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Abstract. 

An algorithm for semi-inifinite programming using sequential quadratic programming techniques 
together with an L® exact penalty function is presented, and global convergence is shown. An important 
feature of the convergence proof is that it does not require an implicit function theorem to be applicable to 
the semi-infinite constraints; a much weaker assumption concerning the finiteness of the number of global 
maximizers of each semi-infinite constraint is sufficient. In contrast to proofs based on an implicit 
function theorem, this result is also valid for a large class of C a problems. 

AMS classifications: 65K05, 90C30. 

1 Introduction. 

Semi Infinite Programming (SIP) problems arise in many practical problems such as 
computer aided design, production planning, and the like. Many algorithms for 
solving such problems have been proposed. A common approach which yields 
global convergence is the use of Sequential Quadratic Programming (SQP) tech- 
niques in conjunction with an exact penalty function [2,4, t0, 11]. The methods 
given in [4, 10, 11] use an implicit function theorem on each semi-infinite constraint 
to demonstrate convergence. The L1 exact penalty function algorithm of Conn and 
Gould [2] is along somewhat different lines, but makes use of similarly restrictive 
assumptions. The purpose of this paper is to show that provided the exact penalty 
function is based on the infinity norm, a much weaker condition than that required 
for the implicit function theorem to hold is sufficient to ensure convergence for C 1 
problems. The algorithm presented can take second order information into account, 
yielding superlinear convergence on problems with the requisite degree of continu- 
ity. 

The SIP considered is of the form: 

(1) minf(x) subject to g(x,t)  < O, ~/te T, where T c R p. 
x ~ R  n 
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The objective function J~ mapping R" into R, and the constraint function g, mapping 
R" x T into R, are both continuously differentiable in all arguments. The set T is 
compact, connected, and defined by a finite number of continuously differentiable 
constraints which satisfy an appropriate constraint qualification. Frequently T is 
a Cartesian product of intervals. For convenience the problem has been restricted to 
one semi-infinite constraint, and auxiliary constraints have been omitted. 

2 The penalty function problem. 

The approach taken is to replace the SIP with the rather more tractable problem of 
minimizing a non-differentiable penalty function chosen so that solutions of the SIP 
are also solutions of the Penalty Function Problem (PFP). The exact penalty 
function used is: 

c~(#, v; x) = f ( x )  + #0 + ½Y0 2 where 0 = max [9(x, t)] +. 
t ~ T  

The penalty parameters # and v are restricted to # > 0, and v > 0. Clearly O(x) is the 
infinity norm of the constraint violations, so ~b is continuous V x e R n. In contrast, the 
L~ penalty function of [4, 11] may be discontinuous at infeasible points [10]. For 
example, i f n = p =  1, T =  [ -10 ,10] ,  f = 0 ,  /~= 1, v = 0 ,  and 

25x 2 - 1 
g(x, t) - 25x2 + 1 + t2(¼ - x2) - 8t4' 

then the L~ and Loo penalty functions are as in figures (la) and (lb) respectively. The 
potential for discontinuities in the LI penalty function to prevent convergence to 
a solution of the SIP is obvious. 

1.5 
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0 

Fig. la. The L~ penalty function. 
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Fig. lb. The L~ penalty function. 

The algorithm to be described uses only first derivatives: accordingly it is desir- 
able that the algorithm be capable of solving C ~ problems. This precludes the use of 
second order optimality conditions in specifying solutions of an arbitrary problem 
of the form (1). Consequently stationary points of the SIP will be regarded as valid 
solution points. The first order optimality conditions, together with an appropriate 
regularity assumption, are as follows. 
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THEOREM 2.1 Let x* be any optimal point of the SIP, and let the following regularity 
assumption hold at x*: 

(2) 3u ~ R n such that g(x*, t) + u r Vx g(x*, t) < 0, Vt ~ T. 

Then there exists a finite number of global maximizers z* of g(x*, t), each with an 
associated Lagrange multiplier 2", and satisfying 

(3) 

(4) 

PROOF. 

Vf  + ~ 2*Vxg(x*,z*) = 0 with m < n, 
i=1 

whereg(x*,z*) = O, and 2* > O, Vi = 1 . . . . .  m. 

By lemmas 2 and 3 of 16]. • 

DEFINITION 2.2 For fixed values I~o and Vo of t~ and v, a point Xo is a critical point of 
~b(#o, vo; x) iff at Xo the directional derivative of ~b(/~o, Vo; x) with respect to x along 
every direction is non-negative. 

The solution set of the PFP for # = #o, and v = Vo is defined as the set of critical 
points of $(#o, v0; x). 

If solving the PFP  is to yield a solution of the SIP, it is highly desirable that the 
PFP's  solution set be contained in (and ideally be equal to) the SIP's solution set. 
This can be achieved to a limited extent by a suitable choice of p, for any v. 

THEOREM 2.3 Let x* be an optimal point of the SIP (1) at which the regularity 
assumption (inequality (2))  holds, and let 2" be the vector of Lagrange multipliers as 
specified in (3, 4). I f  l~ satisfies 

(5) m > 112"1t, 

then x* is a critical point of dp(#, v; x). 
Conversely, if x* is both feasible, and a critical point of $(#, v; x) for some ~ > O, and 

v >_ O, then x* is a solution point of the SIP. 

PROOF. The first item follows from theorem 2.1 of [1], and from theorem (2.1). For 
the second item, if x* is a critical point of ~b for some #, and v, then 

¥ x near x*, ¢(/~, v; x) > ¢(/1, v; x*) + o(tlx-- x* 11). 

Now ~b = f on the SIP's feasible region, and so x* is a solution of the SIP. • 
This theorem implies the set of feasible critical points of the PFP is a subset of the 

set of stationary points of the SIP. The relationship between the two solution sets 
falls short of the ideal in two respects. 

First, there may be critical points which are not feasible, and therefore not 
solutions to the SIP. This admits the possibility that the algorithm may fail to solve 
the SIP by (in essence) failing to find a feasible point. This is characteristic of any 



726 C. J. PRICE AND I. D. COOPE 

algorithm attempting to attain feasibility from an arbitrary initial point by seeking 
a local minimum of the constraint violations. If the algorithm fails for this reason 
a common response is to consider other initial points. 

Second, there may be solution points of the SIP which are not feasible critical 
points. This problem is circumvented by automatically adjusting p so that any SIP 
solution is a critical point provided it is sufficiently close to some iterate. 

3 Existence of an approximating L~o QP. 

It has been shown in the previous section that the SIP may be replaced by the 
problem of locating feasible solutions of the PFP. The PFP is tackled as follows. At 
each iterate linear approximations to all global (and some local) maximal values of 
the constraint function are formed. From these a local approximation to O(x) can be 
constructed. This, together with an approximation to the objective function, yields 
an approximation to ~b, and hence an L~ Quadratic Programme locally approxi- 
mating the PFP. The solution of this L~ QP yields a search direction along which 
the next iterate is sought, using an Armijo type line search. 

In order to ensure each iteration of the algorithm listed in section 4 is a finite 
computational process, the following assumption is made. 

ASSUMPTION 3.1 For each x ~ R n, the number of global maximizers of g(x, t) over T is 
finite. 

This, together with the other usual assumptions, ensures the convergence of the 
algorithm; use of an implicit function theorem is superfluous. Actually, it is sufficient 
that the number of global maximizers of g is finite for each x at which approxi- 
mations to the global maximizers are calculated explicitly, and at each cluster point 
of the sequence of iterates. For convenience, assumption 3.1 is used. 

The existence of an approximating L® QP is shown by examining the behaviour 
of the set of global maximizers F(x) ofg(x, t) at points x near some point Xc satisfying 
assumption 3.1. The first result states F(x) is semi-continuous with respect to x. 

PROPOSITION 3.2 Let C be a compact subset of T, and let ~(x~) be the set of  global 
maximizers of g(x~, t) on C. I f  ~(xc) is a subset of the interior of C relative to 
T (hereafter int (C)), thenfirst 

W > 0, 3~/(e) > 0: VxeR" ,  IIx - x~tl < t/ ~ fl(x) c J//=(fl(xc)), 

where .A~(~(x~)) = {t ~ T: 3 7 ~ fl(x~) satisfying IIt - 7 II < e}, 

and second, each element of g2(x) is a local maximizer of  g(x, t) over T, for all 
x sujficiently near x~. 
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PROOF. Use the topology on T induced by the standard topology on R p. Let g~ be 
the global maximal value ofg(x~, t) on C. For all small positive e, as C - ~(f~(x~)) is 
compact and non-empty, g(x~, t) achieves its supremum on C - JV~(f~(x~)), which 
must be strictly less than go. Define 

m(e) = gc - max g(xo  t). 
t e e  - Wdf~(x¢)) 

Now the continuity of Vx g with respect to all arguments, and the compactness of 
Timply the set of functions {g(x, O}t~r is equicontinuous with respect to x. Therefore 

Vs > O, 3r/(e) > O, such that Vx, and Vt~ T, 

IIx - x~ll < t/(e) ~ Ig(xot) - g(x,t)l  < ¼m(O. 

Hence, for all these values of x, 

V t ~ C -- ~(~(xc)),  g(x, t) < gc - ~m(e), 

and V t ~ ~(x¢), g(x,  t) > g~ - ¼re(e). 

Hence, •(x) ¢ ~(fl(x¢)). Moreover, as g is continuous, and C compact, fl(x¢) is also 
compact. Whence, for all small positive e, ,W~(~(xc)) ~ int (C), and so ~(x) is a subset 
of the local maximizers of g(x, t) over T. • 

For  any Xo ~ R', F(xo) = {z~ . . . . .  z~} is the finite set of strict global maximizers of 
g(xo,  t). Proposition 3.2 implies each member of F(xo)may be considered separately. 
Let 

e0 = ¼min { l lz / -  Zkll :i, k e  1 . . . . .  j, i v ~ k}, 

and let B i ( e o )  = { t e T :  lit - z~ll -< Co}, Vi = 1 . . . . .  j. 

The set of global maximizers of g(x, t) on the set B~(eo) is denoted by N~(x). The 
behaviour of F with respect to changes in x is examined by considering each S~ along 
each ray of the form x(a)  = Xo + au, where a > 0, and u is a unit vector in R". 

DEFINITION 3.3 A funct ion  t(g) is an extension o f  the global maximizer  z i6  F(xo) 

along x(a) -- Xo + au, where a >_ 0,/off 

1. t(O) = zi. 

2. 3cr,,,x > 0 such that t(a) ~ ~ (x (a ) ) ,  V a  ~ [0, a ~ ] .  

From proposition 3.2, each z~ has at least one extension for each u. It may have 
several, or even an infinite number of extensions. The extensions may be discontinu- 
ous functions. Proposition 3.2 implies that, for all x near Xo, the extensions of F(xo), 
evaluated at x, are local maximizers of g(x, t) over T, and contain F(x). The 
extensions in the direction u of the members of F(xo) yield the following set of values 
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of g a long the ray x(a): 

{g(x(a), t(a)): t(a) is an extension of some z~ e F(xo)}. 

This  set is finite; any  two extensions of  the same z~ take the global  max imal  value of 
g(x(a), t) over  Bt(eo), for all a. Fo r  i = 1 . . . .  , j  let ti(a) be an extension of zv Each 
m e m b e r  of the set {g(x(a), h(a))}i= 1 is locally Lipschitz with respect  to a by the C 1 
cont inui ty  of  g, and the compactness  of  T. In  order  to form a set of  linear approxi-  
mat ions  to {g(x(a), ti(a))}, the following result is needed. 

PROPOSITION 3.4 Let ti(a) be any extension of zi~F(xo) along the ray 
x(a) = Xo + au, a >_ O. Then 

g(x(a), t~(o)) = g(xo, ~) + aurVx g(xo, T~) + o(~r). 

PROOF. 

(6) 

Also, 

g(x(a), h(~r)) >_ g(x(a), ~,) =~ 

g(x(a), h(a)) > g(xo, ~) + aurV~g(xo, ~) + o(a). 

g(x(a), ti(a)) = g(xo, ti(a)) + aurV~g(xo, ti(a)) + o(a) 

< g(xo, zi) + aurVxg(xo, ti(a)) + o(a). 

Now,  as ~(Xo) is a singleton set, p ropos i t ion  3.2 implies every extension ofzi  is right 
cont inuous  at  a = 0. Hence  

g(x(a), h(a)) < g(xo, zi) + aurv~ g(xo, zi) + o(a). 

This, and inequali ty (6) yield the required result. • 
Define ~ to be a cont inuous  piecewise quadra t ic  app rox ima t ion  to ~b near  Xo, 

where ~, is based  on the finite subset  ~¢o of T, as follows 

O(Xo, do; #,v; s) = f(xo) + sr V f(xo) + ½ sT H s -t- I.ttg(s) -t- ½vuq2(s), 

where 8(s) = max  [g(xo, t) + srVxg(xo, t)] +, 
t~JffO 

and where H is positive definite. Clearly O is strictly convex in s. 
Let  the base set d o  be {h} r = 1. For  each i = 1 . . . . .  r define row i of the matr ix  B as 

Bi = [Vxg(Xo, t~)] r, and define element  i of  the vector  b to be bi = g(xo, ti). 

THEOREM 3.5 I f  C(Xo) c do  then, for all s e R  n such that ns]] is small, 

(7) ~b(/t, v; Xo + s) = @(Xo, do;/~,  v; s) + o(]]sll). 
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PROOF. For  all s sufficiently small, each element of Bs + b arising from some 
member of ~¢o - F(xo) is less than every element of Bs + b arising from some 
member of F(xo); thus ~¢o - F(xo) can be disregarded for small s. 

The set of extensions of F(xo), evaluated at Xo + s, contains F(xo + s) for s small, 
so proposition 3.4 implies 

Vz~F(xo + s), 3 to~F(xo)  such that 

e(Xo + s, T) = e(Xo, to) + ST Vx e(Xo, to) + O(IIslI). " 

Hence 

O(xo + s) = max [9(Xo, to) + srVxo(Xo, to)]+ + o(llsll). 
t ~ o  

Using a linear approximation to the objective function, the result follows. • 
The convergence proof requires that Ilsll o0 be subject to an upper bound, specifi- 

cally Sb >> 0. The Loo QP 

(8) min ~(Xo,do; #,v;s) subject to Ilslloo ~ Sb, 
sER n 

approximates the PFP  near Xo. IfF(xo) ~ ~¢o, then Xo is a critical point ofq~ iffs = 0 
is the global minimizer of ~k(Xo, ~¢o; #, v; s). 

4 An L®-norm algorithm for SIP. 

The previous section examined the Lo~ QP in detail. In this section the remainder of 
the algorithm is discussed, and the algorithm is presented. 

At each iterate x (k) the global (and other local) maximizers of the constraint 
function are found, and the approximating Loo QP is constructed. The solution s (k) to 
the LooQP at x (k) is used to form the line (or arc) search. The algorithm either 
searches along the line X (k) "21- O~S (k), or along the arcx (k) + ~ S  (k) dr- ~2c(k), where C (k) is 

a correction vector chosen to prevent the Maratos effect [7]. In either case ~ is 
chosen to be the first member of the sequence 1, fl, f12 . . . .  to satisfy the sufficient 
descent criterion 

(9) ~)(x(k)) _ ~)(x(k) + q(k)(a)) > po~[~k(x(k); 0) -- tk(x(k); S(k))], 

where 0 < p < ½, 0 < fl < 1, and q(*)(e) is either the line or arc step as given above. 
The next iterate is then x (k) + q(k)(a(k)). For  convenience the line search is treated 
hereafter as an arc search with c (k) = 0. 

The penalty parameters are adjusted in order to satisfy (5), and (hopefully) to force 
the sequence of constraint violations {0 (*)} to zero. The first requirement is met by 
forming lower semi-continuous estimates 2e's, of the optimal Lagrange multipliers at 
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each iterate and adjusting the penalty parameters accordingly. Such estimates may 
be calculated from the L~ QP's solution, or by other methods [5]. 

ALGORITHM SUMMARY: 

1. Coarse approximations to all global maximizers, and as many local maximizers 
as practicable are found using a grid search, and then refined using 
a Quasi-Newton method. Call this set of points d tk). 

2. The approximating L ~ Q P  is formed, and its solution s tk) is calculated. If necess- 
ary the penalty parameters are increased to ensure ~9(s (k)) <_ ~9(0). 

3. If X (k) q- S (k) does not satisfy the sufficient descent condition, calculate c (k), and 
perform the arc search. 

4. Estimate the optimal Lagrange multipliers at the new iterate. If 0 is less than 
some positive parameter ~1, and if# _< 7~ 2 I[~estll 1, then # is increased to % l[2*st[I 1, 
where n3 > ~2 > 1 are fixed parameters. Related research [3] suggests that 
% < 2 may be desirable. If 0 _> zh, and # + v0 _< ~4 [12*stl[ 1, then v is adjusted to 
give # + vO = ~5 ll2*~tlll, where ~5 > zt4 > 1. 

5. Update H using a quasi-Newton scheme whilst ensuring, 

(10) 3V > 0, such that V x ~ R "  - {0}, Vk, 0 < x r H t k ) x  < ~,xrx; 

for example Powell's modified BFGS update [8] could be used. 
6. If sufficient accuracy has not been attained, another iteration is begun. 

The vector C (k) is essentially that of [7], and is determined as follows. The global 
optimization subalgorithm is applied to O(x tk) + s tk), t), yielding the set d ~  ). Let .~tk) 
denote the set of elements t e d tk) satisfying 

~9(s ~)  = o(x ~k~, t) + (s~k~)rvxo(x ~k~, t). 

Define tM(w) to be the closest member _~tk) of ~'M to W, for each w e 3tk). If tM(W) is 
uniquely defined for every w, if tM is a one to one mapping, and if ~tk) is non-empty, 
then c tk) is chosen as the vector of minimum length satisfying 

(11) [c(k)]rVxg(x  tk), w) + g(X(k) + S tk), tu(W)) = O, V WS.~tk). 

Otherwise c tk) = 0 is used. If the system (11) has no solution, or if [Ictk)ll > [Istk)[I, then 
c tk~ is reset to zero. 

The vector c (k) is used to avoid the Maratos effect, and thereby ensure superlinear 
convergence on problems with the required continuity. Mayne and Polak [7] show 
i f f  and 9 are C a, if x* is a solution of the SIP at which strict complementarity, second 
order sufficiency conditions, and an implicit function theorem hold, and if the 
vectors {Vxg(x*,t):t~F(x*)} are linearly independent, then x t k ) ~ x *  implies 
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x ~k) ~ x* superlinearly. The vector c ~k) is not required for convergence; the algorithm 
will converge for any choice of c tk) satisfying IIc~k~ll ~ Ilstk~ll, including c(k)= O. 
However, for problems which are sufficiently continuous, choosing c (k) as above 
ensures superlinear convergence will be obtained. 

ASSUMPTION 4.1 At each point Xo at which the global optimization subalgorithm is 
used it finds every point in F(xo). Also each x ~R" satisfying assumption 3.1 has 
a neighborhood JV(x) such that if Xo ~ dV'(x) then the global optimization subalgorithm 
finds some extension (evaluated at Xo) of each member of F(x). 

This assumption is an idealization; in practice only approximations to the points 
referred to in assumption 4.1 will be available. The implications of this will be 
discussed in [9]. 

5 Convergence., 

In this section the convergence properties of the algorithm are examined. 
A requirement for convergence is that each arc search be a finite process. This is so 

if the descent condition (9) holds for all small positive ~. Ifs (k) is zero, then c (k) is also 
zero, and (9) holds for all ot. Ifs (k) is non-zero, then from assumption 4.1 and theorem 
3.5, and using ~(x (k), ~¢(k); S) = ~b(k)(s), (9) is equivalent to 

(12) $(k)(0) - ~b(k)(as (k~) + o(a) > pa[g,¢k)(0) -- ~,(*)(s~k))] 

where, because q~ is locally Lipschitz, the c (k) part of q(k) has been incorporated into 
the o(0¢) term. The strict convexity of ~k ensures (12) holds for all small positive a. 

THEOREM 5.1 Given: 

1. All iterates generated by the algorithm lie in a bounded region of R n. 

2. Assumptions 3.1, 4.1, and the condition (10) hold. 

3. The parameters 12 and v are only altered a finite number of times. 

Then every cluster point of the sequence of iterates {x ~k)} generated by the algorithm is 
a critical point ofc~(#, v; x), where 12 and v are thefinal values of these parameters. 

PROOF. The proof is by contradiction. This is obtained by assuming some cluster 
point (xt. °°), say) of the sequence of iterates is not a critical point, and so deducing the 
existence of an iterate satisfying 

(13) (~(X (k) + q(k)(ct(k))) < qb(X(°°)). 
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As the sequence {~b tk)} is monotonically decreasing, and q5 is continuous, a contra- 
diction results. 

Let x ~  ) be an arbitrary cluster point of {xtk)}. Select a subsequence" tk)~ i x ,  j of{x(k)}, 
generated after # and v assume their final values, and where the subsequences {x~)}, 

(k) ¢ (k) t y ( ~ )  H(oo) Sty)  {H,  }, and i s ,  j converge to .~, , . . ,  , and respectively. Such a subsequence 
exists by item t, requirement (10) and the bound on s in (8). 

Let ~.'f'(k)~s, ) and q~) denote ~(x~) ,d(x~)) ;s )  and qS(x~ )) respectively. Also let 
~¢(k) (k) , denote ~¢(x, ). Define d ( ,  ~) as the set of all cluster points of sequences of the 
form {~i}~= l, where , ,__, ,~.  ~ cd (i) for all i. Clearly ~d (°°) is compact. Also 

r ] (14) Ve > 0, 3K, Vk > K, max rain l i t -  ~11 < e, 
t~.~p' L~,c ,  ~ '  

by the definition of d ( ,  °°). Let ~GM be the set of global minimizers of ~k(x,(°°), ~,o¢ (°~)', s), 
and let so~ be any element of 6coM. Then 

Vs¢6eGu, 3 t ( s ) e d ( ,  ®), such that ~(x(, °°), {t(s)};s) • (®) > 0 ,  (s~). 

r (k)~ with Fixing s, let {x~ )} be a subsequence of Ix ,  ,, ' d ~  ) containing an approximation 
t~ ) to t(s) such that t(~ ) - ,  t(s) as k -* ~ ,  Then by (14) 

Vk sufficiently large, ~/(x~ ), d~);  s) > ~(x(, k), d~);  s~). 

Hence {s~ )} does not converge to s, (®) and so s ,  S~GM. Clearly O(,°°)(s(,°°)) is a cluster 
point of the sequence Sa'(k)t°(kh~ By replacing " (k)~ (X, ~ with a subsequence of itself if t ,W, ,,o, , j .  

necessary, let {O~)(s~))} converge to ,/,(~)~d®h 5",  ~ ,  ;" 

Now - (k) is chosen as the first member of the sequence 1, fl, t im..  which satisfies 0~, 

the sufficient descent condition 

r . l . ( k ) ( o  __ (k) s (k )~]  (15) (k~) -- ~b(x~ ) + q~)(g)) ~ PeLt/ ' , ,  ) 0 ,  ( , ,~. 

As {x~ )} converges to x(, ®), by assumption 4.1, and by the definition of .~¢(,o~), it 
follows that {~)(0)} converges to ~(,°°)(0). Whence, denoting terms which tend to 
zero as k --* oo by o(1), (15) is equivalent to 

(16) ~.,,~(k) _ ~b(x~ ) + q~)(g)) -> P<X [~(,°°)(0) - 0,(~)(s,(°°))] + o(1), 

,I,(~)~(~h and ~k(,®)(0). Now, as by the convergence of (~k~)(s~))}, and (~k~)(0)} to ~,, w,  ,, 
q~)(~) = ~s~ ) + ~2c~), as llc~)ll < IIs~)l], as q~ is locally Lipschitz, and by the conver- 

(k) 16 gence of {x, }, ( ) is equivalent to 

(17) ~b(, ®) - 4)(x(, ®) + as(, ®)) + o(~) ~ pal0(,®)(0) - O(,~)(s(,~))] + o(1), 

where the c(, ~) part of q(,~o) gives rise to the o(a) term. Assumption 4.1, and the 
definition of ~¢(,oo), imply F(x(, ~)) ~_ ~¢(,~), and so applying equation (7) to the left 
hand side of (17) yields the following statement: If --(*) satisfies 

(18) 0(,~)(o) - ,/,(,~)(~s~,®O _> p~[~,( ,~(o)  - q,~,(~(,oo))] + o(~) + o(1), 
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then it also satisfies (15). If x~, ®) is not a critical point, then for some u in R ~, the 
directional derivative of ~b at rt~) in the direction u is strictly negative. This, and 
equation (7) imply 

~ ® ~ a ~ ) ~  - ¢~F~(0) = x ,  < 0. 

Whence, by the convexity of ~k, and from (18) {~)} has a strictly positive lower 
bound (aL say). Once again from equation (16), ~bt, k) ~ ~bt, ®~ implies 

¢(x~) + (k)tk) #,oo) O(1). q,  (a , ) )  _< + pat,kbc, + 

_ tk) satisfying . (k) > ~r  for all k, and as ~,  < O, the existence of an iterate x ,  Thus as ~, _ 
equation (13) is clear. [] 

6 C o n c l u s i o n .  

Under fairly mild assumptions convergence to a set of critical points of the P F P  has 
been shown. Each such critical point, if feasible, is also a solution of the SIP. 

In contrast to algorithms based on the exact L1 penalty function [4, 11], this 
algorithm does not depend upon the applicability of an implicit function theorem; 
assumption 3.1 is sufficient. Consequently, the minimum necessary degree of conti- 
nuity of the semi-infinite constraint function is reduced from C 2 to C1; this widens 
the class of problems which may be solved by this type of algorithm. Superlinear 
convergence is obtainable on problems with the requisite degree of continuity. 

The Loo penalty function, unlike its Lt counterpart in 1"4,11], is continuous at all 
points in R"; hence one potential method of failure for algorithms based on the L1 
norm does not occur with the algorithm presented herein. 

Numerical results will be presented in [9]. 
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