantage is even more pro- 
nounced for similar adaptations of Definition 2.3. Further, with these alternative 
definitions we would not arrive at stronger results than those obtained with the 

present definitions. 
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Let a Runge-Kutta method be given with m > 1 stages and coefficient scheme 
(A, b). Following [7], [8] the coefficient scheme is said to be D J-reducible if there 
exist disjoint index sets ~'1 and J~2 with ~'1 u a/~2 ~-- {1, 2 . . . .  , m} and J/t'2 # 0 such 
that bi = 0 Of i ~ J/lz) and aii = 0 (if i e J//1 and j  ~ ~¢gz). In case of D J-reducibility, the 
method makes no use of the stages with index in ~L2, and is therefore equivalent to 
a Runge-Kutta method with m' stages, where m' is the number of elements in J/g~. 
The following lemma will be useful in Section 3. 

LEMMA 2.7. Let a Runge-Kut ta  method be given with m >_ 1 stages and coefficient 
scheme (A, b). Suppose that there exists an index i t  {1,2 . . . . .  m} such that 

(2.7) bi,a~li2ai2i3.., aik_ l~k = 0 (for all k >_ 1 and all indices il, i2 . . . . .  ik with ik = i). 

Then (A, b) is D J-reducible. 

PROOF. Define ~¢/2 as the index set containing all i with property (2.7), and let 

J¢1 = {1,2 . . . . .  m}\JLz. • 

A different reducibility concept was introduced in [18] (see also [8], [9]). The 
coefficient scheme (A, b) is said to be HS-reducible if for some integer r with 
1 _< r < m and some nonempty pairwise disjoint index sets J//1, J#2 . . . . .  Jgr with 
~ 1  k,.) J~/~2 k . ) . ,  . k..) ' ~ r  = ( 1, 2 . . . . .  m} we have 

~ a i k = E a j k  
k e e l  a k ~ ,/Cl ~r 

for all a with 1 _< tr < r and all i,j belonging to the same index set ~'p with 1 < p _< r. 
In case of HS-reducibility, all vectors Yi in (1.3b) with an index i belonging to the 
same index set J//p are considered to be equal, leading to a Runge-Kutta method with 
r < m stages. In Section 5 we make use of the following lemma due to W. H. 
Hundsdorfer, the proof of which can be found in [23]. 

LEMMA 2.8. Let  a Runge-Kut ta  method be given with m >_ 1 stages and coefficient 
scheme (A, b). Suppose (A, b) is not HS-reducible. Then, for any real ?, there exist 
vectors p = (Pl, P2 . . . . .  p,,)T and q = (ql, q2 . . . . .  qm) T in A m such that q = Ap and 

Pi # Pj, (qi - qj)/(Pi - Pj) < 7 (for all i , j  with i -~ j!. 

A unified approach combining the two reducibility concepts above is presented in 
[8]. Following [8] we call a coefficient scheme (A, b) reducible if it is D J-reducible 
and/or  HS-reducible, and irreducible otherwise. 
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3. Equivalence of absolute monotonicity of K, ~ and (A, b). 

3.1. Introduction. 

Throughout this section (A, b) is a given coefficient scheme of a Runge-Kutta 
method with m > 1 stages. The corresponding functions (p, K and G are defined in 
Subsection 2.1. 

The main purpose of this section is to prove for any real interval [ -  r, 0] with 
r > 0, the equivalence of the following three propositions, 

(3.1) K is absolutely monotonic on [ -  r, 0]; 

(3.2) G is absolutely monotonic on [ - r ,  0]; 

(3.3) (A, b) is absolutely monotonic on [ -  r, 0]. 

In addition to the notation of Section 2, the index set { 1, 2 . . . . .  m} is denoted by 
rig. For real matrices (or vectors) F = (fij) and G = (gij) we write F _> G iffii > 9i) for 
all i and j, and F > G if fij > 9q for all i and j. The reverse relations < and < are 
defined similarly. The matrix with entries ]fij] is denoted by IF]. If F is a square 
matrix, its spectral radius is denoted by spr(F). 

3.2. Equivalence of absolute monotonicity of K and ~. 

In this subsection we prove that, for any 4 ~ ~, absolute monotonicity at ~ of 
K and G are equivalent. We start with an auxiliary lemma. 

LEMMA 3.1. Let ~9 = P/Q be a rational function in the complex variable z, where 
P and Q are polynomials with real coefficients. Suppose qJ is absolutely monotonic at 
a 9iven point ~. ~ ~. Then ~ is absolutely monotonic on the interval [~, ~t), where 
t I satisfies ~ < q < oo and is defined by ~1 = inf{t] t ~ (4, oo) and Q(t) = 0}. Further, the 
Taylor series of ~ about z = ~ has a radius of convergence >_ rl - 3. 

PROOF. The Taylor series of O about z = ~ is given by ~o= o 7k(z - 0 k, where 
7k = O(k)(4)/k! > O. Suppose that the radius of convergence p is smaller than t / -  4, 
where t/is defined as above. Then, for all complex z with Iz - ~] < p and Q(z) va 0 we 
have 

k= ~ 0 ~k(Z -- ¢)k .~ ~ ~)k I Z -- ~[k ~ lim ~ ~)k}~ k = lim ~(~ + 2) = ~(~ + p). ~4,(z)l 
k : O  ~ p k : O  2~p 

Since this uniform bound for [~(z)[ is in contradiction with the existence of a pole 
of~O on the circle {z]z E C, ]z - 4] = P}, we conclude that p > r / -  4. Hence ~(z) can 
be represented by the above Taylor series for all z e [4, r/). Term by term differenti- 
ation shows that qJ is absolutely monotonic on [4, ~/). • 
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LEMMA 3.2. I f  K is absolutely monotonic at a (liven point ~ ~ ~, then K is absolutely 
monotonic on the interval [~, rl), where q satisfies 4 < ~l < o~ and is defined by 
t / =  inf{t I t e(~, ~ )  and I - tA is singular}. 

PROOF. F r o m  the definition of the K-funct ion it is not  difficult to see that  each 
partial  derivative 0i~ + ~ + "  +~"K/t~z~ ~8z~... c~z~" is a rational function in the complex 
variables zl ,  z2 , . . . , z , ,  with denomina tor  det(I  - AZ)", where n = 1 + il + i2 + 
.. .  + i,,. If we evaluate this partial derivative at Z = tI for real values t, we obtain 
a rat ional function ~k in the variable t with denomina tor  det(I  - tA)". Since the 
absolute monotonic i ty  of K at ~ implies the absolute monotonic i ty  of tp at 4, it 
follows from Lemma 3.1 that  ~b is absolutely monoton ic  on [4, q) with ~/as above. In 
part icular  it follows that  ~k is nonnegat ive on [4, I/). Since ~b corresponds to an 
arbitrari ly chosen partial  derivative of K, we conclude that  K is absolutely mono-  

tonic on [4, r/). • 

The  following lemma deals with the sets ~ and 8,  defined by 

(3.4) ~ = {~ ] ~ ~ ~, I - 4A is nonsingular,  there exists an index i with fli(~) = 0}; 

(3.5) ~ = {( I ~ ~ E, I - ¢A is nonsingular,  there exists an index i with ei(4) = 0}. 

We recall that  fl/(~) and e~(~) are defined in (2.4). 

LEMMA 3.3. Let the sets ~ and ~ be defined by (3.4) and (3.5). Then ~ is finite. For 
irreducible coefficient schemes the set ~ is finite if for  at least one point 4 ~ ~ the 
function K is absolutely monotonic at 4. 

PROOF. 1. First we show that  g is finite. For  real 4 such that  I - ~A is nonsingu- 

tar, Cramer 's  rule yields ei(~)= p i ( 4 ) / d e t ( I -  4A), where Pi is a polynomial  of 
degree < m - 1. Since pi(0) = 1, p~ can only have a finite number  of zeros. Hence 

must  be finite. 
2. Suppose that  for at least one point  4 e ~ the function K is absolutely mono-  

tonic at 4, and that  M is infinite. We  shall prove that  (A, b) is D J-reducible.  First note  
that, in view of Lemma 3.2, we may assume that K is absolutely monoton ic  on some 
nonempty  open interval J c ~. Since each fit is a rat ional  function in one variable, 
the assumption that  M is infinite implies that  there exists an index i such that  
fli(¢) = 0 for all 4 ~ J .  Hence for this index and for all ~ J  we arrive at 
fli(~) = fl'i(() = flT(~) . . . . .  0. Using the fact that  

d k 
d f f  b(~)T = k! b(~)rA(4) k (for all integers k _> 0 and all ¢ e J ) ,  
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we obtain 

(3.6) ~'. fl11(~)~i,i2(¢)~,2i3(~).., ~i~_ ~i~(~) = 0 
(i 1, i2 . . . . .  i k )E~gk :  i k  = i 

for all integers k _> 1 and all ~ 6 J .  By using induction on k we shall prove that  this 
implies for all integers k >__ 1 and all ( e  J :  

(3.7) fli,(~)~ili2(~)... ~i~_,i~(~)ei~(~) = 0 {for all (il, i2,. . . ,  ik)~ ~#k with ik = i). 

Let ~ ~ J be fixed. For  k = 1, (3.7) immediately follows from (3.6). Now assume 
that, for some given n > 1, we have proved (3.7) for k = 1, 2 . . . . .  n. We shall prove 
(3.7) for k = n + 1. No te  that  we may assume that  el(C) # 0 since otherwise (3.7) 
trivially holds. F r o m  the Tay lor  series of K about  Z = ~I, which can be obtained by 
taking s = 1 in (2.6), it is easy to see that  absolute monotonic i ty  of K at ~ implies 

Y~ fii1(~)~,li2(~)... %,.+ 1(~)ei,+ ,(4) > 0 
( i t  . . . . .  in, in + 1) is p e r m u t a t i o n  of (Jl . . . .  ,Jn, i) 

for all (] i , j z , . . . ,L)ad/ /" .  In view of  (3.7) (with k = 1,2 . . . . .  n) and e~(~)~ 0 this 

amounts  to 

(3.8) E /~i,(~)~,~(~)... ~.~(~)~(~) >-- 0 
( i  1, i2 . . . . .  i~) is p e r m u t a t i o n  of  ( j  1, J2 . . . . .  J . )  

for all (Ji,J2 . . . . .  j , )  e j/¢'a. In combina t ion  with (3.6) (for k = n + 1) and the fact that 

E . . . .  E E .... 
( i 1 , i 2  . . . . .  in )aJ~l  n ( J l . J 2  . . . . .  Jn)E J~tn (i1,12 . . . . .  i . )  is  p e r m u t a t i o n  

j l  <-- J2 <-- . . .  <<- Jn of  ( J l , j 2  . . . . .  i n )  

it follows that  equali ty holds in (3.8) for all (]l,j2 . . . .  ,Ja) ~ J{"" NOW suppose that  (3.7) 
does not  hold for k = n + 1. Then  there exists (J],Jz,. . . ,J,)~ J/l" such that 

(3.9) f l j , (~ )O~ j l j 2 (~ ) . . .  ~jni(~)~i(~)  ~ O. 

Since we proved that  equality holds in (3.8), there exists at least one permuta t ion  

(il, i2 . . . . .  i,) of (Jl ,J2, . . . ,J ,)  with (i l, i2, . . . ,  ia) # (Jl ,Jz, . . . ,J,)  and 

(3.10) fli~(~)a~,,i2(¢)... ~,~(¢)e~(¢) ~ 0. 

Let  2 denote  the smallest index with i~ ~ jz. Then i~ = j~ for some # > 2. It follows 

from (3.9) and (3.10) that  

f i i t (~)O~i, , i2(~).  . .  O~i~ - ,i~(~)O~j#j.+ l ( ~ ) .  . . O~j,j(¢)ei(~) # O. 

Since this contradicts  our  induct ion hypothesis  (3.7) (with k = n + 1 - tt + 2), we 
have proved (3.7) for k = n + 1. This concludes the proof  by induct ion of (3.7). 

No te  that  the left hand  side of (3.7) is a rat ional function in ~ with denomina tor  
det(I  - ~A) ~+ a. Since this rat ional  function exists and vanishes for all ~ ~..¢, we 
conclude that  it must  vanish at ~ = 0 as well, i.e. we have proved (2.7). An 
applicat ion of  Lemma  2.7 shows that  (A, b) is D J-reducible,  which was to be 

proved. • 
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Lemmas 3.2 and 3.3 are used in the proof of the following theorem, which 
constitutes the main result of this subsection. 

THEOREM 3.4. Let ~ ~ ~ be arbitrary. I f  the coefficient scheme is irreducible, then 
K is absolutely monotonic at ~ i f  and only if  ~ is absolutely monotonic at 3. 

PROOF. For the "if-part" we refer to Lemma 2.5. In order to prove the "only- 
if-part", we assume that K is absolutely monotonic at 3. From Lemma 3.2 it follows 
that K is absolutely monotonic on an interval J = [3, 7) with q > 4- Hence, for any 
t ~ J ,  the Taylor expansion of K about Z = tI exists and has all coefficients 
nonnegative. By considering (2.6) with s = 1 (and ¢ replaced by t) we arrive at 

(3.11) qg(t) > 0, 

(3.12) ~ fljl(t)c~jlj2(t)... ~ _  dk(t)ej~(t) >_ 0 
U 1, j 2 . . . . .  Jk) is pe rmu tat ion of (i 1, i2 . . . . .  ix) 

for all t 6 J ,  all integers k _> 1 and all (il, i2, . . . ,  ik)6J//k. 
Define the set F by 

F = (t I t 6 J and fli(t)ei(t) = 0 for some i ~ J//}. 

Let t 6 J \ F  be given. By considering (3.12) with k = 1 we see that 

(3.13) fli(t)e~(t) > 0 (for all i~J//). 

Consideration of (3.12) with k = 2 and il = i2 yields fli(t)~,(t)ei(O >_ 0 (for all 
i 6 ~ ) .  In view of (3.13) this implies 

(3.14) g,(t) > 0 (for all i6d¢). 

Now let i, j eJ /~  be given with i v~j. By considering (3.12) with 
(il, i2 . . . . .  ik) = (i, i . . . . .  i,j) we obtain for all k > 2 the inequality 

f i l l i p -2~ i j8  j q- fljOgjig~i- 28 i q- ( k  - -  2)f l iO~i j~j i~i-  38 i ~ O, 

where the dependence on t has been suppressed for shortness of notation. By taking 
k = 2 it follows that 

(3.15) fl~jzj  + fl~%~e~ ___ 0. 

By taking k = 3 if ~ = 0, or considering k ~ oo if ~, > 0, it follows that 
fl~j~jiei > O. In view of (3.13), multiplication by fljej yields (fli~uej)(~j~jie~)>_ O. 
Combination of this inequality with (3.15) shows that 

(3.16) fl~(t)%(t)e~(t) > 0 (for all i , j e e #  with i ~j) .  

Using (3.13), (3.14) and (3.16) it is easy to deduce that 

(3.17) fl~,(t)%~2(t)"" ~ _  ~i~(t)ei~(t) >_ 0 (for all k > 1 and all (i~, i 2 . . . . .  ik ) ~ ~/[k). 
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Thus we have proved (3.17) for all t e Or\F. Since by Lemma 3.3 the set F is finite, it 
follows from continuity arguments that (3.17) must hold for all t e or. Combined with 
(3.11) this shows that ~ is absolutely monotonic on O r, and in particular at 
~. • 

3.3. Equivalence of(3.1), (3.2) and (3.3). 

In this subsection we will prove the equivalence of(3.1), (3.2) and (3.3) for arbitrary 
r > 0. We start with two lemmas. The easy proof of the first lemma is left to the 
reader. 

LZMMA3.5. La p and a be mal raonbo,s with p > O. Then the fdlowing two lropo~ms are ~ .  

(3.t8) I - zA is nonsingular for all complex z with [z - a] <_ p; 

(3.19) I - c r A  is nonsingular and spr(pA(I - aA)-1) < 1. 

LEMMA 3.6. Let ~ = P/Q be a rational function in the complex variable z, where 
P and Q are polynomials with real coefficients and no common zeros. Further, let 
2 and # be real numbers with 2 < #. Suppose that ~ is absolutely monotonic at all 
but a finite number of  the points in [2, p). Then ~ is absolutely monotonic on all of 

E~,~). 

PROOF. If [2, #) contains no poles of 0, the assertion easily follows from a limit 
argument. Therefore it is sufficient to prove that [¢,I/) contains no poles of ~O. 
Suppose 7 ~ [¢, t/) is a pole of ¢. Then either ~O(z) < 0 or ¢'(z) < 0 for all (real) z in 
a right neighbourhood of'/. In both cases we have a contradiction with the absolute 
monotonicity of ~. i 

The two lemmas above are used in the proof of the following result. 

LEMMA 3.7. Let 2 and It be real numbers with 2 < #. Suppose that for a given 

irreducible coefficient scheme (A, b) the function K is absolutely monotonic at all but 
a finite number of the points in the interval [2, #). Then K is absolutely monotonic on 

all of[2, ~). Further we have spr(TA(()l) < (p - ~)- ~ for all ~ e [2, #). 

PROOF. According to the assumptions, K is absolutely monotonic on [2, #)\F, 
where F is a finite subset of [2,#). Note that it follows from Lemma 3.3 that we 
may assume, without loss of generality, that 

(3.20) fl~(~)ei(~) ~ 0 (for all ~ [ 2 , # ) \ F  and all ieJg) .  

Let ~9 denote the rational function that is obtained from ~o by removing all 
removable singularities. Since K is absolutely monotonic on [2,/~)\F, it follows 



CONTRACTIVITY OF RUNGE-KUTTA METHODS 495  

from Lemma 2.5 that ~o, and therefore also if, is absolutely monotonic on [2, #)\F. 
Using Lemma 3.6 we see that ff is absolutely monotonic on [X, #). From Lemma 
3.1 we conclude that for any ~ ~ [2, #) the Taylor series of ff about z = ~ has a radius 
of convergence >_ # - 4. As the Taylor series of to about z = ¢ is easily obtained by 
taking scalar W1 = W2 . . . . .  W~ in (2.6), we see that 

+ 3) = to(f) + Y. 
k = 1 i l ,12 , . . . , ik  

for all ~ e [2, #) \F and all 6 e [0, # - 0. Note that it follows from Theorem 3.4 that 
04 is absolutely monotonic on [2, #)\F, so that all terms of the above series are 
nonnegative. But then we have 

i , j  k=l  i~ , i2 , . . . , i k : i :=i ,  i k = j  

for all (G [2, #) \F and all ¢5 e [0, # - 4). In view of (3.20) this implies 

Y. Y. • • < 
k = t i I , i2 , , . . ,  ik:il =i, ik=J 

for all 4 G [2, #)\F, 6 e [0, # - 4) and all i,j e d/f. Noting that the left hand side of the 
above inequality is the (i,j)-th element of the series 

I + 3 IA(4)I + ~2 tA(4)I 2 + . . . ,  

we conclude that this series converges for all 4 E [X, #) \F and all 6 ~ [0, # - 4). This 
is known to be equivalent to 

(3.21) spr(3 IZ(4)l) < 1 (for all ¢ s [2, #) \F and all 3 ~ [0, # - ~)), 

implying spr(bA(~)) < 1 (for all 4 e [2, #) \F and all 6 E [0, # - 4)). Lemma 3.5 shows 
that the latter property is equivalent to the nonsingularity o f / -  zA for all complex 
z such that }z - 41 < 6 for some 4 e [2, #) \F and 3 s [0, # - 4). Since F is finite, we can 
take 4 arbitrarily close to X here, which leads to the nonsingularity of I - zA for all 
complex z with {z - 21 </~ - 2. In particular we have proved that I - ~A is nonsingu- 
lar for all ~. ~ [X, #). Hence all partial derivatives of K exist and are continuous at all 
points Z = ~I with ~ s [2, #). By using this continuity it follows that K is not merely 
absolutely monotonic on [2, #) \F but on all of [2, #). Further, it follows from (3.21), the 
finiteness o f f  and the nonsingularity o f / -  ~A for all ¢ ~ [2,/~) that spr(6 IA(¢)I) < 1 for 
all 4 e [2, #) and 6 e [0, # - O, i.e. spr (Ia(Ol) -< ~ - 4) -  1 for all ~ e [2, #). • 

This lemma will be used in Sections 4 and 5. It also plays an important role in 
the proof of the following result, which is the main result of this section. 

THEOREM 3.8. Let  (A, b) be an irreducible coefficient scheme and r a nonnegative 
real number. Then (3.1), (3.2) and (3.3) are equivalent. 
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PROOF. In view of Lemma 2.5 it is sutticient to prove (3. i) ~ (3.3). 
1. We first consider the case that r = 0. Hence we may assume that K is abso- 

lutely monotonic at 0 and have to prove that (A, b) is absolutely monotonic at 0, 
i.e. A >_ 0 and b _> 0. First note that we may assume that E is absolutely monotonic 
at 0 by Theorem 3.4, i.e. bl,ai , i~. . ,  aik_ ~ik > 0 for all k >__ 1 and all il ,  ia . . . . .  ik. 
Consideration of k = 1 immediately leads to b > 0. In order to prove A _> 0 we 
choose arbitrary i , j  ~ JC/. Since the method is irreducible, it follows from Lemma 
2.7 that for some k_> l  and some indices il ,  i 2 , . . . , i k  with i k = i  we have 
bhaz~i~.., ai~_ ~i~ > 0. Using the fact that bi,ah~:. . ,  a~_ ~a~j > 0 we arrive at a~j >_ 0. 

2. Now let r > 0 and assume (3.1). We shall prove (3.3). From Lemma 3.2 we 
see that K is absolutely monotonic on [ - r ,  t/) for some positive r/. In view of Lemma 
3.7 this implies spr(tA(~)[) < ( t / -  ~)-1 for all ~ e [ - r ,  t/), and hence 

spr(-~A(~)) _< spr(l-~A(~)[) <_ - ~ ( t / -  ff)-i < 1 (for all ~ [ - r , 0 ] ) .  

Combined with [I  + CA(O] - i = I - ~A we may conclude that 

(3.22) - ~ A  = -~A(~) + ~ZA(~)2 - ~3A(~)a + ... (for all ~ e [ - r , 0 ] ) .  

Next define the set f2 = {4 [ ~ e [ -  r, 0], fl~(¢)e~(~) # 0 for all i e JCd}. Let ~ e f2 be 
fixed, and define the index sets J/g1 and -//2 by ~1  = { i l i c J g ,  fl~(¢)> 0} and 
~#2 = J¢/\~'1. Without loss of generality we may assume that i < j whenever i e J/~ 
and j ~ J¢/2. Since ~ is absolutely monotonic at ~ by Theorem 3.4, it follows that 
b(~), e(~) and A(~) must have the form 

.,,r>00] .,r>0 <001 
= L < 0_1 e(¢) = k < ' A ( 0  = J / z  L <- 0 >__ ' 

where, for example, ' >  0' in b(C) means that fli(~) > 0 for all i t  ~#1. In view of (3.22) 
this shows that - ~A is of the same form as A(~). But then 

[<>:] 0 <:1[<>00]- [>:] e = (I - ~A)e(~) = e(~) - ~Ae(~) = + 0 >. < ' 

which is only possible if ~ 2  = 0. Hence we have proved that b(~) > 0, e(~) > 0 and 
A(¢) _> 0 for all ~ ¢ f2. Further, I - ~A is nonsingular and cp(~) >_ 0 for all ~ e [ -  r, 0] 
by the absolute monotonicity of K on [ - r , 0 ] .  Since Lemma 3.3 implies that 
[ - r ,  03\t2 is finite, it follows from a continuity argument that (A, b) is absolutely 
monotonic on [ -  r, 0]. • 

4. Investigating absolute monotonicity of (A, b). 

4.1. The  radius o f  absolute  monotonic i ty .  

In this section we study for coefficient schemes (A, b) the so-called radius o f  

absolute  monotonic i ty  R(A ,  b), defined by 
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(4.1) R(A, b) = sup {r]r ~ R and (A, b) is absolutely monotonic on [ - r ,  0]}. 

In this subsection we present two general results on R(A, b). In Subsection 4.2 we 
concentrate on the special case R(A, b) = ~ .  

Our first general result on R(A, b) is the characterization of all irreducible coef- 
ficient schemes with R(A, b) > 0. For  the formulation and proof of this result it is 
convenient to give the following definition (cf. [1]). 

DEFINITION 4.1. For  a given matrix F = (fij) we define its incidence matrix 

Inc(F) = (9o) by O~j = t i f fo  ~ 0 and 9~ = 0 iff~j = 0. 

THEOREM 4.2. For irreducible coefficient schemes (A, b) we have R(A, b) > 0 if and 
only if A > O, b > 0 and Inc(A 2) < Inc(A). 

PROOF. Note that for real ¢ close to zero the matrix I - CA is nonsingular and 
~o(¢) > 0, e(~) > 0. Further, for real ~ close to zero we also have 

(4.2) A(~) = A + ~A z + ~2A3 + ....  

We see immediately from (4.2) that A > 0 and Inc(A 2) < Inc(A) are necessary 
conditions for A(~) > 0 to hold in a left neighbourhood of ~ = 0. To see that these 
two conditions are also sufficient for the latter property, we note that they imply 
Inc(A k) _< Inc(A) for all k >_ 2. From these inequalities, combined with A _> 0 and 
(4.2), the desired property easily follows. 

Finally, for real ~ close to zero we have 

(4.3) b(~) T = b T + ~bTA + ~2bTA2 + . . . .  

We see immediately from (4.3) that b > 0 implies that b(¢) > 0 for all ~ in a left 
neighbourhood of ¢ = 0. We conclude the proof of the theorem by showing that 
R(A, b) > 0 implies b > 0. Therefore, assume R(A, b) > 0 and note that we have 
already proved that A > 0 must hold then. From (4.3) we obtain b >_ 0 and the 
implication bj = 0 =:- ~ i  b~aii = 0 for all j ~ Jg. In view of b _> 0 and A > 0 we even 
have bj = 0 =~ bia~j = 0 for all i , j~d¢. If we define the sets J/1 and J//z by 
J/1 = {i [ i ~ ~ / a n d  b~ > 0} and J//2 = d¢\~/1 we see immediately that aij = 0 for 
all i e J/1 and j e J/2. From the irreducibility of (A, b) we conclude (cf. Subsection 
2.3) that ~/2 = 9, i.e. b > 0. • 

In the proof  of the following lemma we make use of M-matrices, which are defined 
as follows (cf. [25]). 

DEFINITION 4.3. A real square matrix F is said to be an M-matrix if F is 
nonsingular, F -  1 > 0 and all the off-diagonal elements of F are nonpositive. 

LEMMA 4.4. Let (A, b) be an irreducible coefficient scheme and r a positive real 
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number. Then R(A, b) >_ r if  and only i f (A,  b) is absolutely monotonic at ~ = - r  and 

A>_O. 

PROOF. 1. Suppose R(A, b) >_ r. Then (A, b) is absolutely monotonic on ( -  r, 0]. 
By Lemma 2.5, K is absolutely monotonic on ( - r , 0 ] ,  and by Lemma 3.7 even on 
I - r , 0 ] .  Theorem 3.8 shows that (A,b) is absolutely monotonic on I - r , 0 ] .  In 
particular, (A, b) is absolutely monotonic at, ~ = 0 (implying A >_ 0) and at ~ = - r. 

2. Suppose (A, b) is absolutely monotonic at ~ = - r and A > 0. From A > 0 and 
A(--  r) = A(1 + rA) -  1 > 0 we see that the matrix (1 + rA) -  1 = I - rA(I + rA) -  i is 
an M-matrix. From [25, p. 531] it follows that spr(rA(I  + rA) - i )  < 1. In view of 
Lemma 3.5 we may conclude that I - CA is nonsingular for all ~ s [ - r ,  0]. Since 
by Lemma 2.5 K is absolutely monotonic at ~ = - r ,  we can apply Lemma 3.2 now 
to obtain absolute monotonicity of K on [ - r ,  0]. By using Theorem 3.8 we arrive 

at R(A,  b) > r. • 

The above lemma is very useful from a computational point of view. It says that 
for checking absolute monotonicity of(A, b) on a given interval [ -  r, 0] it is sufficient 

to consider the left endpoint ( = - r  only. 

4.2. Absolute monotonicity on ( -  0% 0]. 

In this subsection we characterize all coefficient schemes with R(A, b) = oe. We 

begin with the case where A is nonsingular. 

LEMMA 4.5. Let  (A, b) be an arbitrary coefficient scheme. Suppose that A is non- 

singular. Then R(A, b) = oo if  and only if  

(4.4a) A-  1 is an M-matr ix ,  

(4.4b) A - l e  _> 0, 

(4.4c) b~A -~ > O, 

(4.4d) bTA - le <_ 1. 

PROOf. 1. Suppose R(A, b) = oe. Then A >_ 0 by the absolute monotonicity of 
(A, b) at ¢ = 0. Now (4.4) easily follows from the absolute monotonicity of (A, b) at 
large negative ~ since we have the following expansions as ~ ~ - 0% 

A(~) = - ~ - l I  - ~ - z a - 1  + 0(~-3) ,  

e(~) = - ~ - i A - : l e  + 0(~-2) ,  

b(~)T = _ ~ - ib'r A - 1 + 0 ( ~ -  2), 

q~(~) = 1 - bTA-~e  + 0(3-~).  
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2. Suppose that (4.4) holds and let ~ e ( - o o , 0 ]  be arbitrary. We will show 
that (A, b) is absolutely monotonic at (. First note that (4.4a) implies that A- 1 - 4I 
is an M-matrix (cf. e.g. [25, p. 532]). Hence 1 -  ~A is nonsingular and 
A ( ¢ ) = A ( I - - ~ A ) - I = ( A -  ~ - ~ 1 ) - 1 > 0 .  Using (4.4) we further obtain 
e(~) = (I -- ~ a ) - l e  = A ( ~ ) a - t e  > O, b(~) T = bT(I -- ~A) -~ = bTA-~A(~) >_ 0 and 
q~(~) = 1 + ~bT(I -- CA)- le = 1 - bTA - le + bTA-  1A(~)A- te >_ O. • 

The case where A is singular is considered in the next lemma. 

LEMMA 4.6. There exists no irreducible coefficient scheme (A, b) such that A is 

singular and R(A, b) = ~ .  

PROOF. Suppose (A, b) is an irreducible coefficient scheme with m >_ 1 stages such 
that A is singular and R(A, b) = c~. We will obtain a contradiction by showing that 
A must have at least two identical rows, i.e. (A, b) is HS-reducible (cf. Subsection 2.3). 

First note that b > 0 by Theorem 4.2. Further, with the new variable 2 = - ~- 1, 
absolute monotonieity of (A, b) on ( -  o% 0] yields 

(4.5a) A + 2I is nonsingular (for all 2 > 0), 

(4. 5b) A(A + 21)- 1 >_ 0 (for all 2 > 0), 

(4.5c) bT(A + 21) -1 > 0 (for all 2 > 0), 

(4.5d) (A + 21)-1e > 0 (for all 2 > 0), 

(4.5e) bT(A + 2I ) -1e  < 1 (for all 2 > 0). 

From the singularity of A it follows that there exist an integer k > 1 and m x m 
matrices V and W with V # 0 such that 

(4.6) ( A + 2 1 )  -1 = 2 - k v  + 2 - k + l w  + o(2 -k+2) (2--*0). 

Considcration of (4.5c), (4.5d) and (4.5e) for small 2 > 0 shows that b T v  > O, 
lie >_ 0 and bTVe <_ O. As b > 0, this leads to 

(4.7a) b T v  = O, 

(4.7b) Ve = O. 

Realizing that A(A + 21)- 1 = (A + 21)- 1A = I - 2(A + 21)- 1, we see from (4.6) 
that 

(4~'8) A(A + 21) -1 = 2 - k V A  + 2 - k + I W A  + O(2 -k+2) = 

= I -  2-~+1V+ O(2 -~+2) (2--,0). 

Combining (4.8) and (4.5b) we obtain 

(4.9a) V A  = O, 

(4.9b) W A  >_ O. 
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Suppose k > 1. Then (4.8) and (4.9a) show that W A  = - V. By using (4.7b) and 
(4.9b) this leads to V = 0, which is a contradiction. Hence we may assume that 
k = 1, so that (4.8) and (4.9a) yield 

(4.10) W A  = I - E 

Note that the matrix W A  satisfies 

(4.11 a) W A x  = 0 

(4.11b) W A x  = x 

(for all x e Ker(A)), 

(for all x e Range (A)), 

where we have used (4.9a) and (4.10) to obtain (4.11b). It follows from (4.11) that 
Ker(A) c~ Range(A) = {0}, so that 

(4.12) Nm = Ker(A) (~ Range(A), 

where @ denotes the direct sum (cf. e.g. [25, p. 89]). From (4.11) and (4.12) we see 
that W A  is idempotent, i.e. ( W A )  2 = WA .  Further it follows from (4.7b), (4.9b) and 
(4.10) that W A  is stochastic, i.e. W A  > 0 and W A e  = e. Finally, since (4.7a), (4.10) 
and b > 0 imply b T W A  = b T > 0, the matrix W A  has no zero columns. Hence we 
have proved that W A  is an idempotent stochastic matrix without zero columns. 
Using the canonical form for idempotent stochastic matrices presented in [1, p. 66], 
it follows that there exists a permutation matrix P such that P W A P  T is a block 
diagonal matrix diag(S1, $2 . . . . .  St), where each block S~ is an idempotent stochastic 
matrix all of whose rows are identical. Note that the number of blocks r satisfies 
r = r a n k ( P W A P  r) < m, so that P W A P  T and therefore also W A  has at least two 
identical rows. Since (4.1 lb) implies A = (WA)A ,  we conclude that A has at least 

two identical rows as well. [] 

Combining Lemmas 4.5 and 4.6 we arrive at the following theorem. 

THEOREM 4.7. Let ( A, b) be an irreducible coefficient scheme. Then R( A, b) = co if 

and only i f  A is nonsingular and (4.4) holds. 

5. Conditional contractivity. 

5.1. Dissipative initial value problems. 

In Section 1 we defined ~ to be the class of all pairs (f, ]]'II) such that f is 
dissipative with respect to lI'tl- In this subsection we will replace the defining 
property (1.2) of the class o~ by equivalent conditions, which are easier to verify. 

Suppose that an integer s > 1 and a norm It'll on ~s are given. For  arbitrary 

z ~ ~\{0} and x, y ~ ~ we define 

m~[x,y] = z - t [ l lx  + vyll - llxll]. 
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It is easy to verify (cf. e.g. [28, p. 37]) that 

(5.1) m ~ [ x , y ] < m , [ x , y ]  f o r a l l x ,  y ~ R ~ a n d a l l z ,  a e R \ { O } w i t h z  < a .  

This guarantees the existence of the one-sided limits 

m + [ x , y ]  = l imm~[x ,y] ,  m _ [ x , y ]  = l imm,[x,y]  
riO ~?0 

for all x, y e W. Now we can formulate the following well-known theorem, which 

can be proved by using the material in [28]. 

THEOREM 5.1. Suppose that s > 1 is an integer, II " ll a norm on W and f a continuous 

function f rom R x R ~ into R ~. Then the jbllowing four  propositions are equivalent. 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(f, II" IL)~ ~ ;  

m,[~ - x ,  f ( t ,  ~ )  - f ( t ,  x)] <_ o 

m _  [:~ - x ,  f ( t ,  ~ )  - f ( t ,  x)] _< 0 

m+[:~ - x ,  f ( t , , 2 )  - f ( t , x ) ]  <_ 0 

for  all z < O, t ~ R and x, Yc ~ ~s; 

for  all t ~ R and x, ~ ~ ~s; 

for  all t E ~ and x, ~ ~ ~ .  

Note that it follows from (5.1) that m+[x , y ]  < m~[x,y] for all r > 0 and all 
x, y e R e. Hence the condition 

(5.6) m ~ [ Y ~ - x , f ( t , , Y ) - f ( t , x ) ] < O  for all t~ R and x , ~  W 

is at least as strong as (5.5) for any fixed z > 0. Introducing p = z-1 we can 
reformulate (5.6) as a so-called circle condition (cf. [7], [33], [39], [30], [31]), i.e. 

(5.7) [].f(t,~) - f ( t , x )  + p('2 - x)ll < pll~ - xll for all tER and x , 2 ~ R  ~. 

DEFINITION 5.2. For  given pc(0,  oo) we define ~ (p )  c o ~ as the class of all pairs 
(f,  t1"13 satisfying (5.7), where f is a continuous function from R × R e into W, s > 1 
and tt't[ is a norm on ~'. 

Contractivity properties of Runge-Kutta methods on the class ~-(p) will be 
studied in this section. In Section 6 we will consider the class ~ .  

5.2. Main theorem on conditional contractivity. 

In this subsection we present necessary and sufficient conditions on (A, b) to be 
contractive on if(p)  under a step size restriction h < H. 

DEFINITION 5.3. A coefficient scheme (A, b) is said to be contractive for the step 
size h and the pair (f, I1" II) if (1.5) holds whenever (1.3) and (1.4) are fulfilled. 

For  each integer s > 1 the maximum norm on R s is denoted by H" LI ~.  
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THEOREM 5.4. Let p, H~(O, oo) be given. Then, for any irreducible coefficient 
scheme (A, b), the following three propositions are equivalent. 

(P1) R(A,b) >_ pH; 

(P2) (A, b) is contractivejbr all step sizes h < H and all pairs (f, [1"1[)E~'~(P); 

(P3) (A, b) is contractive for all step sizes h < H and all pairs (f, I1"tI)e~(p) with 
[['[[ = [[' [I ~ and with a function f not depending on t. 

The proof of the above theorem follows from the implications (P1)=;-(P2), 
(P2) =~ (P3) and (P3) ~ (P1). The first implication will be proved in Subsection 5.3, 
the second is trivial and the third will be proved in Subsection 5.4. 

REMARK 5.5. We emphasize that Lemma 4.4 provides a simple algebraic char- 
acterization of all irreducible coefficient schemes with property (P1). 

REMARK 5.6. In [7] and [8] (see also [23] for an extension to irreducible schemes 
with ci = cj for some i # j) Dahlquist and Jeltsch studied property (P2), confining 
themselves to the case where the norms are generated by an inner product. They 
arrived at a criterion weaker than (P1), namely that the K-function must satisfy 
IK(Z)I < t for all Z = diag(zt, z2,...,zm) with z~eC, lz~ + pHI <_ pH and I - A Z  
nonsingular. For an algebraic characterization of this property we refer to loc. cit. 

REMARK 5.7. In [34] Spijker studied properties (P2) and (P3), confining himself 
to the case in which f has the form f ( t ,  x) - Lx, where L is a square matrix. He 
proved that both properties are equivalent to a property weaker than (P1), viz. 
absolute monotonicity of the stability function q~ on the interval [ - p H ,  0]. See also 
[151 [21], [22], [24], [33], [35], [36], [37]. 

REMARK 5.8. Note that it follows from the above theorem that an irreducible 
method is conditionally contractive on a given class o~(p) if and only if R(A, b) > O. 
In view of Theorem 4.2 this is equivalent to the conditions A >_ 0, b > 0 and 
Inc(A 2) < Inc(A). It is interesting to note that in the framework of inner product 
norms (cf. Remark 5.6) Dahlquist and Jeltsch [7] arrived at the weaker criterion 
b > 0 .  

5.3. Absolute monotonicity implies contractivity. 

In this subsection we prove the implication (P1)=~ (P2) of Theorem 5.4. We 
extend the notation of the previous sections by writing [xi] for the vector 

T T T T  (xl, x2 . . . . .  xm) whenever xx,xz  . . . .  ,x,, are given vectors in •k for some k > 1. 
Suppose that (P1) holds and let (f, [1" [I) ~ ~-(P) and h < H be given. Define r = ph. 
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Since R(A, b) > r, it follows from Lemma 4,4 that  (A, b) is absolutely monoton ic  at 
= - r and A > 0. N o w  assume that  relations (1.3) and (1.4) are fulfilled. Subtract-  

ing (1.3) f rom (1.4) we obtain 

(5.8a) dn = d,_ 1 + ~ bjwj, 
j = l  

(5.8b) vi = d , - i  + ~, aijwj (1 < i < m), 
j ~ l  

where dn = fin - u~, dn_ 1 = t~,_ 1 - un- 1, vi = .vi - Yi and wi = hf(t~_ 1 + cth, Yi) - 
hf( t ,_  1 + cih, yi). F r o m  (f, II" II) e ~ ( p )  we have (cf. Definition 5.2) 

(5.9) IIw~ + rv~ll < r IIv~ll (1 _< i _< m). 

In t roducing v = [vii ~ ~'~'~ and w = [wi]e  R ~'~ we can rewrite (5.8) as (cf. Subsec- 
t ion 2.1 for notat ion)  

(5.10a) dn = dn- 1 + b rw, 

(5.10b) v = e ® d , _ ~  + Aw.  

F r o m  (5.10b) it follows that  

(B + rA)v = e ® d,_ 1 + A(w + rv). 

In view of the nonsingulari ty of ! + rA this implies 

(5. I i) v = ((I + rA)-  ~e) ® dn- 1 + A(I + r A ) -  l(w + rv). 

Consequently,  using (I + r A ) - i e  > O, A(I + rA) -1 > 0 and (5.9), 

I-IIv~[I] -< Ild,-~ II (I + rA)-le + A(I + rA)- l[ l lwi  + rvill'l < 

< l ld.-~ll(I  + r A ) - l e  + rA(l  + ra)-x[llvill], i.e. 

(I + rZ)-l[liviH] < tld~-lll(I + rA) - l e .  

Since A > 0  implies I + r A  > 0 ,  we have [llvitt] < t ld . - l l le .  Hence we have 
proved 

(5.12) Ilv~tl < lld,-lll (1 < i < m). 

Further ,  (5.10a) and (5.11) yield 

dn = d, _ ~ + bTw = d,_ 1 - rbrv + br(w + rv) = 

= dn-1 - rbT{( ( /+  rA) -  ~e) ® d n -  1 + A(O + r A ) -  i(w + rv)} + bT(w + rv) = 

= (1 -- rbT(I + rA)- le)dn_ 1 + br( ! + r A ) - l ( w  + rv). 



504 J . F . B . M .  KRAAIJEVANGER 

In view of  ~o(-r)  _> 0, bT(l + rA) -1 >_ O, (5.9) and (5.t2) this implies 

Ildoll -< (1 - rbT(] + rA)-:e)IId,-all + bT(I + rA)-l[llw~ + rvil]] < 

< (I - rbT(I + rA)-~e)IId,-~ll + rbT(I + rA)-~[IIv~ll] < 

_< (1 - rbT(I + rA)-:e)IId,-lll  + (rbT(I + rA)-:e)IId,-lll = IId~-lll. 

Thus  we have shown contract ivi ty (1.5) and the p roof  of (P1) => (P2) is complete.  

5.4. Contractivity implies absolute monotonicity. 

In this subsection we prove the implication (P3) =~ (P1) of Theorem 5.4. For  any 

real s × s matr ix  F = (J]j) we define the matr ix norm IIFII ~ by IIFII ® -- max  { IIFxll ~o 
t x • ~  s, Ilxll~ = 1}. It is well known that  

(5.13) ItFt[®= m a x ~  If~jl. 
i j 

Further ,  for any r • (0 ,  o0), the set ~(r)  is defined as the set containing all block 
diagonal matrices Z = diag(Z1, Z2 . . . . .  Zm), where the blocks Z~ are real square 
matrices of the same (but arbitrary) order  s > t, such that  ~ - A7/ is  nonsingular  

and IIZ, + rill[® < r (I < i < m). 

In order  to show (P3) =~ (P1) we start  with a lemma which has the same fiavour 
as [18, Lemma 3.2] and 1"23, Lemma  3.6]. Roughly  speaking, this lemma states that  
any matr ix  K(Z) with 7/• ~(r)  will occur as 'error  propagat ion  matrix '  in the 
numerical  solut ion of a suitably chosen nonl inear  au tonomous  system of differential 
equat ions (1. la). 

LEMMA 5.9. Suppose (A,b) is an irreducible m-stage coefficient scheme. Let 
r G (0, ~ ) ,  an integer s >_ 1, an ms × ms matrix Z • ~(r) and vectors Uo, Uo • W be given 
with uo ~ Uo. Then there exist vectors Yi,:~i (1 <_ i <_ m) and a mapping g: R ~ ~ W 
such that 

(5.14) Yi = Uo + ~ aiig(yi), Yl = ~-o + ~ aijg(Yi) (1 _< i < m), 
J 1 

(5.15) t l g ( ~ ) - g ( x ) + r ( ' 2 - x ) l l ~  < r l l ~ - x ] l ~  ( f o r a l l x , ' 2 • ~ ) ,  

and such that the vectors ul and ill, defined by 

(5.16) u: = Uo + ~ bjg(yy), ffl = fig + ~ bjg(Yi), 
3 J 

satisfy 

(5.17) a:  - u: = ~(Z)(ao - Uo). 
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PROOF. Define v = [vl] e R m~ by v = (D - A Z ) -  l(e ® (ti o - Uo)), i.e. 

v i = f i o - U o + ~ a ~ j Z j v j  (1 < i < m ) .  
J 

Let e > 0 be defined as e = maxl Ilvl II ~. Since (A, b) is irreducible, it follows from 
Lemma  2.8 with ~ = ( - 2 r )  -1 that  there exist vectors p = (Pl,P2 . . . . .  pro) r and 
q = (ql, q2 . . . . .  q,~)T in ~m such that  q = Ap and 

q~ ~ q~, I(P~ - P~)/(ql - q j) + rl < r (for all i,j with i ~ j). 

Let  d be any vector  in ~ with ][d [[ o0 = 1. We define the vectors y = [y~], 37 = [Yi] 
and w = [wi] in ~ by 

y = e ® u o + 2 q ® d ,  ~ = y + v ,  w = 2 p ® d ,  

and the balls B~ in Rs by 

n~= { x l x E R  ~, I lx-yi l lo0<_e} ( l < i < m ) ,  

where 2 ~ (0, ~ )  is so large that these balls are pairwise disjoint and that  

2 - m i n l q i -  qj[ {r - I ( P ~ -  Pj)/(qi - qj) + rl} > 4er. 

Fur ther ,  we define a mapping g from V = B1 u B2 u . . .  u B,~ into ~s by 

g(x) = Zi(x  - Yi) + wi (for all i and all x e Bi). 

F r o m  the above  definitions it immediately follows that  y~, 37i ~ B~ for all i, so that  
g(y~) and g07~) are well defined. A straightforward calculation shows that (5.14) is 
fulfilled, that  the vectors ul and a~, defined in (5.16), satisfy (5.17), and that  

(5.18) I I g ( ~ ) - g ( x ) + r ( ~ - x ) I I ~ < r l l : ~ - x l l ~  (for all x , ~  v). 

The  p roof  of the lemma is completed by not ing that  the domain  of g can be 
extended from V to all of Es in such a way that  (5.18) becomes (5.15) (see e.g. [32, 
Corol lary  3.9] or  [40, p. 145]). III 

Our  next  lemma is a result on the max imum value of  the matr ix  no rm It N(Z)II ~o 
for Z e ~(r). 

LEMMA 5.10. Let  (A, b) be an arbitrary m-stage coefficient scheme and r e (0 ,  oo). 
Suppose that I + rA is nonsingular. Then 

sup {ll [K(Z)]I ~ ]Z e ~(r)} >_ 

[~p(--r)[ + ~ ~ ] f l i , ( - r )~ i , i~ ( - r ) . . .%_ , i~ ( - r )e i~ ( - r ) l r  k, 
k = l  il.,i2 . . . . .  ik 

where the functions eij, fll and ei are defined in (2.4). 
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PROOF. Let n >_ 1 be an arbi t rary integer. We will construct  a directed tree F.  

with s = 1 + m + m 2 + . . .  + m n vertices P1, P2 . . . . .  P~ and with each edge P~ ~ Pj 

labelled with one of  the labels (01, coz . . . . .  COm. The construct ion starts with the vertex 

P~, the roo t  of  F,,  and proceeds in n steps to the graph  F,. In the first step we add 

the m vertices P2, P3, . . . ,  P,, + 1 and the m edges P1 ~ P2, P1 -~ 1°3 . . . . .  PI ~ Pm + 1, 
labelled with 091, 092 . . . .  , ~Om, respectively. We call these m new vertices the vertices 

\ 
at level one. In  the second step of  the process we at tach to each vertex at level one, 

m new edges, labelled with cot, co2 . . . . .  co,,, and pointing to m new vertices. This leads 
to m 2 new vertices, the vertices at  level two. Proceeding in this way we finally add 

m" new vertices and the same number  of  edges in the n-th step to obtain  F ,  (see 

Figure 1). 

( 

Fig. 1. The graph F2 if m = 3. 

For  i = 1, 2, . . . .  s the ith s tandard  basis vector in N~ is denoted by e~. We define 

the s x s matrices WI, W2 . . . . .  W,, by 

(5.19) Wz = E re~e~ 
i, j :  edge Pi --Pj occurs in Fn with label o t 

for all l = 1, 2 . . . . .  m. One  easily verifies that  

(5.20a) IIW~II~ = r for all I ~ ,  

(5.20b) Wi~W~... Wi,+1 = 0 for all i l ,  i2 . . . . .  i ,+1 ~ , g ,  

(5 .20c )  e ~ W ~ w ~ 2 . . ,  w~ k = ~ T r ej for all k = 1,2 . . . .  ,n and all i l ,  i2 . . . . .  ik, w h e r e j  is 

the index of the vertex Pj you arrive at when you start in P1 and follow the 

path  labelled coi~, coi~ . . . . .  co~k" 

If we define the block diagonal  matrix 7 / = d i a g ( Z 1 , Z 2  . . . . .  Zm) by 
7 / =  - r 0  + W, where W is the block diagonal  matrix V4 = diag(W~, W z , . . . ,  W,,), it 
follows f rom the nonsingular i ty  o f / +  rA and from (5.20b) that  I - AT/is nonsin- 
gular with inverse given by (2.5) (Take ¢ = - r here and note that  the series in (2.5) 
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is in fact finite with k running from 0 to n). Hence, in combination with (5.20a), we 
have proved that Z~ @(r). Further it is easy to see now that ~(Z) is given by (2.6) 
(Take again ~ = - r  and note that only values k < n are relevant), so that the first 
row of ~(Z) is given by 

k = l  il~i2~... ,ik 

where the entries ~o, fl~ and e~ are evaluated at ~ = - r .  Since different choices of 
k = 1, 2 . . . .  , n and i~, i z , . . . ,  ik ~ dg lead to different values of the index j in (5.20c), it 
follows from (5.13), (5.20c) and the above expression for eTK(z) that 

II~(~)ll~ > ko(-r)l + ~ E Ifli~i,i~"'~i~-~iuei~[ r~" 
k = l i ~ , i z  . . . . .  i~ 

The fact that n > 1 was arbitrarily chosen concludes the proof. • 

With the help of Lemmas 5.9 and 5.10 we will prove (P3) =:-(P1). 
We assume that (P3) holds. Let r be an arbitrary number in (0, pHI such that 

I + rA is nonsingular. Further, let an integer s > 1, an ms x ms matrix Z ~.@(r) and 
vectors Uo, ~o ~ ~ be given with Uo # t~o. We define the mapping g and the vectors 
ul , fq ,  Yi, Y~i as in Lemma 5.9. One easily verifies that relations (1.3) and (1.4) are 
fulfilled if we take n = 1, h = r/p, to = 0 and f defined by 

f ( t ,  x) = h-  lg(x ) (for all t ~ R and x ~ R~). 

Since it follows from (5. t 5) that (f, I1" tl oo) ~ ~(P) and from r e (0, pHI that h _< H, 
an application of (P3) yields llgl - ulLl~ < II~o - uolt~. In view of (5.17) and the 
fact that Uo and go were arbitrarily chosen (with Uo ¢ ~o), we may conclude that 
H ~(Z)lf 0o < 1. Since also Z s @(r) was arbitrarily chosen, it follows from Lemma 
5.10 that 

(5.21) ko(-r)t + ~ ~ lflq(--r)oq~iz(--r)...o~ik_d~(--r)eik(--r)lr k < 1. 
k = l  i l , i~ , . . . , i k  

Further, by taking ~ = - r  and scalar W~ = W2 . . . . .  Wm in (2.6)it follows that 
the Taylor series of 69 about z = - r is given by ~ff= o ?k(Z + r) k, where 

(5.22a) ~o = ~o(-r), 

(5.22b) 7k = ~ flil(--r)~qi2(--r) . . .  ~ik_,ik(--r)~i~(--r) (for all k > 1). 
i1,12 . . . . .  ik 

In view of (5.21) we have ~',~= o I~kl ? < t, so that the radius of convergence of the 
Taylor series is larger than r. Thus we have 

~ ?kr k = ~o(0) = 1. 
k=O 
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In combination with (5.21) and (5.22) this implies that q~(- r) and all terms of the 
sum in the right hand side of (5.22b) are nonnegative (for all k > 1), i.e. we have 
proved absolute monotonicity of ~ at ~ = - r  (cf. Definition 2.3). By Lemma 2.5, 
K is absolutely monotonic at ¢ = - r  as well. Since r was an arbitrary number in 
(0,pHI such that I + rA is nonsingular, it follows from Lemma 3.7 that K is 
absolutely monotonic on [ - p H ,  0). Using Lemma 3.2 we see that K is absolutely 
monotonic on [ -  pH, 0]. An application of Theorem 3.8 shows that R(A, b) >_ pH, 
i.e. (P1) holds. This completes the proof of (P3) =~ (P1). 

6. Unconditional eontractivity. 

In this section we will give necessary and sufficient conditions on (A, b) to be 
contractive on ~ for all step sizes h > 0. 

THEOREM 6.1. For any irreducible coefficient scheme (A, b) the following three 
propositions are equivalent. 

(Q1) R(A,b)= ~ ;  

(Q2) (A, b) is contractive for all step sizes h > 0 and all pairs ( f  II'I[) ~ ~ ;  

(Q3) (A,b) is contractive for all step sizes h > 0 and all pairs ( f  II'II)~Y with 
li 'll = II'll ~ and with a function f not depending on t. 

PROOF. The implication (Q2)=>(Q3) is trivial. To prove the implication 
(Q3) => (Q1), we note that (Q3) implies (P3) for all p, He(0,  co). The implication 
(P3) ~ (PI) in Theorem 5.4 then establishes (Q3) ~ (Q1). 

w e  complete the proof of the theorem by showing (Q 1) =~ (Q2). Assume that (Q 1) 
holds. It follows from Theorem 4.7 that A is nonsingular, A-1 is an M-matrix, 
A - l e  >>_ O, bTA- 1 > 0 and bTA- le _< 1. We choose a real number 2 > 0, which is 
so large that 

(6.1) 21 -- A -~ _> 0. 

To prove (Q2) we assume that (f, II" 11) e f f  and h > 0 are given, and that relations 
(1.3) and (1.4) are fulfilled. Using the same notation as in Subsection 5.3 we see that 
(~ 10) holds. In view of Theorem 5.1 we have (5.3), so that 

(6.2) Ilwi- 2v~[I _> 2 jlv~]l (1 _< i _< m). 

From (5.10b) it follows that 

w - 2v = - ( A - t e ) ® d , _ l  - (2U - A-1)v. 

In combination with (6.2), A - l e  > 0 and (6.1) this implies 

2[[jv~I[] _< tjd,-ill A - l e  + (21 - A-1)[l[vi[l], i.e. 
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A-I[I[viH] _< I[d._11tA-le. 

Since A >__ 0 we have [[[v~[[] _< [[d._l[[e. Hence we have proved 

(6.3) tlv,[t < l[d,-llt (1 _< i _< m). 

Further, (5.10) yields 

d, = d,-a + bT(A-lv -- (A- 'e )  ® d,-1) = (1 - bTA-le)d,_l + ~ tA-%.  

Using bTA- le < 1, bVA- ' > 0 and (6.3) we obtain 

IId, II < (1 - bTa-le)Ild,-l l l  + bWZ-l[llv, ll] < 

< (1 - bTZ-Xe)I]d,-lll + (bTh-le)I[d,-tll = Ild,-~ll. 

Thus we have shown contractivity (1,5) and the proof of (Q1)=>(Q2) is com- 
plete. III 

REMARK 6.2. We emphasize that Theorem 4.7 provides a simple algebraic char- 
acterization of all irreducible coefficient schemes with property (Q1). 

REMARK 6.3. Burrage and Butcher [3] and Crouzeix [6] (see also [18] for an 
extension to irreducible schemes with ci = cj for some i ~ j) studied property (Q2), 
confining themselves to the case where the norms are generated by an inner product. 
They arrived at a criterion weaker than (Q1), namely that the K-function must 
satisfy ]K(Z)[ < 1 for all Z = diag(zl, z 2 . . . .  ,Zm) with zinC, Re(z~) < 0 and I - AZ  
nonsingular (cf. also Remark 5.6). For an algebraic characterization of this property 
we refer to loc. cit. 

REMARK 6.4. Spijker [34] studied properties (Q2) and (Q3), confining himself to 
the case in which f has the form f ( t ,  x) =- Lx, where L is a square matrix. He proved 
that both properties are equivalent to a property weaker than (Q1), viz. absolute 
monotonicity of the stability function q~ on the interval ( -  oo, 0] (cf. also Remark 
5.7). 

7. Solvability of the systems of equations. 

In Theorems 5.4 and 6.1 we presented necessary and sufficient conditions for 
conditional contractivity on ~(p)  and unconditional contractivity on ~ ,  respect- 
ively. It should be realized that the property of contractivity, as defined in Definition 
5.3, does not comprise the (unique) solvability of the systems of equations (1.3b) 
and (1.4b). Contractivity only means that (1.5) holds whenever (1.3) and (1.4) are 
fulfilled. Obviously, the mere property of contractivity, without solvability of the 
systems of equations, is of little value. It is therefore a lucky circumstance that the 
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condi t ions  which are necessary and sufficient for contractivi ty,  turn out  to be 
sufficient for unique solvabil i ty of  the systems of equations.  

THEOREM 7.1. Let (A, b) be a given irreducible coefficient scheme. 
(a) I f  p, h ~(0, oo) and R(A, b) > ph, then (1.3b) has a unique solution y = [yl] when- 

ever (f, If" II) ~ ~(P) ;  
(b) I f  R(A,b) = oo, then (1.3b) has a unique solution y = [y/] whenever (f, El" f[)E ~" 

and h > O. 

PROOF. (a) Let  p, he(O, ~) ,  ( f  II" I I ) ~ ( p ) ,  t . - l e ~  and u , _ l e N  s be given and 
assume R(A, b) >. ph. We will p rove  that  (1.3b) has a unique solution y = [Yi] e Nms 
by showing tha t  G(y) = 0 has a unique solution. Here  G: N,,s ._. Rms is defined by 

G(y) = [G,(y)] = y - e ® u , -  1 - AF(y) (for all y = [y,]  e Rms), 

where F: ~ras --9. ~ms is defined by 

F(y)  = [hf(t,_ 1 + c~h, Yi)] (for all y = [y~] e ~"~). 

Suppose  that  y = [y~], p = [Pi] and d = [di] are given in R,,s such that  

G(33) - a(y) = d. 

In t roduc ing  v = [vii = ~ - y and  w = [w~] = F@) - F(y), we find 

(7.1) d = v - / ~ w  = (l + rA)v - ~(w + rv), 

where r is defined as r = ph. As in the p roo f  given in Subsection 5.3, we m a y  assume 
tha~ (5.9) holds, that  (A, b) is absolutely mono ton ic  at ~ = - r  and that  A > 0. By 

(7.1) and  the nonsingular i ty  of  I + rA, 

v = (n + r A ) - l d  +/~(0 + r ~ ) - l ( w  + rv). 

In  view of A(I + rA)-  1 > 0 and (5.9) this implies 

[llv/ll] < I(I + rA)- t l  [Ild~ll] + rA(I + rh)-l[IIvill], i.e. 

(I + ra)-l[llv/ll] <_ 1(I + rA)-l[ [[[d/}[]. 

Using I + rA > 0 we obta in  

(7.2) lily/t[] <- (I + rA)[(I + rA)-11 [lid/I1]. 

Hence  we have proved  that  for all y, 33 E R "~ we have 

(7.3) 11133 - YlII -< ~' 11IG(33) - G(y)III, 

where 7 = I1(I + rA)}(I + rA)- l l  I1® (cf, (5.13)) and where the n o r m  Iit'111 on ~ ' s  is 
defined by lllzlll = max1 _< ~ _<,, IIz~ II for all z = [z~] ~ [~"~. I t  follows f rom [19, L e m m a  
4.2] ( take q~(z; t) = ~,t here) tha t  G(y) = 0 has a unique solut ion y ~  ~" ' .  This  com-  

pletes the p roof  of  par t  (a). 
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(b) Let  GItII )~Y,  h > 0 ,  t . _ l e ~  and u , _ i E R  s be given and assume 
R(A, b) = ~ .  Suppose that  y, ~, d, v, w and G are defined as above. As in the proof  
of Theorem 6. t we may  assume that  A is nonsingular,  that  A > 0 and that  (6.1) and 
(6.2) hold for some real number  2 > 0. Since (7.1) holds with r = - 2, it follows from 
the nonsingular i ty  of A that  

w - 2v = - A - id - (2~ - / ~ -  i)v. 

Using (6.2) and (6.1) we obtain 

2[llv, ll'l < Ia-~l  [lid, Ill + (21 - h- i)[ l lvi t [] ,  i.e. 

a-llllv~l[-I -< I a - l l  I-IId~ll]. 

But then A > 0 yields 

(7.4) [llv~ll] -< A I a - l l  [lld~ll], 

so that  (7.3) follows with ? = II a ]A- i  I II 0o. As in the proof  of part  (a), this implies 
that  G(y) = 0 has a unique solution y e Rmt This completes the p roof  of par t  
(b), • 

For  a given approximat ion  u,_ 1 it is usually impossible in practical computa t ions  
to find u,, Yl, Y2,... ,  Ym such that  the relations (1.3a) and (1.3b) are satisfied exactly. 
Instead we find ft,, 91, Y2,.. . ,  9,, satisfying 

(7.5a) ft, = u,_ i + h ~ bif( t ,_ 1 + cih, fl~) + ~, 
j = l  

(7.5b) ~ = u . - i  + h ~ aiif(t ._l  + cjh, fj) + di (1 < i < m). 
j = l  

It is impor tan t  to know whether  the effect of the residuals 6 and d, is moderate .  
We are interested in bounds for IIPi - y,[I and lift. - u. II. 

THEOREM 7.2. Let (A, b) be a given irreducible coefficient scheme. 
(a) Suppose that p, h e(O, oo) satisfy ph <_ R(A, b) and that (f, ll'lT) ~ ~(p). 

If(1.3) and (7.5) are fulfilled, then we have the bounds 

(7.6a) [1t~9i - yl It] -< (I + rA)[(I + rA)-1[ [][di f[], 

(7.6b) Ila. - u, FI < [l~ll + rbr{(I + rA) -i  + I(I + rA)-ll}[[[d,[[], 

where r = ph. 
(b) Suppose that ( f  t1"11)~,  h > 0 and R(A,b) = ~ .  If(1.3) and (7.5) are fulfilled, 

then we have the bounds 

(7.7a) []rPi - Yill] < A IA-11 l-IId, ll], 

(7.7b) I l a , -  u, II < I1,~11 + bT{ A - '  4"fa-ll}l-IId, lt]. 
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PROOF. (a) Inequality (7.6a) follows immediately from (7.2). Further, using the 
same notation as in the proof of Theorem 7.1, we have 

fin -- Un = 6 -4;- ~Tw = 6 -t- ~T(D + r/~)-i(w q- rv) -- r~T(l --1- r~)  id. 

In view of bT(1 + rA)- 1 > 0, (5.9) and (7.2) this implies 

flfi, - u, ll --- It6{I + rbT(I + rA)-l[llv, ll]+ rbT(I + rA)-*[lld, II] <_ 

_< IlOll + rbTl(I + rA)-l[ [lld;ll] + rb'(I + rA)-~[lldil]], 

which establishes (7.6b). 
(b) Inequality (7.7a) follows immediately from (7.4). Further, using the same 

notation as in the proof of Theorem 7.1, we have 

f t , -  u,, = 6 + b'rw = 6 + b T A - i v - -  bTA-ld.  

In view of bTA - i >_ 0 and (7.4) this implies 

tl~. - u.tl -< tWII + bTA-a[llvill] + bTA-l[Hdit]] <-- 

-< I[~11 + bTta-'l [lld, ll] + bTA-i[lld, ll], 

and the proof of the theorem is complete. • 

REMARK 7.3. We mention that the error bounds (7.6) and (7.7) are best possible 
in the sense that all entries o f ( / +  rA) 1(I + rA)- II, rbr{(I + rA)- 1 + I(I + rA)- 11}, 
A [A-at and br{A - i + IA-ll} are minimal. This can be proved by adapting the 
results on C~(7/), presented in Lemmas 5.9 and 5.10, to the case of (~ - AZ)-1 and 
ba~Z(B - AZ)-  1. Note that it follows from the sharpness of the bounds (7.6a) and 
(7.6b), combined with the fact that x~(p) c ~ ( a )  whenever 0 < p _< a < 0% that the 
entries o f ( / +  rA)I(I + rA)- i t and rbT{(I + rA)- i + i(I + rA)- if} are nondecreas- 
ing functions of r. This can also be proved directly, by exploiting the absolute 

monotonicity of (A, b). 

REMARK 7.4. We emphasize that (7.6) and (7.7) are error bounds that hold 
uniformly for all ( f  1111) in •(p) or ~ ,  respectively. Following the terminology 
introduced by Frank, Schneid and Ueberhuber in [12] (see also [9]), the error 
bounds (7.6a) and (7.7a) can be regarded as BSl-stability bounds on the classes 
i f (p)  and o~-, respectively, and the error bounds (7.6b) and (7.7b) as BS-stability 
bounds on these classes. 

REMARK 7.5. Note that in the situation of part (b) of Theorem 7.2 the matrix A-  i 
is an M-matrix (cf. Theorem 4.7), so that we can write A-  x = diag(A- l) _ E, where 
diag(A l) > 0 is the diagonal of A-  1 and E > 0 has zero diagonal. Hence the error 

bounds (7.7a) and (7.7b) can be reformulated by using A IA-II = 2A diag(A-l)  _ I 
and A - 1 + IA- i I = 2 diag(A- 1). Similarly, the error bounds (7.6a) and (7.6b) can be 
reformulated by using (1 + rA)I(I + rA)-II = 2(1 + rA)diag((I + rA)-~) - 1 and 



CONTRACTIVITY OF RUNGE-KUTTA METHODS 513 

(I + rA)-t  + I(I + rA)-11 = 2 diag((I + rA)-1), since (I + rA)-1 is an M-matrix as 

well (cf. the proof of Lemma 4.4). 

8. Orders ofaceuraey. 

8.1. Classical order p and stage order ~. 

In this section we consider the impact of the conditions R(A, b) > 0 (for condi- 
tional contractivity, cf. Theorem 5.4) and R(A, b) = ~ (for unconditional contrac- 
tivity, cf. Theorem 6.1) on the order of accuracy. We will distinguish between two 

different orders of accuracy. 
The first order of accuracy we will consider is the classical order of consistency p, 

which is defined as the maximum integer such that for all problems (1.1) with 
a sufficiently smooth function f (all partial derivatives of order at most p + 1 must 
exist and be continuous in a neighbourhood of the solution trajectory), the error 
after the (fictitious) step ft,_ 1 = U ( t ' n  - 1) ~ fin can be bounded by 

(8.1) IIU(t.) - -  finH < ChP+l (for all h~(0,H]). 

Here the constants C and H may depend on the problem, in fact on the magnitude 
of the partial derivatives of f. For more details we refer to the books [5], [17] and 
[38]. In the situation that (f, I1" 11)~ ~-(P) or (f, II"11)e ~' ,  we can combine contrac- 
tivity (cf. Theorems 5.4 and 6.1) and consistency of order p (of. (8.1)) in a standard 
way (cf. e.g. [11, pp. 761-762]) to obtain a bound for the global error, 

(8.2) ILU(t,) - u,[t < (t, - to)Ch p (for all he(0,/ /]) .  

If the function f is not smooth, the constant C in (8.1) and (8.2) may become very 
large (and the constant H very small), even if the exact solution U is smooth. In 
this case the above error bounds are useless, and we have to replace them by robust 
error bounds, which are not affected by a lack of smoothness of f. Robust error 
bounds can be obtained by considering the staoe order ~ of (A, b), which is defined 
as the maximum integer l such that B(l) and C(1) hold. Here the so-called simplifying 
conditions B(l) and C(1) are defined by 

~b~c~ = (for all k = 1,2 . . . .  ,l) and 
1 1 

i = 1  k 

a u c j k - x = l c ~  (for a l l i = l , 2  . . . . .  m a n d k = l , 2  . . . .  ,l), 
j = l  ~ v  

respectively. It is well known that p < p (cf. e.g. [9]). Combining the results on 
contractivity (Theorems 5.4 and 6.1) with those on BS-stability (Theorem 7.2) in 
a standard way (cf. e.g. [9]), we arrive at the following theorem. 
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THEOREM 8.1. Let (A, b) be a given irreducible coefficient scheme with stage order ~. 
(a) Suppose that p, H ~ (0, ~ ) are such that p H <_ R( A, b ). Then,for all problems (1.1) 

with ( f  If'H)6.~(P) and with a t~ + 1 times continuously differentiable solution U, 
the error bounds (8.1) and (8.2) hold with p replaced by ~ and with C = c~p, where 
ct is a constant depending only on (A, b) and # is an upper bound for [I U(b'+ 1)(t)[1 
for all t >_ to. 

(b) Suppose that R(A,b)= ~ and He(0,  oo]. Then, for all problems (t.1) with 
( f  l[" [[) E ~ and with a ~ + 1 times continuously diff erentiabIe solution U, the error 
bounds (8.1) and (8.2) hold with p replaced by ~ and with C as in part (a). 

Clearly the concept of stage order fits very well in our framework, and we have 
derived an error bound (8.2), where the constant C depends only on the smoothness 
of the exact solution U, and where the maximum step size in case (a) is given by 
H = R(A, b)p- 1. We emphasize that this error bound does not require any smooth- 
ness of the function f apart from (f, I1" I[)~ ~ ( p )  or ( f  I1' II)~ g ,  and that the bound 
does not depend on problem dependent quantities like the dimension s or the norm 
I1" II. Further we mention that in case (a) the step size restriction h < R(A, b)p- I can 
become very severe if p is large, which is the case, for instance, if (1.1) is stiff. 

REMARK 8.2. Following the terminology introduced by Frank, Schneid and 
Ueberhuber (cf. [13], [11], [9]), the error bounds of Theorem 8.1 can be regarded 
as (optimal) B-convergence bounds on the classes if(p) and f f  (cf. also Remark 7.4). 

For unconditional contractivity we mention the following negative result. 

THEOREM 8.3. Let ( A, b) be an arbitrary coefficient scheme with R( A, b) = oo. Then 
p <_ 1 (and hence also p <_ 1). 

PROOF. If R(A, b) = oo then it follows from Lemma 2.5 that the stability function 
q~ is absolutely monotonic on ( - o G 0 ] .  Further we have ~o(z) = exp(z) + O(z p+I) 
as z ~ 0 (cf. e.g. [5, pp. 241-242]). It follows from [2, Lemma 2] (see also [34, 
Theorem 2.5] or [9, Lemma 2.3.6]) that p < 1. • 

As an illustration to the above theorem we consider the class of methods with 

tableau 

0 0 

1 

where 0 e ~. Using Theorem 4.7 one easily verifies that R(A, b) = oo if and only if 
0 _> 1. In this case we have p =/~ = 1. 

In view of the order barrier i6 _< p <_ 1 for coefficient schemes with R(A, b) = oc, 
the question arises whether there exist order barriers for coefficient schemes with 
R(A, b) > 0. This question will be answered in Subsections 8.2 and 8.3. 
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REMARK 8.4. The order barrier p < p < 1 for unconditional contractivity on 
#- disappears if we would have restricted ourselves to inner product norms (cf. 
Remark 6.3). For  example, the well-known Gaussian Runge-Kutta method with 

m _> 1 stages is unconditionally contractive for all ( f  [1"11) ~ ~ where I['1[ is generated 
by an inner product, and is known to have stage order/~ = m and classical order 
p = 2m (cf. e.g. [9]). 

8.2. Barriers for  the stage order p when R(A, b) > O. 

In this subsection we determine the maximum stage order ff for coefficient 
schemes with R(A, b) > 0. The following theorem was pointed out to us by J. C. 
Butcher. 

THEOREM 8.5. (J. C. Butcher; private communication 1989). Let  (A,b) be an 

arbitrary coefficient scheme with A > O. Then the stage order ~ is at most 2. Further, 

i f  p = 2 then A has a zero row. 

PROOF. Suppose (A, b) is such that A >_ 0. We shall prove that/~ > 2 implies that 
A has a zero row, and that/~ > 3 is impossible. 

1. Suppose that /~ > 2. Without loss of generality we may assume that 
0 < cl < c2 _< ... < c,,. From C(2) we obtain 

z 

(8.3) q(x) dx = aijq(cj) 
j = l  

for all polynomials q of degree at most one and all i = 1, 2 . . . . .  m. Taking i = 1 and 
q(x) - x - cl it follows that the right hand side of (8.3) is nonnegative. With this 
choice the left hand side is nonnegative only if cl = 0. Hence cl = 0, so that the 
first row of A must be zero. 

2. Suppose that p > 3. Then B(3) holds, so that not all cl are zero. In view of part 
1 we may therefore assume that there exists an index i > 2 such that 
0 = C 1 . . . . .  C i -  1 < c~ < ... < Cm. From C(3) it follows that (8.3) holds for all 
polynomials q of degree at most 2. Taking q(x) = x(x  - c~), the left hand side of 
(8.3) is seen to be negative, whereas the right hand side is nonnegative. This is 
a contradiction and the proof of the theorem is complete. • 

We see immediately from the above theorem that coefficient schemes (A, b) with 
R(A, b) > 0 suffer from an order barrier i0 < 2. That the order/~ = 2 can be attained, 
follows from consideration of the family 

0 0 0 
 0-1 ¼0-1 ¼0-1 

1 - 0  0 
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where 0~(0, 1). All these methods have stage order i6 = 2, and it follows from 
Theorem 4.2 that their radius of absolute monotonicity R = R(O)is positive as well. 
In fact we have R(O) = 40 (if 0 < 0 < 2/3) and R(O) = 40(1 - 0)(20 - 1)-1 (if 
2/3 _< 0 < 1). The maximum value R = 8/3 is attained for 0 = 2/3. ff we select the 
value 0 = 1/2, we get the familiar trapezoidal rule with R = 2. A method with 
classical order p = 3, due to Hammer and Hollingsworth (cir. e.g. [ 17, pp. 200-201]), 
is obtained by cffoosing 0 = 3/4, leading to the value R = 3/2. 

For  explicit methods (i.e., methods with a i i=  0 when j > i) we note that their 
stage order i6 can never exceed one (cf. e.g. [7, Theorem 4.4]). 

8.3. Barriers for the classical order p when R(A, b) > O. 

In this subsection we derive an upper bound for the classical order p tbr explicit 
and implicit methods with R(A, b) > O. 

LEMMA 8.6. Let (A, b) be an arbitrary coefficient scheme with b > O. I f  the classical 
order satisfies p > 2k + 1,for some integer k >_ 0, then the stage order ~ is at least k. 

PROOF. It is well known that if p is the classical order, then B(p) holds (cf. e.g. 
[4]), and hence also B(k). Further it was proved in [16] that ifb > 0 and p > 2k + 1, 

then C(k) holds. • 

COROLLARY 8.7. Let (A, b) be an arbitrary coefficient scheme with A > O, b > 0 
and classical order p. Then we have p <<_ 6for implicit schemes and p <_. 4for explicit 
schemes. Further, if p >_ 5 then A has a zero row. 

P~oov. For explicit methods the assertion follows from Lemma 8.6 and the fact 
that the stage order cannot exceed one (see the end of Subsection 8.2). For  implicit 
methods the assertions are established by a combination of Theorem 8.5 and 

Lemma 8.6. • 

A combination of Corollary 8.7 and Theorem 4.2 shows that the property 
R(A, b) > 0 induces an order barrier p < 4 for explicit methods, and an order barrier 
p < 6 for implicit methods. The bound for explicit methods is sharp, as can be seen 

from the method 

0 
2/5 2/5 
3/5 1/10 1/2 
1/2 1/16 1/16 3/8 
1 1/10 1/10 4/15 8/15 

5/32 25/96 25/96 1/6 5/32 
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This method has classical order p = 4, while Theorem 4.2 shows that R(A,  b) > O. 

For implicit methods it is not known whether p = 6 can be achieved, but p = 5 is 
certainly possible, as is seen from the following method, which was constructed with 
the help of J. C. Butcher (private communication, 1989), 

0 
1/4 
1/2 
3/4 
1 

0 
1/8 1/8 
1/24 5/12 1/24 
1/32 7/16 5/32 1/8 
3/14 1/7 1/14 4/7 0 

7/90 16/45 2/15 16/45 7/90 

It follows from Theorem 4.2 that this method with classical order p = 5 satisfies 
R(A, b) > O. 

REMARK 8.8. In case we would have restricted ourselves to inner product norms, 
the condition R(A, b) > 0 for conditional contractivity on ~,~(p) would be weakened 
to the condition b > 0 (cf. Remark 5.8). In this case the order barrier p < 4 for 
explicit methods remains valid (cf. [7]), but the order barriers/~ _< 2 and p _< 6 for 
implicit methods disappear (cf. Remark 8.4). 

9. Optimal explicit methods. 

In this section we study, for given integers m and p, the maximum of R(A, b) on 
the class of explicit Runge-Kutta methods with m stages and classical order at least 
p. In Subsections 9.1 and 9.2 we solve this optimization problem completely for the 
cases p = 1 and p = 2, respectively. In Subsection 9.3 we determine the optimal 
methods for p = 3 and m = 3, 4. Finally, in Subsection 9.4, we present results for 
the maximal order p = 4 (cf. Subsection 8.3) and m = 4, 5. 

The following lemma will be the key result for solving our optimization problems 
in case p = 1, 2, 3. 

LEMMA 9.1. Let  (A, b) be an arbitrary explicit coefficient scheme with m stages and 
classical order at least p, where 1 <_ p <_ m. Then R(A, b) <_ m - ' p  + 1. Further, i f  

R(A, b) = m - p + 1 then, for  all integers k with p - 1 <_ k < m - 1, all k-th order 
partial derivatives o f  the K-function at Z = - ( m  - p + 1)1 are zero. 

PROOF. Let (A, b) denote an explicit coefficient scheme with m stages and classical 
order at least p, where 1 < p < m. Then the stability function q~ is a polynomial of 
degree at most m satisfying ~ z ) =  exp(z)+ O(z p+I) (as z-~0) (cf. e.g. [5, pp. 
241-242]). By Lemma 2.5 the stability function ~0 and the K-function K are 
absolutely monotonic on ( - r ,  0], where r = R(A, b). It follows from Theorem 2.1 
in [21] that r < m - p + 1. Further it is easy to see from the proof of this theorem 
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that r -  m - p  + 1 is only possible if qg(k)(--r)-----0 for all integers k with 
p - 1 < k < m - 1. Using the absolute monotonicity of K at ~ = - r and the fact 
that ~a(z) - K(z, z . . . .  , z), we see that in this case the k th order partial derivatives of 
K at Z = - r I  must  be zero as well for these integers k. • 

9.1. Optimal methods with p = 1. 

In this subsection we maximize R(A, b) over the class of explicit Runge-Kutta 
methods with a fixed number  of stages m. We assume that p _> 1 (or, equivalently, 

p > 1), i.e. 

(9.1) b~ + b2 + ... + b,, = 1. 

THEOREM 9.2. Let m > 1 be given. Then we have R(A, b) < m for all explicit 

m-stage coefficient schemes (A, b) with classical order p >__ t. Further we have 
R(A, b) = m for exactly one of  these coefficient schemes, This scheme is defined by 

a~j = l /m (l < j < i <<_ m) and bi = 1 / m ( l < i < m ) .  

PROOF. First note that the scheme specified above has order p -- 1 and a K- 

function given by 

(9.2) K(Z)  = (t + zl/m)(1 + z2/m). . .  (1 + z,,/m). 

Clearly this function is absolutely monotonic on [ - m ,  0]. It  follows from The- 

orem 3.8 that R(A, b) >_ m for this scheme. 
Now suppose that (A, b) is an arbitrary explicit m-stage coefficient scheme with 

p _> 1 and R(A, b) >_ m. Then Lemma 9.1 shows that R(A, b) = m and that the 

K-function has the form 

K(Z) = V(zl + m)(z2 + m).. .  (Zm + m), 

where V is a real (nonnegative) constant. Since K(0) = 1, we have V = m - m  so that 

K is given by (9.2), i.e. 

K(Z)  = 1 + m -  1 ~ zl + m -  2 ~ ,~iZ j ..~ . . . .  
i i > j  

Compar ing  the latter expansion with the expansion that is obtained after substi- 

tution of ~ = 0 and s = 1 in (2.6), 

(9.3) K(Z)  = 1 + ~ bizl + ~ blaijzizj + . . . .  
i i > j  

we conclude that (A, b) must be equal to the scheme specified in the theorem. • 

Note  that  the optimal method in Theorem 9.2 is nothing but a cyclic application 
of Euler's method with step size him. This method was found to be optimal within 
the framework of inner product norms as well, cf. E7, Theorem 5.1]. 
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9.2. Optimal methods with p = 2. 
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In  this subsect ion we maximize  R(A, b) over the class of  explicit Runge -Ku t t a  
me thods  with a fixed n u m b e r  of  stages m and with classical order  at  least 2, i.e. (9. I) 
holds as well as 

(9.4) blc l  + b2c2 + . . .  + bmc,, = ½. 

THEOREM 9.3. Let  m >_ 2 be given. Then we have R(A, b) <_ m - 1 for  all explicit 

m-stage coefficient schemes (A, b) with classical order p > 2. Further we have 

R(A, b) = m - 1 for  exactly  one o f  these coefficient schemes. This scheme is defined 
by aij = (m - 1)-1 (1 < j < i < m) and bi = m - 1  (1 _< i < m). 

PROOF. First  note  that  the scheme specified above  has order  p = 2 and is abso-  

lutely m o n o t o n i c  at  ~ = - (m - 1). It  M l o w s  f rom L e m m a  4.4 that  R(A, b) > m - 1 
for this scheme. 

N o w  suppose  that  (A, b) is an arb i t ra ry  explicit m-stage coefficient scheme with 
p > 2 and R(A, b) > m - 1. Then  L e m m a  9.1 shows that  R(A, b) = m - 1 and  that  
the K-funct ion  has the form 

K(Z)  = 7t + 72(zl + m - l ) ( z  2 + m - 1). . .  (zm + m - 1), 

where 71 and 7z are real (nonnegative) constants.  Since (9.1) and  (9.3) imply K(0) = 1 
and  ~i(~K/&i)(O)  = 1, we obta in  71 = m -1 and ~2 = m - l ( m  - 1) 1 - " ,  so that  

= - - +  1 +  1 +  1 +  = 
m m m - 1  ' "  

= 1  + l E z i +  1 
m i m(m -- 1) ~ '  z,zj + . . . .  

i > j  

C o m p a r i n g  the latter expans ion  with (9.3) we conclude that  (A, b) must  be equal  
to the scheme specified in the theorem.  • 

N o t e  that  for m = 2 stages the op t imal  me thod  in Theo rem 9.2 is the wel l -known 
improved  Euler  method ,  which is also k n o w n  as the (second order) H e u n  me thod  
and the explicit t rapezoidal  method.  

9.3. Optimal methods with p = 3. 

In this subsect ion we maximize  R(A, b) over  the class of explicit Runge-Kut t~  
me thods  with a fixed n u m b e r  of  stages m and with classical order  at least 3, i.e. (9.1) 
and (9.4) hold  and 

(9.5a) b,c~ + b2c~ + . . .  + bmc~ =½, 

(9.5b) bT A2e = ~. 
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In the following two theorems we consider the cases m = 3 and m = 4, respect- 
ively. It is interesting to note that the optimal method in Theorem 9.4 was con- 
sidered by Fehlberg in [10] (see also [5, p. 305] and [17, p. 170]). 

THEOREM 9.4. For all explicit 3-stage coefficient schemes (A, b) with classical order 
p = 3 we have R(A, b) <_ 1. Further we have R(A, b) = I for exactly one of these 

schemes. This scheme is defined by the tableau 

0 
1 1 
1/2 1/4 1/4 

1/6 1/6 2/3 

PROOF. First note that the scheme specified above has order p = 3 and is abso- 
lutely monotonic at ~ = - 1. It follows from Lemma 4.4 that R(A, b) > 1 for this 

scheme. 
Now suppose that (A, b) is an arbitrary explicit 3-stage coefficient scheme with 

p = 3 and R(A, b) > 1. Then the order conditions (9.1), (9.4) and (9.5) reduce to 

(9.6a) bl + b2 + b3 = 1, 

(9.6b) b2c 2 -4- b3c 3 = 1/2, 

(9.6c) b2c~ + b3c 2 = 1/3, 

(9.6d) b3a32a21 = 1/6. 

Further, substitution of ~ = 0 and s = 1 in (2.6) shows that the K-function equals 

K(Z) = 1 + blzl + b2z2 + b3z3 + b3a32z3z2 + b3a31z3zx + 

-~ bza21z2z1 ,~ b3a32a21z3z2z1 . 

Using Lemma 9.1 we find that R(A, b ) =  1 and that all second order partial 

derivatives of K at Z = - - I  are zero, i.e. baaa2 = b3a3~ = b2a21 = baa32a21. In 
view of (9.6d) this yields baaa2 = b3a3~ = b2azl = 1/6. Combined with (9.6) these 
relations lead immediately to the scheme specified in the theorem. 

THEOREM 9.5. Forallexplicit4-stagecoefficientschemes(A,b)withclassicalorder 
p >_ 3 we have R(A, b) <_ 2. Further we have R(A, b) = 2 for exactly one of these 

schemes. This scheme is defined by the tableau 

0 
1/2 
1 
1/2 

1/6 

1/2 
1/2 1/2 
1/6 1/6 1/6 

1/6 1/6 1/6 1/2 
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PROOF. First note that the scheme specified above has orderp = 3 and is absolute- 
ly monotonic at ¢ -- - 2. It follows from Lemma 4.4 that R(A, b) _> 2 for this scheme. 

Now suppose that (A, b) is an arbitrary explicit 4-stage coefficient scheme with 
p >_ 3 and R(A,b) >_ 2. Then the order conditions (9.1), (9.4) and (9.5) reduce to 

(9.7a) bl + bE + b3 + b4 = 1, 

(9.7b) bzc2 + b3c3 + b4c4 = 1/2, 

(9.7c) b2c 2 + b3c 2 + b,c 2 = 1/3, 

(9.7d) b3a32a2~ + b4a42a~_l + b4a43aa2 + b4a4aa31 = 1/6. 

Further, substitution of ¢ = 0 and s = 1 in (2.6) shows that the K-function equals 

4- 

K(Z) = 1 + ~ ~ bl,a,~i2...alk_l,kzqzi~.., zik. 
k=l i1>i2>. . .>ik  

Using Lemma 9.1 we find that R(A, b) = 2 and that all second and third order 
partial derivatives of K at Z = - 2 I  are zero. Combined with (9.7d), the condition 
on the third order partial derivatives leads to 

(9.8) b4a,saa32 = b4a43aal  = b4a42a21 = baa32a21 = 2b,a43a32a21 = ~ .  

It follows from (9.8) and the condition on the second order partial derivatives that 

(9.9) b4a43 = b,a42 = b4a41 = b3a32 = b3aal = b2a21 = 1~. 

It is easy to show that relations (9.7), (9.8), (9.9) lead to the scheme specified in 
the theorem. • 

In view of Theorems 9.2, 9.3, 9.4 and 9.5 one might conjecture that the maximum 
radius of absolute monotonicity is R(A, b) = m - 2 for explicit m-stage coefficient 
schemes with classical order p > 3. For  m > 5 this conjecture is false. It follows from 

1-21, Theorem 5.2] that R(A, b) < m - x / ~  for these schemes whenever m > 5. 

9.4. Optimal methods with p = 4. 

In this subsection we study the maximum of R(A,b) on the class of explicit 
Runge-Kutta methods with a fixed number of stages m and with classical order (at 
least) 4. We will consider the cases m = 4 and m = 5 only. 

THEOREM 9.6. There exists no explicit 4-stage coefficient scheme (A, b) with clas- 
sical order p = 4 and R(A, b) > O. 

PROOF. Using the general form of explicit 4-stage schemes with p = 4, presented 
in [5, pp. 179-180], it can be verified that the only method of this type with A > 0 
and b > 0 is the well-known classical Runge-Kutta method. For  this method the 
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only nonzero entries of A are a21 = a32 = t/2 and a43 = 1, so that the condition 
Inc(A 2) _< Inc(A) is violated. Since this method is irreducible, it follows from 

Theorem 4.2 that R(A,  b) = 0 here. • 

It  follows from the theorem above that we need at least five stages to construct 
an explicit method with p = 4 and R(A,  b) > 0. It  can be shown that, under the mild 

assumption that  all ci are distinct and b465[c3(c3 - Cz)(4c5 - 3) + 2c2(3 - 4c2 - 

4c5 + 6c2cs)a32] =/= O, the general explicit 5-stage Runge-Kutta  method with p = 4 
can be obtained as follows: 

Step 1: Select distinct Cl = 0, Cz, c3, cA, c5. 
Step 2: Select bl arbitrarily and solve b2, b3, b4, b5 from B(4) (cf. Subsection 8.1). 

The only restriction on bl is that the resulting b4 and b5 must not vanish. 

Step  3: Select as3 arbitrarily and a3z such that 

c3(c3 - Cz)(4c5 - 3) + 2c2(3 - 4c2 - 4c5 + 6czcs)a32 ~ O. 

S tep  4: Define a54 by 

b4(c5 - c4)[c3 (c3 - c2) + 2c2(2c2 - 1)a31] 

a 5 4  - -  b s [ c a ( c 3  - cz)(4c5 - 3) + 2c2(3 - 4c2 - 4c5 + 6c2c5)a32] " 

Step 5: Define a52, a43 and a4z by 

a52 = (~ - -  a 5 4 c  4 - -  a 5 3 c 3 ) / c 2 ,  

a~3 = (fl -- bsa53)/b~, 

bsa~3c3 - b 3 a 3 2 c 2  - ~b5 - flc3 + 1/6 where 
a 4 2  ------ b 4 c 2  " 

3 - 4c4 + 2 4 6 3 a 3 2 c 2 ( c , ~  - c3) 1 -- 2C2 -- 12bsas~c4(c4 - c2) 

24b5(c5 - c4) 12c3(c3 - c2) 

Step 6: Select a21 , a31, a41, a51 to  satisfy ci = ~ j a i j  (2 _< i _< 5). 

Numerical investigations seem to indicate that the maximum of R(A,  b) equals 
r - I. 50818 and that the maximum value r, together with the seven free parameters 

C2, C3, C4, C5~ b l ,  a53 , a32 are determined by the eight equations 

b~ = rbzc2, b3 = rb4a43~ a3~ = ra32ez, a41 = raazcz,  

(241.2 = raa3a32~ a51 = r d 5 4 0 4 1 ~  a 5 2  = ?'a54°42~ 053 ~/ '054-( /43,  

leading to 

r ~ 1.50818 00491 89837 92280 a21 = C2 
bl ~ 0.14681 18760 84786 44956 a31 ~ 0.21766 90962 61169 21036 
b2~0 .24848  29094 44976 14757 a32 ~0.36841 05930 50372 02075 
b 3 ~ 0 . I 0 4 2 5  88303 31980 29567 a41~0.08269 20866 57810 75441 
b4 =0.27443 89009 01349 45681 a42 ~0.13995 85021 91895 73938 
b5~0 .22600  74832 36907 65039 aa3=0.25189  17742 71692 63984 
c2 ~ 0.39175 22265 71889 05833 a51~0.06796 62836 37114 96324 
c3 = 0.58607 96893 11541 23111 asz ~ 0 . 1 1 5 0 3  46985 04631 99467 



c4 ~ 0.47454 
c5 = 0.93501 
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23631 21399 13362 a53 ~ 0.20703 48985 97384 71851 
06309 67651 59845 a54 = 0.54497 47502 28519 92204 

10. Numerical illustration. 

In this final section of the paper we illustrate the theory with three examples. In 
these three examples we compare Heun's third order scheme (cf. e.g. [9, p. 193] or 
[17, p. 133]) 

0 
1/3 
2/3 

1/3 
0 2/3 

1/4 0 3/4 

with the optimal third order 3-stage scheme presented in Theorem 9.4. We will refer 
to these schemes as Heun's scheme and Fehlberg's scheme, respectively. Note that 
Heun's scheme has radius of absolute monotonicity Rneu, = 0 (cf. Theorem 4.2), 
whereas Fehlberg's scheme has radius Rveh~b~g = 1 (cf. Theorem 9.4). 

10.1. A constructed initial value problem in eight dimensions. 

Consider the linear non-autonomous test problem (2.3), where to = 0 and L(t) is 
a real 8 × 8 matrix depending continuously on t. We assume that (cf. (5.13)) 

(10.1) HL(t) + IslIo~ < 1 (for all t e~ ) .  

This means that, if we write the initial value problem in the form (1.1), the function 
f satisfies ( f  [['Lt ~) e ~ (P)  with p = 1 (cf. Definition 5.2), so that f is dissipative with 
respect to the maximum norm. It follows from Theorem 5.4 that we will have 
contractivity (1.5) in the maximum norm if we use Fehlberg's scheme with step size 
h < I. However, if we use Heun's scheme with step size h = 1, we will show that we 
can have 

(10.2) tlal - ullto~ -> ~ tJao - Uoll® 

for some ao ¢ Uo. To see that (10.2) can occur, we note that it follows from 
Subsection 2.1 that 27~ - ul = ~(Z)(tio - Uo), where ~ is the matrix-valued K- 
function and 7/is the block diagonal matrix Z = diag(Z1, Z2, Z3) with Z~ = L(0), 

Zz = L(1/3) and Z3 = L(2/3). Writing Z~ = - I 8  + W~ (i = 1, 2, 3) we obtain 

(10.3) ~(Z) = ½Is + 51411 - ½W2 + &W3 - ~W2W~ - ~W3W~ 
+ ~w3w2 + -~w3w~wl. 

In view of (10.1) the matrices W1, W2, W3 satisfy 

(10.4) IIW, IIo~ _< 1 (i = 1,2,3). 
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On the other  hand,  if we are given 8 × 8 matr ices W 1, W2, W3 satisfying (10.4), 
we can easily find an interpolat ing m a p p i n g  t ~ L(t) satisfying (10.1). We will 

consider the choice 

W, = ele2 T + e3 eT + e4e6 T + eTe8 T, 

W2 = ele~ + e4e7 ~, 

1413 = ele~, 

where e~, i = 1, 2 . . . . .  8, are the s tandard  basis vectors in Ns. Here  we closely follow 

the p roof  of L e m m a  5.10. In fact, our  choice of  W1, W2, W3 is obta ined  f rom formula  
(5.19) (with r = 1 and n = 3), where - due to the explicitness of  the scheme - the 

g raph  ['3 is simplified to the graph  in Figure 2. 

co 

( 
Fig. 2. The graph that defines WI, W2, W3. 

) 

Using (10.3) one readily verifies that  the first row of K(Z) is given by 

eTa(Z)  = (~, s -1 I-~,T,~, -I - T, z~, 1 > 

Consequent ly ,  if we choose Uo - Uo = (i, 1, - 1, 1, - 1, - 1, 1, 1) T, we obta in  

e~(~71 - ul) = 7/3, which proves  (10.2). 

10.2. A partial differential equation of parabolic type. 

Consider  the following in i t ia l -boundary value p rob lem 
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V(~, t) = a(~, t ) - ~ -  V(~, t), 
(10.5) 

V(0,t)= V(1, t )=0,  V(~,0)=Vo(~) (0_<~_< 1, t_>0), 

where a(~, t) - 5% + ~o cos2 (30~ + 8000. Ifvo is sufficiently smooth and satisfies the 
compatibility conditions Vo(0) = v~(0) = Vo(1) = v~(1) = 0, then this problem has 
a unique classical solution V (cf. [14, p. 65]). This solution has the property that 

(10.6) max tV(~,t)] _<_ max [Vo(~)l (for all t > 0). 
o_<¢_<1 o_<¢_< 1 

By approximating the second order spatial derivative in (10.5) by a central 
difference quotient, we obtain an initial value problem of type (2.3) where 

- 2a(~1, t) a(¢l, t) 0 
a(~. 2, t) - 2a!~2, t) a(~z., t) ) L(t) = (A ~)- 2 

\ 0 a(¢s,t) - 2 a ( ¢ , ,  t) 

A~ = (s + 1) -1, {~ = iA{ (1 < i _< s), to = 0 and Uo = (Vo({O, Vo({z),...,Vo({s)) T. Its 
solution U(t) approximates (V({l,t), V(~2,t),..., V({s,t)) ~r for t >  0. Writing the 
initial value problem (2.3) in the form (1.1), we see that the function f satisfies 
(f, Ll'ttoo)~(p) with p = 2(A{) -2 (cf. Definition 5.2). Hence f is dissipative with 
respect to the maximum norm and it follows that the semi-discrete problem (2.3) 
has the property 

(10.7) tlU(t)it~ _< IlUoll~ (for all t >_ 0), 

reflecting property (10.6) of the parabolic problem (i0.5). If we use Fehlberg's scheme 
with step size h = A t _< ½(A ¢)2 for the numerical solution of the semi-discrete problem 
(2.3),it follows from Theorem 5.4 that the obtained approximations u, ~- U(nh) satisfy 

(10,8) IlUnlI~ --< IlUolI~ (n > 1), 

which constitutes a fully discrete analogon to properties (10.6) and (10.7). For 
Heun's scheme we cannot expect property (10.8) in view of Theorem 5.4 and the 
fact that Rn~n = 0. Indeed, if we take s = 19 and h = ½(A~) 2, the first step Uo ~ u~ 
is given by Ul = Guo, where the 19 x 19 matrix G has a norm [[G[]oo - 1.022 (cf. 
(5.13)). Further it is interesting to note that G has some negative entries, so that we 
do not have the property 

(10.9) Uo_>0=~u,_>0 (n_> 1), 

although the corresponding semi-discrete and fully continuous versions of this 
property are present for problems (2.3) and (10.5), respectively. For Fehlberg's 
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scheme, property (10.9) holds for all step sizes h < ½(A~) 2. For linear autonomous 
problems this property was studied in [2]. 

t0.3. A partial differential equation of hyperbolic type. 

Consider the following initial-boundary value problem 

(10.t0) { 7~t V(~'t)= ~-f~ 
V(0, t ) = 0 ,  v(~,0)=Vo(¢) (0_<¢_<1, t>__0), 

where a(~, t) = - c o s  z (20~ + 80t). If Vo is continuously differentiabte on [0, 1] and 
Vo(0) = v;(0) = 0, then one can show (e.g., by making use of characteristics, cf. [20]) 
that this problem has a unique classical solution V. This solution has the property 
that 

(10.11) [g(~, t)[ d~ _< Ivo(OI d~ (for all t _> 0). 
0 

By approximating the spatial derivative in (t0.10) by a backward difference 
quotient, we obtain an initial value problem of type (2.3), where 

L(t) = (A ~)- 1 

a(~l, t) 
-a(~t,t) 

0 

a(~.2, t) 0 

- -  a (~2 ,  t) a (~  3, t) ) "',., " ' ' ' .  . 

- a ( ~ s -  1, t) a(~s,  t) 

A~ = s -1, ~i = iA~ (1 _< i < s), to = 0 and Uo = (Vo(~l), Vo(~z),...,Vo(~s)) T- Its sol- 
ution U(t) approximates (V(~I, t), V(¢z, t),..., V(~s, t)) T for t > 0. Writing the initial 
value problem (2.3) in the form (1.1), we see that the function f satisfies 
(f, 11" [I 1) ~ if(P) with p = (A ~)- 1 (el. Definition 5.2), where the norm t1"Ht is the 
(weighted) 11 norm, defined by 

llxltl = A~ i Ixll (for all x = (xl,x2 ... . .  x s ) T ~ ) -  
i=I 

Hence f is dissipative with respect to the (weighted) 11 norm and it follows that 
the semi-discrete problem (2.3) has the property 

(10.12) IIU(t)lll -< [lUolll (for all t >_ 0), 

reflecting property (10.11) of the hyperbolic problem (10.10). If we use Fehlberg's 
scheme with step size h = At _< A~ for the numerical solution of the semi-discrete 
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problem (2.3), it follows from Theorem 5.4 that the obtained approximations 
u~ ~ U(nh) satisfy 

(i0.13) Ilu, lll -< lluoltl (n > 1), 

which constitutes a fully discrete analogon to properties (10.11) and (10.12). Heun's 
scheme, however, does not have property (10.13) if we take h = A¢ and, e.g., s = 20. 
In this case we have ul = Guo, where the 20 x 20 matrix G = (gij) has induced 
matrix norm l[ G II1 = max { II Gx [Ix Ix ~ N20, II x ll~ = 1 } = max i ~i  [gijl - 1.511. Fur- 
ther we note that, as in the previous example, Heun's scheme does not have property 
(10.9), whereas Fehlberg's scheme does, and that the corresponding semi-discrete 
and fully continuous versions of this property are present for problems (2.3) and 
(10.10), respectively. 
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