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THE DISCRETE PICARD CONDITION FOR 
DISCRETE ILL-POSED PROBLEMS 
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Abstract. 

We investigate the approximation properties of regularized solutions to discrete ill-posed least squares 
problems. A necessary condition for obtaining good regularized solutions is that the Fourier coefficients 
of the right-hand side, when expressed in terms of the generalized SVD associated with the regularization 
problem, on the average decay to zero faster than the generalized singular values. This is the discrete 
Picard condition. We illustrate the importance of this condition theoretically as well as experimentally. 
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1. Introduction. 

By discrete ill-posed problems, we mean  a par t i cu la r  class of  discrete least squares  

p rob l ems  

(1.1) min IIAx - bl12, A ~ R  m×", m >_ n, 
x 

where the s ingular  values of  the mat r ix  A decay g radua l ly  to zero in such a fashion 

tha t  A is very i l l -condi t ioned.  Often,  due to  round ing  er rors  as well as er rors  in the 

da ta ,  such i l l -condi t ioned  matr ices  have full r ank  in a str ict  ma thema t i ca l  sense and  

the f in i te-dimensional  least  squares  p rob l em (1.1) is therefore no t  i l l -posed in the 

or iginal  sense due to H a d a m a r d  (see e.g. I12, Section 1,1]). However ,  we feel that  it is 

still prac t ica l  to  use the t e rmino logy  discrete ill-posed problems, par t ly  because m a n y  

of  the difficulties of  i l l -posed p rob l ems  ca r ry  over  to  the  p rob l e m (1.1), and  par t ly  

because  (1.1) often arises when an under ly ing  i l l -posed p rob l e m - for example  

a F r e d h o l m  integral  equa t ion  of the first k ind  - is discret ized for c o m p u t a t i o n  of  

a numer ica l  solut ion.  
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For such problems, a variety of direct and iterative numerical regularization 
methods have been proposed, see e.g. [1, 5, 6, 8, 11, 18, 19, 24, 26, 27, 29] and the 
surveys in [2, 3, 9, 12, 21, 22, 30, 31]. Common for all these regularization methods is 
that they replace the ill-posed problem with a "nearby" well-posed problem which is 
much less sensitive to perturbations. A great deal of these methods have in common 
that they seek to either compute or approximate a certain regularized solution, 
namely the solution x~ to the discrete Tikhonov-regularization problem 

(1.2) x~ = argmin{[[Ax -- b[I 2 + 22 [[Lx[[2~}, 

where L typically is either the identity matrix or a well-conditioned discrete approxi- 
mation to some derivative operator. Although the case L = 1, is easier to treat 
numerically, it may be necessary to choose L ~ I, in order to compute a useful 
solution, see e.g. [3, 30, 31]. Both the matrix L and the regularization parameter 
2 are used to control the smoothness of the regularized solution xa. An underlying 
assumption when using these methods is therefore that the exact solution, which one 
is trying to approximate by xa, is indeed smooth. Another assumption, which is 
equally important, is that the larger the singular values of A, the smoother the 
corresponding singular vectors (in the sense: less zero crossings). For a discussion of 
these aspects, see [30] and [18, Section 2]. 

There is, however, one more assumption which is not so well understood, and 
which bears a similarity with the Picard condition for ill-posed problems. Let 
K(s, t) = Z,~= 1 aiu~(s)vi(t) be the singular value expansion of the compact operator K, 
and let the right-hand side g be expressed as g(s) = Sp= 1 fl~ui(s). In order that the 
equation K f  = g have a square integrable least-squares solution f, it is necessary 
and sufficient that g satisfies the following condition [12, Theorem 1.2.6]: 

THE PICARD CONDITION (PC). The right-hand side g in K f  = g satisfies the PC if 

(1.3) ~. [(ui, g)/~il 2 < c~, cri # O, 
i=1 

where (ui, g) denotes the usual inner product between ui and g. 

Eq. (1.3) implies that from a certain point in the summation, the Fourier coeffi- 
cients (ut, g) must decay to zero faster than the ai. For the finite-dimensional discrete 
problem (1.1), the equivalent of Eq. (1.3) is always satisfied. Nevertheless, the ratio 
between the decay of the singular values of A and the decay of the Fourier 
coefficients of the right-hand side b, when expressed in terms of the left singular 
vectors of A, still plays an important role for the success of discrete Tikhonov 
regularization, because it determines how well the regularized solution xa approxi- 
mates the wanted, but unknown, underlying exact solution. The purpose of this 
paper is to illustrate this phenomenon, to introduce the discrete Picard condition, 
and to show how this condition is used in practice. A discussion of different choices 
of L, as well as a careful convergence analysis (which requires a discussion of the 
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principles for choosing the regularization parameter) are outside the scope of this 
paper. The work extends and further develops the author's work in [13, 15, 18]. The 
concept of a discrete Picard condition was first discussed by Varah [30, 31]. 

The paper is organized as follows. In Section 2 we introduce the generalized SVD, 
which we use throughout the paper to analyze Tikhonov regularization as well as 
a related regularization method, truncated GSVD. In sections 3 and 4, we investi- 
gate the conditions in which Tikhonov regularization and truncated GSVD will 
produce reasonable solutions. This analysis leads to the definition of the discrete 
Picard condition in Section 5, where we also briefly discuss how to test this condition 
numerically. Finally, in Section 6, we give two numerical examples. 

2. Discrete Tikhonov regularization and generalized SVD. 

The most convenient tool for analysis of the discrete Tikhonov-regularization 
problem (1.2) is the 9eneralized SVD (GSVD) of the matrix pair (A, L). The GSVD 
was introduced by Van Loan [28] and further generalized by Paige and Saunders 
[25]. Here, we use a slightly simpler formulation, which is sufficient for our analysis. 

THEOREM 1. Let the matrix pair (A, L) satisfy 

(2.1) A ~ ~r~ × ,, L ~ R e × ", m > n > p, rank (L) = p. 

Then there exist matrices U e R  TM, V e R  p×p with UTU = I,, V rV  = Ip and 
a nonsinoular X ~ R" ×" such that 

(2.2) 
v J  LLJ LMp p 

(2.3) Zp = diag(al . . . . .  ap)eR p×p, Mp = diag(pl . . . .  ,#p)e R p×p, 

where E~ + M~ = I~ and 

(2.4) 0 < a l _ < . . . < a p _ < l ,  l _> /~l >_ ... ~ #p > 0. 

The generalized singular values of (A,L) are defined as the ratios 

7i- aJ#~, i =  l . . . .  , p .  

ROOF. See [25, Section 2]. • 

REMARK. It is no restriction to assume that A and L are scaled such that 
II A 1] 2 = II Lll 2 = 1. As long as L is well-conditioned and its null-space is spanned by 
smooth vectors, it can be shown that the tri are closely related to the usual singular 
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values ~,j of A in the sense that 

a___A__~ (2.5) ½< ~' ,- ,+a ~< IIL+II2' i =  1 . . . . .  p, 

where L ÷ is the pseudoinverse of L [15, Theorem 2.4 and Section 3]. 
Now, if we define Fz = diag(fl  . . . . .  fp) ~ ~P × p as a diagonal matrix with diagonal 

elements 

(2.6) f~ = 72/(7/2 + 22), i = 1 . . . . .  p 

then it is easy to show that the regularized solution xa to (1.2) can be written as 

. [-FzX;i O I UTb ~ uTb = = fi--~i x ,+  ~ u:bxi. (2.7) x a  
At_ 0 Io i=1 i=p+x 

Equations (2.6) and (2.7) show that Fx basically "filters out" the contributions to 
x~ corresponding to small 7i. Since the oscillation property of the singular vectors of 
A carries over to the columns x~ of X (i.e., the larger the generalized singular values 
?i, the smoother  the x~) [15, Theorem 3.2], we see how we can use 2 to control the 
smoothness of the solution. At the same time, 2 controls the sensitivity of x~ to 
perturbations of A and b [16], such that the smoother xa the less sensitive it is. The 
"cost" of this regularization is that we neglect a (hopefully) small part  of the 
information in b and that xa - from a statistical point of view - is not an unbiased 
estimator. 

In connection with our discussion of discrete Tikhonov regularization it is also 
natural to consider the truncated GS VD (TGSVD) solution introduced in [15]. This 
method is of interest in its own right, and it is also closely related to both Tikhonov 
regularization and to the well-known truncated SVD method for regularization. 
For  example, if (1.2) is transformed into a problem in standard form (i.e., L = I,) 

- e.g. by the algorithm due to Eld6n [6] - then the truncated SVD solution to the 
standard-form problem is identical to the TGSVD solution to (1.2) [15, Section 6]. 
The TGSVD solution Xk is defined as 

[ZO O] Urb, 2:~--=diag(O,. -1 • . , 0 , % - ~ + 1  . . . . .  a ; 1 ) .  (2.8) Xk -- X Io 

Since 7i = ai/l~i = ai(1 - a2) -1/2, small 7~ correspond to small at, so TGSVD 
simply means discarding the p - k smallest 7~ of (A, L). The TGSVD solution Xk is 
also a regularized solution and is in fact very similar to x~ in many respects, see [15] 
for more details. For L = 1,, TGSVD becomes the truncated SVD method [13, 18, 
30]. We include a discussion Of Xk in this analysis in order to give an example of how 
the properties of the regularized solution x~ carry over to other solutions that 
approximate x~, such as the TGSVD solution. We believe that the same analysis can 
be carried out for any approximate regularized solution when its expansion in terms 
of the GSVD is known. See for example the analysis of SIRT and Lanczos type 
iterative methods in [29]. 
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3. Regularization errors. 
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One of the central problems in relation to any regularization method is how well 
the regularized solution approximates the unknown, underlying exact solution [12, 
Chapter 2]. In this part of the analysis, one therefore ignores the errors in A and 
b and seeks to give a bound for the mere regularization error in the solution. 

For  both regularization methods considered here, Tikhonov regularization and 
TGSVD, the above-mentioned exact solution is given by 

(3.1) Xo = X Z  ÷ UTb. 

This Xo satisfies Xo = x;. for 2 = 0 (no Tikhonov regularization) and Xo = Xk for 
k = n (no truncation). If A has full rank, then the matrix X Z + U  r equals the 
pseudoinverse A ÷ and Xo = A+b is the minimum-norm least squares solution to 
(1.1). If A does not have full rank (which is mainly of theoretical interest), then 
X Z  ÷ U r is, in general, different from A ÷ [7, Theorem 2.3], but Xo = X Z  ÷ U rb is still 
a member of the general solution to (1.1) given by A+b + x*, where x* is an 
arbitrary vector in the null space of A. 

For regularization in general form, we are primarily interested in the properties of 
the quantities Lxx and LXk, because we seek to minimize the seminorms IILx~ II 2 and 
IILxk II 2. It is therefore natural to compare Lxa and LXk with the vector Lxo,  and we 
define L ( x o -  x~) and L ( x o -  Xk) as the 7ikhonov regularization error and the 
T G S V  D regularization error, respectively. 

We are interested in upper bounds for the norms IJL(xo-x~)jl2 and 
JlL(xo - Xk)II2- We can easily obtain the naive upper bound ?~- 1 iibil2 for both these 
norms. However, this bound certainly does not guarantee small regularization 
errors. Obviously, we must incorporate more information about the right-hand side 
b into our analysis. I.e., we must analyze upper bounds of the form: 

(3.2a) [IL(xo - x~)l[2 -< pl/2 m a x  ?2  /~2 
l <_i<_p i "~ 72 

(3.2b) I IZ(xo-  x~)l12 ~ pX/2 max {lu~bl/?~}. 
l <_i<p-k 

In the light of these bounds, it is easy to see that the upper bounds for the 
regularization errors are related to the ratios between the Fourier coefficient u f b  
and the corresponding generalized singular values vi. 

To emphasize this relationship, we use the same strategy as in [18] and assume 
a simple, but still quite realistic model of the right-hand sides b as they typically 
appear in discrete ill-posed problems. In this model problem we assume that the 
Fourier coefficients have the following simple form: 

(3.3) u~b = ~?~' i = 1 . . . . .  p ct > O. 
(?~, i = p + 1 ..... m 
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Here, ~ is a real parameter which controls the decay rate of the Fourier coefficients 
u~b relative to that of the generalized singular values v v Then we have: 

THEOREM 2. Let x x and Xk denote the regularized solutions (2.7) and (2.8), and let Xo 
denote the unregularized solution (3.1). Further, let the right-hand side b satisfy Eq. 
(3.3). Then the regularization errors satisfy 

[ p l / 2  0 <_ ~ < 1 

(3.4a) [IL(xOllLxo l l2-  x~)l[2 ~ /pl/Z(R/yp)~-l', 1 < ~ < 3 
[ pl/Z(2/yp)z , 3 <_ 

(3.4b) I l L ( x o  - x~)l12 [pX/2 , 0 < ~ < 1 
IlZxoll2 ~ [pl/2(yk_p+~/yp)~-~, 1 < ~. 

PROOF. The proofs for the theorems in this paper follow the same line as the proofs 
given in 1-13] and 1-15] for the case L = In. The complete proof for Theorem 2 is given 
in 1,17]. • 

REMARK. When L = In =~Yp-k+l = Sk, 7p = $1, Eqs. (3.4a) and (3.4b) are con- 
sistent with the results in 1,18, Theorem 3.1]. 

In any practical application of Tikhonov regularization and TGSVD, to obtain 
a reasonable filtering of the small Vi one always chooses 2 < Vp and k < p. Theorem 
2 then shows that in order to guarantee small regularization errors in the model 
problem, ~ must be somewhat larger than 1, i.e. the absolute value of the Fourier 
coefficients, lurbl, must decay to zero faster than the generalized singular values 7i. 
And the faster the decay, the better Lxx and LXk approximate Lxo. We can conclude 
that whenever this basic requirement is satisfied by the  underlying exact problem, 
then we can ensure that Tikhonov regularization and TGSVD are able to produce 
useful approximate solutions. 

4. Similarity of Tikhonov regularization and TGSVD. 

In this section we take a closer look at the similarity between Tikhonov regulariz- 
ation and TGSVD, and we investigate the conditions in which we can guarantee that 
xa and Xk have the same properties. For this purpose, it is convenient to introduce 
matrices A~ and A~ such that x~ and Xk can be written as xx = AIb and Xk = A~b. 
Eqs. (2.7) and (2.8) show that these matrices are uniquely determined by 

(4.1) A~= x I F ~  Io10]Ur and A~ = X I ~  + Io0] Ur" 

Then the difference between Lx~ and LXk and the difference between the residuals 
can be measured by the norms of LA~ - LA~ and AA~ - AA~: 



664 PER CHRISTIAN HANSEN 

THEOREM 3. Le t  the matrices A ~ and A ~k be 9ive n by (4.1), and let Oak = )' p _ k / Y p - k + 1. 
Then  for  any  2 > 0 and any positive k < p: 

oal/2 [ILA~ -- LA~H2 oa~/2 

(4.2a) 1 + w k x IILA~II2 - 1 + oa3/2, ,.,.,1/2 "( min < - -  • 

(4.2b) min IIAA~ - AA~,I[2 - oak 
1 +oak" 

t~,a ,, ~x/4 and ~. = ( ) ' p - k + l ) ' p - k )  1/2, These  two minima are attained for  2 ~ W, -k+ lrp-k)  

respectively. 

PROOF. See [ 17]. • 

REMARK. When L = I, =~oak = ~kk+l/~kk, Eqs. (4.2a) and (4.2b) agree with the 
results derived in [13, Theorem 5.2]. 

Theorem 3 guarantees similar results from Tikhonov regularization and TGSVD 
whenever oak is sufficiently small and 2 is chosen somewhere between ()'p_k + lYp -k) 1/2 

and ()'~-k + 1)'p-k) 1/4" If the matrix A has welt-determined numerical rank, i.e. if there 
is a distinct gap in the singular value spectrum, and therefore also in the spectrum of 
generalized singular values )'i, then oak = )'p-k/Tp-k + 1 can always be made small by 
a proper choice of k. In this case, it is also natural to choose this k as the truncation 
parameter in the TGSVD method. Then Theorem 3 shows that there always exists 
a 2 and a k such that TGSVD produces results similar to those obtained by. 
Tikhonov regularization. This is, in itself, an important result. 

However, practical experience with the use of the TGSVD method suggests that it 
can also be used successfully as a regularization method when A has ill-determined 
numerical rank, i.e. when the singular values of A, and therefore also the generalized 
singular values of (A, L), decay gradually to zero without any particular gap in the 
spectrum (see e.g. [18, 30, 31]). In order to analyze this situation, we must again 
incorporate information about the right-hand side into our analysis, and we shall 
again use the simple model problem from the previous section. We shall also assume 
that 2 lies in the interval [)'p_k, )'p-k + 1], since we know from Theorem 3 that x~ and 
Xk are most similar for such 2. 

THEOREM 4. Le t  x ~ and xk denote the regularized solutions (2.7) and (2.8), and let the 

rioht-hand side b satisfy Eq. (3.3). I f  )'p-k < 2 < )'p-k+ 1, then 

][L(x~ -- Xk)[[ 2 ! pl/2oa~-I , 0 <__ ~ < 1 
(4.3a) IlLXkll2 < I pl/2()'P-k+I/)'P)~-I'  1 <__ ~ < 3 

pl/2(Tp_k+l/Tp) 2 , 0~ ~ 3 

(4.3b) Ilaxa - AXkH2 ~pl/2(yp-k+l/)'p)~ , 0 <_ O~ < 2 
IIb[12 < ~pl/2()',_k+l/)'p)2 , ~ > 2. 

PROOF. See [ 17]. • 



THE DISCRETE PICARD CONDITION FOR DISCRETE ILL-POSED PROBLEMS 665 

REMARK. When L = I n ~ p - k + l  = ~bk, 7p = $1, Eqs. (4.3a) and (4.3b) agree 
with the results in [18, Theorem 3.2]. 

Theorem 4 supplements the results in Theorem 3: it shows that if ~ is somewhat 
larger than one, such that the Fourier coefficients lufbl decay to zero faster than the 
~, then there exist 2 and k such that Lx~ and Lxk are very similar for the model 
problem, even if there is no particular gap in the singular value spectrum of A. 
Although we are only able to prove this result for the model problem (3.3), we know 
from the relations between the singular value expansion, the SVD, and the GSVD 
[14, 15] that the lu~bl and Vi are indeed very important in more general circumstan- 
ces. Finally, it is interesting to notice that practical choices of 2 and k, based on e.g. 
generalized cross-validation (GCV) [10], usually produces 2 and k satisfying 
Vp-k < 2 < 7p-k+ 1, see [13, Section 5]. The conclusion is therefore that whenever 
Tikhonov regularization produces a satisfactory regularized solution xa, then 
TGSVD is also guaranteed to produce a satisfactory solution xk with properties 
very similar to xx. 

5. The discrete Picard condition. 

As we have illustrated in the previous sections, the decay rate of the Fourier 
coefficients indeed plays a central role in connection with discrete ill-posed prob- 
lems. The key result is that if the Fourier coefficients lu~b] decay to zero faster than 
the generalized singular values ~, then the regularized solutions xx and Xk are 
guaranteed to have approximately the same properties as the exact solution Xo. The 
decay of the Fourier coefficients need not be monotonic, as long as lu~bl on the 
average decay to zero faster than Yi- 

There are two important exceptions to this requirement to the Fourier coeffi- 
cients. The first exception is that the smallest singular values ff~ of A may be 
numerically zero, i.e. smaller than some threshold e reflecting the errors in A (typi- 
cally, e is an upper bound for the norm of the perturbation matrix). In this case, it is 
natural to consider generalized singular values ?i smaller than ~tlL + 112 as being 
numerically zero, due to (2.5) and the relation Yi = o-i(1 - a2) - 1/2 = a~ for small ai. 
For  those ~i, the decay of the corresponding lur~bl is unimportant. Instead, the size of 
these lu[bl largely determines the norm of the residual and therefore, in turn, signals 
whether the problem (1.1) is consistent or not. This aspect has nothing to do with the 
existence of a smooth solution, and it is therefore important to restrict the analysis of 
the decay rates to those Fourier coefficients corresponding to numerically nonzero 
generalized singular values. 

The second exception is that some of the Fourier coefficients of the given 
right-hand side, u~G, themselves may be numerically zero with respect to some other 
threshold t5 reflecting the errors in l~. Often, these lu~/~l < J represent true zero 
Fourier coefficients ufb, and - as illustrated in the next section - care should be 
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taken to avoid confusion if such numerically zero Fourier coefficients are intermin- 
gled with numerically nonzero coefficients. 

This discussion leads to the following definition of a discrete Picard condition for 
discrete ill-posed problems: 

THE DISCRETE PICARD CONDITION (DPC). Let b denote an unperturbed right-hand 
side in (1.2). Then b satisfies the DPC if, for all numerically nonzero generalized 
singular values ~i > ~ H L+ ll2, the corresponding Fourier coefficients lu~b[ on the 
average decay to zero faster than the Yi. 

REMARK. When L = I,, simply substitute the ordinary singular values ffl for the 7i 
in the DPC. 

We have chosen the name discrete Picard condition because the DPC resembles 
the PC so much. We stress, however, that while the PC only needs to be satisfied 
asymptotically, it is important that the DPC be satisfied for preferably all the 
generalized singular values. 

When solving real-world problems, where the right-hand side (and sometimes 
also the matrix) are contaminated with measurement errors, approximation errors, 
and rounding errors, then the given perturbed problem rarely satisfies the DPC. 
However, if the underlying exact problem satisfies the DPC, then by a proper choice 
of ). or k one can often make the regularized problem satisfy the DPC. I.e., one can 
regard regularization as a method to derive from the given ill-posed problem 
a related problem which - in addition to being less sensitive to perturbations [16] 

- satisfies the DPC and therefore has a regularized solution that approximates the 
exact, unknown solution. 

As a typical example of this situation, let the problem (1.1) be derived from a first 
kind Fredholm integral equation satisfying the Picard condition. Then, ideally, due 
to the strong connection between the singular value expansion of the kernel and the 
SVD of the matrix A [14], the DPC is also satisfied. However, due to data errors as 
well as approximation errors in setting up the discrete problem, all the urb generally 
do not satisfy the DPC. Instead, they typically roll off gradually until they reach an 
almost constant level, determined by the errors. By means of a proper choice of the 
Tikhonov regularization parameter 2 one can, however, guarantee that the Fourier 
coefficients for the regularized problem, namely f~u~b, satisfy the DPC. Similarly, 
for TGSVD, the regularized Fourier coefficients are cp~u'fb where qo~ = 0 for 
i _< p - k and q~ = 1 for i _> p - k + 1, and obviously one can always choose 
a truncation parameter k such that cp~urb satisfy the DPC. 

If, on the other hand, the underlying problem does not satisfy the DPC (or even 
the PC), then it is generally not possible to compute a satisfactory solution by means 
of Tikhonov regularization or any related method. See [4] for an example of this 
situation. 

Having introduced the discrete Picard condition as defined above, a natural 
question is: how does one check numerically whether the DPC is satisfied? Of 
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course, a visual inspection of a plot of the Fourier coefficients [u~bl and the 
generalized singular values ?i will often reveal this and, at the same time, guide the 
user in choosing a suitable k or 2. But we believe that an automatic check for 
satisfaction of the DPC may also be required, partly because the amount  of data may 
be large, and partly because one might want a more specific test than just a visual 
inspection (as is the case for both the discrepancy method [12, Section 3.3] and the 
GCV method for choosing the optimal regularization parameters 2 and k). 

From the discussion leading to the DPC, it is evident that satisfaction of the DPC 
in practice is a local phenomenon, taking place only in that part of the spectrum with 
the large generalized singular values ~,i. Hence, the check for satisfaction of the DPC 
should also be based on the use of local information in the sequences lu~bl and ~t~, 
only. We could, for example, fit cubic splines to the lu~bl and the ?~ and then check 
the first derivative of these splines. However, a much simpler and easy-to-use 
approach seems to be sufficient. 

Since we are interested in information about the decay of the data, it is the ratios of 
nearby coefficients lur~bl and ~ - rather than their absolute values - that is import- 
ant. Therefore, we propose to base the numerical check for satisfaction of the DPC 
on the moving #eometric mean: 

(1 "li+~ lu~bl) 1/~2q+1), i = q + 1 . . . . .  n - q (5.1) pi = ~/i "1,1 l j=i-q  

where q is a small integer, thus ensuring the locality of the p~. Note that Pi should 
only be computed for numerically nonzero ?~, i.e. for 7~ > e tlL÷ ti 2, and that special 
care should also be taken if some of the lufbl are numerically zero in the sense that 
lufbl < 6. Note the two different thresholds c5 and e. Based on our experiments, we 
find that q equal to 1, 2 or 3 gives good results, and we will say that the DPC is 
satisfied when all the p~ defined by (5.1), corresponding to numerically nonzero lu[bl 
and ?i, decay monotonically to zero. 

6. Numerical examples. 

In this section we illustrate, by two numerical examples, the important role the 
discrete Picard condition plays in the analysis of discrete ill-posed problems. Both 
examples are obtained from discretizations of Fredholm integral equations of the 
first kind: 

(6.1) f ]  K(s,  x)  dx  = g(s), c < s < d. 

Our first example is the classical integral equation devised by Phillips [27] with 
[a,b] = [c ,d]  = [ - 6 , 6 ] ,  and with K and g given by: 

{ lo+COS[(S -X)rC/3] ,  , s - x t < 3  
(6.2a) g(s ,  x) = f ( s  - x) - , Is - xl > 3 
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[ .,3 (6.2b) 0(s) = (6 - Is[) 1 + :~cos-~--J + sin 

This integral equat ion  satisfies the Picard condition,  and the square integrable 
solution is simply f(x) as given in (6.2a). We discretized the integral equat ion using 

the trapezoidal quadra ture  rule as described in [23] with m = 78 and n = 49, and as 
regularization matrix L we chose an approximat ion  to the second derivative ope- 

rator, 

1 

(6.3) L =  

2 - 1  
- 1  2 - 1  0 

0 --1 2 - 1  

e ~  p×',  p = n -  2. 

In order  to simulate measurement  errors in the r ight-hand side/~, we then added 
to b a r a n d o m  per turbat ion vector with elements f rom a normal  distribution with 

zero mean and s tandard  deviation 10-  5. The corresponding threshold is therefore 
6 =  10 -5 . 

The per turbed Fourier  coefficients lurGI and the generalized singular values y~ are 

shown in Fig. 1. Notice the "reverse" ordering ofy~ as compared  to the usual singular 
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Fig. 1. The generalized singular values (crosses), Fourier coefficients lurGll (circles), and means p~ (solid 
line) for example one with m = 78, n = 49 and p = 47. Note that there are p = 47 generalized singular 

values. The DPC is satisfied for i = 45, 44,..., 35. 
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values ~bi. All the singular values of the kernel K in (6.2b) are nonzero, but due to the 
particular discretization method the matrix A has 7 numerically zero singular values 
~ki of the order e = 10 - is .  Hence, there are also 7 numerically zero generalized 
singular values 7i of (A, L) of order t 0 - l  s, while the rest of the 7~ are numerically 
nonzero and decay monotonically with decreasing i. The corresponding Fourier 
coefficients lu fb l  also tend to decay with decreasing i until they level off at about 
10- 5, which is the noise level 6 caused by our random errors. The particular Fourier 
coefficients corresponding to the numerically zero 7i -~ e are of the same size as 6, 
and the problem is therefore consistent within the noise. 

For  this particular problem, all the Fourier coefficients tu~r/~ with even index i are 
actually numerically zero (i.e., of the same size as 6). As mentioned in Section 5, these 
numerically zero lush] should not be included in the analysis of the DPC, and we 
therefore only computed p~ for odd values of i. These p~, computed with q = 1, are 
shown by the solid line in Fig. 1. We see that for i = 45, 44 . . . . .  35 the values Pi decay 
monotonically, and for i < 35 they start growing again for decreasing values of i. 
F rom such a plot, we conclude that the underlying, exact problem seems to satisfy 
the discrete Picard condition. We also see that the perturbed problem satisfies the 
DPC if it is regularized in such a way that the terms (u~G/7~)xt are damped or 
truncated for i < 35. 

To illustrate this in another way, we have plotted the seminorms llLxa 1t2 and 
II LXk 112 versus the residual norms I1 A x a  - b It 2 and tl A x k  --  b II 2 in Fig. 2. Such a plot 
clearly illustrates the tradeoff between minimization of the (semi)norm of the 
solution and the residual norm. We also immediately see that the solutions com- 
puted by means of Tikhonov regularization and TGSVD are indeed very similar. As 

10-1 

tl s; xll 

X Truncated GSVD 

Tikhonov regularization 

I I I I I ' 1  I I I I I I 1 I I I I ]  

10-4 10-3 

I I A x - b l l  
]0  -2 . . . .  , , , ,  

10-,~ 10-2 

Fig. 2. Theseminorm oftheregularizedsolutionsversustheresidualnormsforTikhonov regularization 
(solid line) and TGSVD (crosses). 
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shown in [18, Section 5], there is a distinct L-shaped corner on the (If Ax:. -- bll 2, 

llLxaII2)-curve, and the optimal parameters 2 and k produce solutions near this 
corner. For  smaller values of 2 (and larger values of k), the solution is dominated by 
oscillating contributions from the perturbation of the right-hand side, while for 
larger values of 2 (and smaller values of k) the solution is over-regularized, i.e. the 
regularization error is too large. Fig. 2 suggests an optimal truncation parameter 
k equal to 16 or 18, while inspection of plots of the TGSVD solutions (not shown 
here) indicates that k = 14 is optimal. 

In this connection, we would like to emphasize that we do not encourage the 
choice of 2 or k being based solely on the pi-curve. Rather, we see this curve as 
a useful aid to analyzing discrete ill-posed problems. To choose ~. and k, we will 
advocate the use of several simultaneous strategies, such as inspection of the yi, lufbl  

and Pi, plotting the (semi)norm of the solution versus the residual norm, using GCV, 
etc. 

The second example is a model of the transient transport across the blood-retina 
barrier in the human eye [201. A simple version of this model, assuming the eye to be 
a sphere, was refined to allow for a more realistic geometry of the eye where the front 
half deviates from spherical form. The kernel and right-hand side of the integral 
equation (6.1) are then given by: 

(6.4a) K(s,  x) = 2re sin xD(x)[D(x)  2 -4- [dD(x) /dx]  2] 1/2E(s2 -1- D(x) 2 -- 2sD(x)cos  x) 

(6.4b) O(s) = F(fls + (fl - 1)ao), fl = ½(3 + ct)/(1 + ~t) 

where [a, b] = [0, ~], [c, d] = [ -  ct o, ~ao], and 

S½(~t - 1)ao cos 3x + ½(ct + 1)ao, 0 < x < re/3 (6. 5c) D(x) 
(ao  , ~/3 <_ x < 

(6.5d) E(t) = e x p ( - s o t l / 2 ) / t  1/2, F(t) = 2 e x p ( - a o S o )  sinh(sot)/t .  

The parameters were ao = 1.2 cm (radius of the spherical back half of the eye), 
-- 0.9 (deformation from spherical form of the front half of the eye), and So = 0.316 

(time constant for the diffusion through the blood-retina barrier). We discretized the 
integral equation by means of the moment method with m = n using piecewise 
constant approximations (see e.g. [14] for more details), and we used L = In. This 
leads us to considering the usual singular values ~bi, the Fourier coefficients luTiffl 
(where u~ are the usual left singular vectors of A), and the moving geometric mean 

When the order n of the matrix is smaller than about 100, the DPC does not seem 
to be satisfied, because all the Fourier coefficients decay to zero slower than the 
singular values. However, if n is greater than 100, then the DPC is in fact satisfied for 
i < io (i.e., for the larger singular values), and the number io increases with the order 
n. This behavior of io implies that the growth of Pi for i > io is primarily due to the 
approximation errors caused by the rough piecewise constant approximations. 
A plot of the first 30 coefficients for the case n = 256 is shown in Fig. 3, using q = 3. 
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Fig, 3. Thefirst 30singular values Oi (crosses), Fourier coefficients lur~ (circles), and means pi (solid line) 
for example two with m = n = 256. The DPC is satisfied for i < i o = 20. 

From these results, we can conclude that the underlying, exact problem seems to 
satisfy the DPC, which means that the integral equation is a satisfactory model. Use 
of more sophisticated approximation functions would increase the quality of the 
discrete solution. 
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