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Abstract. 

The stable roommates problem is that of matching n people into n/2 disjoint pairs so that no two 
persons, who are not paired together, both prefer each other to their respective mates under the matching. 
Such a matching is called "a complete stable matching". It is known that a complete stable matching may 
not exist. Irving proposed an O(n 2) algorithm that would find one complete stable matching if there is one, 
or would report that none exists. Since there may not exist any complete stable matching, it is natural to 
consider the problem of finding a maximum stable matching, i.e., a maximum number of disjoint pairs of 
persons such that these pairs are stable among themselves. In this paper, we present an O(n 2) algorithm, 
which is a modified version of Irving's algorithm, that finds a maximum stable matching. 

C.R. categories: F2.2, G2.1. 
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I. Introduction. 

The stable roommates problem was first described in the paper of Gale and 
Shapley [1]. The problem is defined as follows. There is a set S of n people. Each 
person i has a preference list consisting of a subset S~ ofS - {i} and a rank ordering 
(most preferred first) of the persons in Si. For person i, the set Si has the meaning that 
the only persons he is willing to be matched with are those in Si. A complete 
matching M is a partition of the n persons into n/2 disjoint pairs of partners such that 
for every pair {x, y} in M, x is on y's list and y is on x's list. A complete matching M is 
unstable if there are two persons who are not matched together in M, but who each 
prefer the other to their respective partners in M; such a pair is said to block the 
matching M. A complete matching which is not unstable is called stable. The 
problem is to find a complete stable matching. 

Gale and Shapley proposed this problem and gave the following example to show 

* This research was supported by National Science Council of Republic of China under grant NSC 
79-0408-E009-04. 

Received November 1989. Revised May 1990. 



632 JIMMY J. M, TAN 

that a complete stable matching may not exist. In this example anyone paired with 
person 4 will cause instability. 

person preference list 
1 2 3 4 
2 3 1 4 
3 1 2 4 
4 arbitrary 

Fig. i 

Irving [4] proposed a polynomial-time (O(n 2) in the worst case) algorithm that 
finds one complete stable matching if one exists, otherwise reports that none exists. 
Recently Gusfield and Irving published a book [31 in which they listed over 
a hundred research papers related to this problem. In our bibliography, we cite only 
a few of them which are directly relevant to us. Since there may not exist any 
complete stable matching, it is natural to consider the problem of finding a maxi- 
mum number of disjoint pairs of persons such that these pairs are stable among 
themselves, i.e. no two persons, who are not paired together but have matched 
partners, both prefer each other to their partners under the matching. We call this"a 
maximum stable matching problem". In this paper, we propose an efficient algo- 
rithm to find one maximum stable matching. Our algorithm is a modification of that 
of Irving, and has the same O(n 2) time bound. 

2. Definitions. 

An instance of the stable roommates problem is specified by a set of preference 
lists, one for each person. Let S be a set ofn  persons, and T be the table of preference 
lists of these n persons. From now on, we assume that the table T is symmetric, i.e., 
person a is on b's list if and only if b is on a's. If person b is on the preference list of 
person a, then we write (alb) to represent the entry b in a's preference list. 

Define rank(a, b) = m, if person b occupies position m in a's preference list. If 
rank(a, b) < rank(a, c), it means that person a prefers b to c. 

Let T be a table of preference lists. The previous definition of a complete matching 
being stable in T can be extended in a natural way to that of a matching (not 
necessarily complete) being stable in T. A matching M is unstable in table T if there 
are two persons who are not paired together, but have matched partners in M, and 
both prefer each other to their respective mates. A matching in table T is said to be 
stable, if it is not unstable. A maximum stable matching M in table T is defined to be 
a stable matching with the maximum number of pairs. 

In the next section, we will present an algorithm for finding a maximum stable 
matching. Our algorithm successively deletes unnecessary entries from the table of 
preference lists, and locates a solution at the end. For convenience, the current set of 
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preference lists at any point in the algorithm is called a table. A stable matching M is 
said to be contained in a table T, if every matched pair in M is in T, i.e., in table T, a is 
on b's list, and b is on a's list for each matched pair {a, b} in M. 

3. An algorithm for a maximum stable matching. 

3.1 The first phase of the maximum stable matching algorithm. 
We now describe an algorithm that finds a maximum stable matching. Our 

algorithm is divided into two phases. The fundamental idea used in Phase 1 of the 
algorithm is that of the "proposal and rejection" [1, 4], which is to be described as 
follows: If person a proposes to the current first person c on a's ist, then person 
c deletes (i.e., rejects) every entry (c[x) with rank(c, a) < rank(c, x) and its correspond- 
ing entry (x]c) from the table. An entry deleted in Phase 1 may be in some maximum 
stable matching. However, the following theorem shows that there exists at least one 
maximum stable matching contained in the resulting table. We say that a matching 
is stable in a table T, if it is stable in the roommates instance defined by T. 

THEOREM 3.1. Let To be a table. Suppose that person c is the first person on a' s list in 
To, and x denotes the persons that are behind a on c' s list. Let TI be the table obtained 

from To by deleting every entry (c]x) with rank(c, a) < rank(c, x) and its corresponding 
entry (x[c) from To. Then 

O) at least one of the maximum stable matchings in To is also a stable matching in T~ ; 
(ii) conversely, any stable matching in 7"1 is also stable in To. 

PROOF. (i) Let Mo be a maximum stable matching in To. If the pair {c, x} ¢ Mo for 
every x that is behind a on c's list, then the case is trivial. So we may assume that Mo 
contains such a pair {c, x}. Since c is the first person on a's list, a must be an 
unmatched person in M0, otherwise a and c block the matching. We then construct 
a new matching M1 by deleting the pair {c, x} from Mo and adding the pair {a, c} to 
it. It is easy to see that M1 is also a maximum stable matching in To, and M1 is 
contained in T~. This proves (i). 

(ii) Let M be a matching stable in table T~. Suppose that M is not stable in T o, then 
any instability must be caused by those "deleted" entries. It is a simple matter to 
check that these entries will not cause any instability, so (ii) follows II 

So the first phase of our algorithm for finding a maximum stable matching is 
simply applying the proposal and rejection process, and deleting those entries 
behind x on y's list from table To when person x proposes to y, as stated in theorem 
3.1, until each person either 

(i) holds a proposal; 
or (ii) has an empty list. 
The table obtained at the end of this phase is called the Phase 1 table. 
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Example: 
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Original table Phase 1 table 

~ r s o n  preferencelist ~ r s o n  preferencelist 
1 2 5 3 4 6  1 5 3 4  
2 3 4 5 6 1  2 3 4 5  
3 4 5 1 2 6  3 4 5 1 2  
4 1 2 5 3 6  4 1 2 5 3  
5 2 4 3 1 6  5 2 4 3 1  
6 1 2 3 4 5  6 empty 

Fig. 2(a) Fig. 2(b) 

Let To denote the original table of preference lists. Recall that To is assumed to be 
symmetric, that is, person a is on b's list if and only if b is on a's. The following two 
easy properties of a phase 1 table are proved in [4]. 

PROPERTY 3.2. Let T1 be a phase 1 table. Person a is on b's list in T1 if and only if 
b is on a's list in Tt. 

PROPERTY 3.3. Let T~ be a Phase 1 table. Person a is the first person on b's list in 
T~ if and only if b is the last person on a's list in T~. 

PROPOSITION 3.4. Let T 1 be the Phase 1 table. In table 7"1, if every person has zero or 
one entry on his list, then the lists specify a maximum stable matching. 

PROOF. By properties 3.2 and 3,3, ifb is the only person on a's list in T1, then a is 
also the only person on b's list in TI. So a and b form a pair in table T1. Let 
{{ai, bi}[i = 1 to k} be the set of all such pairs in 7"1, and let {c~[j = 1 tom} be the 
set of all persons whose lists are empty in T~. Then it is obvious that M = 
.{{ai, bi} I'i = 1 to k} is a maximum stable matching for TI. By inductively applying 
theorem 3.1, M is also a maximum stable matching for the original table To. • 

So, checking the Phase 1 table at the end of this phase, 
(i) if every person has zero or one entry on his list, the the lists specify a maximum 

stable matching; 
(ii) if some of the lists contain more than one person, this brings us to the second 

phase of the algorithm. 
It remains to describe how we deal with the Phase 1 table when some of the lists in 

it contain more than one person. 

3.2 The second phase of  the algorithm. 
In the second phase of our algorithm, entries are removed from the table in a very 

special way. The fundamental idea is a rotation introduced by Irving I-4]. We first 
need some definitions. 

DEFINITION. Let T be a table. A rotation R, denoted by 
R = (al, a2 . . . . .  at) I (bl, b2 . . . . .  br) , is a cyclic sequence a~, a 2 . . . . .  a r of distinct people, 
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where b~ is the first person on a~'s list in T, and the second person on 
at- l's, i = 1 to r (subscripts mod. r). The rotation R is said to be exposed in table T. 

Example: In fig. 2(b), (1, 2, 3) l (5, 3, 4) is a rotation exposed in Phase 1 table. 

DEFINITION. Let R = (ax, a2 . . . . .  at) I (bl, b2 . . . .  , b,) be a rotation exposed in table 
T. Rotation R is said to be eliminated from T, if the following entries are deleted 
from T: 
(i) every entry (bilx) with rank(bi, a i_x)< rank(bi, x), i =  1 to r (subscripts 

mod. r); 
(ii) every entry (x[ bi), where entry (b~l x) is described in case (i). 

Example: In Fig. 2(b), after rotation (1, 2, 3) 1(5, 3, 4) being eliminated from the 
table, the resulting table is as follows. 

person preference list 
1 3 4 
2 4 5 
3 5 1 
4 1 2 
5 2 3 
6 empty 

Fig. 3 

DEFINITION. A table T is said to be in the second phase, or in Phase 2, if 
(i) the table has been subjected to Phase 1 reduction as described before; 
(ii) the table has been subjected to zero or more rotation eliminations (called Phase 

2 reduction). 

It is not difficult to see that property 3.2 and property 3.3 also hold for a table in 
Phase 2. Furthermore Irving [4] proved the following proposition. 

PROPOSITION 3.5 [Irving] Let T be a table in Phase 2. I f  there is a person whose 

current list has more than one entry, then there is a rotation exposed in T. 

In the second phase of our algorithm, we use rotation elimination to delete more 
entries from the table. We begin our discussion by considering the case when the 
elimination of a rotation makes some list empty, and study the structure of such 
a rotation. For the following theorem, it is helpful to use the example given in Fig. 
3 to get some intuition. 

THEOREM 3.6 Let T 2 be a table in phase 2, and let R = (at, a2,. . . ,  ar) l (bl, b2,...,  br) 
be a rotation exposed in T2. Suppose that, on eliminating R from 7"2 some list becomes 
empty, then 
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O) r = 2m + l for  some m, and bi = ai+mfor all i, 1 < i < r (subscripts mod. r); 
(ii) For each i there are only two entries in ai's list in T2, namely bi (=  ai+m) and 

bi+l(  = ai+m+l); 
(iii) the list o f  each a~, but no other list, becomes empty on eliminatin 9 R. 

PROOF. On eliminating R, the only lists to lose their first entry are those of the at, 
so certainly no other list can become empty. Without loss of generality, we may 
assume that the list of al  becomes empty. Now b2 is the second entry in al ' s  list, and 
(al I b2) can be deleted only if rank (al, b2) > rank (al, ak) for some k, where al is 
second in the list ofak. So ak = bl,  since bl is the only element for which this is true, 
and al = bk+ 1. But al is the last entry on the list of bl ( =  ak), SO this list has only two 
entries, namely ar and al (since bl is certainly on the list of both of these). 

We have shown that the list ofak contains only two entries, ak = bl and al = ak + 1- 
Using a similar argument we can prove that ak- 1 = b,, a, = bk and the list of ak- 1 
contains just two entries. By inductively applying the same argument we see that the 

list of ak_ i contains only two entries, ak_ i = b, - i+l  and at_i+ 1 = b k _ i +  1 for 
i = 0, 1, 2 . . . . .  r -- 1 (subscripts mod. r). Substituting i = k - 1 into the first equality, 
and i = 0  into the second, we have al = b , - t k - l ) + l  and al =bk+l .  So 
r - (k - 1) + 1 = k + 1 (mod. r), and hence r = 2k - 1 is the only possibility. Let 
m = k - 1, then r = 2m + 1. Rewriting the equality ak-~ = br-i+l (replacing i by 
1 - j )  we have a k _ l + j = b ~ _ l + j + l  (subscripts mod. r), and a, ,+~=bj  for 

j = 1,2, . . . , r .  • 

Consider the example given in fig. 3, if we eliminate rotation R = (1, 2, 3, 4, 5) I 
(3, 4, 5, 1, 2), then some lists become empty. In this example, it is straightforward to 
check that r = 2m + 1, where r = 5 and m = 2, and bi = ai+m for i = 1 to 5. 

In the context of the theorem above, if the elimination of rotation R makes some 
list empty, then the lists of every person involved in this rotation become empty after 
eliminating it. Notice that before eliminating R, any person in A = {al, a2 . . . . .  a,} is 
not on the current lists of the rest of the persons. Therefore the lists of persons in A is 
independent of the other portion of the current table T2. So we know that there exists 
no maximum stable matching contained in the resulting table after eliminating this 
rotation. This is because for any stable matching contained in the resulting table, 
one may add at least one more pair, e.g. {al, a2} to it to have a larger stable matching 
in the original table. Once we detect such a rotation, we do not eliminate it, just 
separate the preference lists of persons in A = {al, a2 . . . .  at} from the table, and treat 
the rest of the table as a smaller instance table (in phase 2). For  convenience, such 
a rotation is called an odd rotation. 

Let To be the original table of preference lists, and let T2 be a resulting table 
obtained from To after the Phase 1 process and after eliminating zero or more 
rotations R, i.e., T2 is a table in Phase 2. Let R be a rotation exposed in T2. We now 
consider the case that the elimination of R makes no list empty. In the following, we 
have a result which reveals the relationship between such an exposed rotation and 
a maximum stable matching. The idea of this result is inspired by [4]. 
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THEOREM 3.7. Let T2 be a table in Phase 2, and let R = (al, a2  . . . . .  ar) l (bl, b2 . . . . .  b,) 
be a rotation exposed in T2. Suppose that no list, which is non-empty in 7'2, will become 
empty after eliminating R. Let Ta be the resulting table obtained from T2 after 
eliminating rotation R. Then 
O) at least one of the maximum stable matchings in T2 is also a stable matching in T3; 
(ii) conversely, any stable matching in Ta is also stable in T2. 

PROOF. (i) We first claim that, in table Tz, there exists a maximum stable matching 
in which none of {ai, bt} is a matched pair, i = l(1)r. 

Let us accept this claim for the time being; we will prove it later. Then the entries 
(at lbt) and (bilai), i = l(1)r, can be deleted from the table, and the operation of 
proposal and rejection can be performed again. We note that bt + 1 is now the first 
person on ai's list. In particular, this means that no entry (ailbt ÷ 1) has been deleted. 
For  otherwise, in table T2, ai = bj for some 1 < j < r, and the second person on ai's 
list is the same as the last person on bSs; then the list of ai becomes empty after 
eliminating R, giving a contradiction. Then after a sequence of proposals and 
rejections, we obtain a table which is exactly table T3 obtained from T2 after 
eliminating R. So (i) follows by inductively applying theorem 3.1. 

We now prove the claim. Let M be a maximum stable matching in table T2. There 
are two cases to be considered. 
(a) ai and bt are matched partners in M. 
(b) ai and b~ are not partners in M for some i. 

In both cases, we will prove that there exists another maximum stable matching in 
which none of {at, b~} is a matched pair for all i. 

(a) We know that bi is the first person on a~'s list and a~ is the last person on bt's list, 
and that a~ is matched with bi. Let A = {al,a2 . . . . .  at}, B = {bl,b~,...,br}. 

IfA c~ B ~ 4~, say a s = bk, since a s is matched with the first person b s on his list and 
bk is matched with the last person ak, it is impossible that someone is matched with 
the first person on his list and at the same time he is also matched with the last person 
on his list. So we know that A c~ B = ~b. We then construct a new matching M' by 
deleting the pair {a~, hi} from M and adding the pair {ai, b~+ 1} to it. 

Notice that at and bt are not partners in M'. We claim that M' is a maximum stable 
matching in Tz. Because [Mq = IM[ and M' is a matching, we need only prove that 
M' is stable in T2. Clearly, each member bt of B obtains a better partner in M', from 
his point of view, than the one he had in M. The only individuals who fare worse in 
M' than in M are the members at of A, so any instability in M' must involve some a~. 
Person a~ is matched with the second person b~+ 1 on his list and his best choice is 
person bl. But b~ prefers his partner in M' to at. Therefore M' is stable in I"2. This 
handles case (a). 

(b) If {a~, bt} ¢ M, then the claim is true. So, without loss of generality, we may 
assume that {al, bt} ¢ M for i = l(1)k, but {ak + 1, bk + 1 } E M, where 1 < k < r. Con- 
sidering the pair {ak+l,bk+l} and person ak, we conclude that ak must be an 
unmatched person in M. For  otherwise, say ak is matched with x, then x cannot be bk 
or bk + 1, since ak and bk + 1 would block the matching. 
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We now construct a new matching M' by deleting the pair {ak+l,bk+l}  from 
M and adding the pair {ak, bk + 1 } to it. Using a similar argument as in case (a), we can 
conclude that M'  is also a maximum stable matching in T2. It remains to show that 
{ai, b~}(~M, for i = l(1)k + 1, i.e., {ak, bk+l} # {ai, bi} for any i = l ( 1 ) k -  1. (We 
note, however, that this may not be true if R is an odd rotation.) After establishing 
this fact, we may repeat the same argument, eventually obtaining a maximum stable 
matching in which none of {a~, b~} is a matched pair. This takes care of case (b). 

Now, suppose on the contrary that {ak, b k + 1} --- {a i ,  b~} for some i = l(1)k - 1, 
then we must have ak = b~ and bk ÷ 1 = ai. So (bk ÷ 1 [ ak) = (ai I b~), which means that 
ak is the first person on bk ÷ ~'s list. If we eliminate R from T2, then bk + l's list will 
become empty. This is because every person after ak on bk + ~'S list should be deleted, 
and the first person b~ on a{s list, i.e. entry (bk+ ~ l ak), should also be deleted. Then 
there is none left on bk ÷ ~'s list, giving a contradiction. 

(ii) Let M be a matching which is stable in T3. We claim that M is also stable in T2. 
Suppose that this is not true. We know that T3 is a table obtained from T2 by 
eliminating rotation R = (al, a2 . . . . .  a,)l (bl, b2 . . . . .  b,). So, any instability must be 
caused by those "deleted" entries, i.e. there exists a person b~, and there exists 
another person x who is behind a~_ ~ on b{s list such that x and b~ block the matching 
M. However, M is a matching in table T3, and if bi has a matched partner in M, he 
must be matched with a person who is above x in his list, and b~ certainly prefers his 
partner to x. This is a contradiction and the claim follows. • 

As mentioned before, if the elimination of a rotation in T2 makes som list empty, it 
indicates an odd rotation. We do not eliminate any odd rotation. Suppose that the 
elimination of an exposed rotation in T2 makes no list empty. To find a maximum 
stable matching in T2, we only have to find a maximum stable matching in Ta after 
eliminating the rotation. The reason is that a maximum stable matching in Ta is 
a maximum stable matching in T2. Repeating the operation of rotation elimination 
until this operation cannot be performed, then in the final table there are a collection 
of disjoint odd rotations, a collection of persons whose lists have one person left, and 
a collection of persons whose lists are empty. We now must show how we find 
a maximum stable matching contained in the final table. 

Recall that, throughout the algorithm, the table remains symmetric. So those 
persons whose lists have only one entry appear in pairs. Let {{~ti, fit} [i = l(1)k} be 
the set of all such pairs. As for the odd rotations, we merely need to deal with one odd 
rotation at a time because each one is fully independent of the remainder of the final 
table. Considering an odd rotation, since the number of persons involved in it is odd, 
it is obvious that at least one person has to be excluded from a matching. 

We need one more result. This result points out that there exists a complete stable 
matching for the rest of the persons after excluding one person from each odd 
rotation. According to theorem 3.6, we know that b~ = a~+m (subscript mod. r), for 
i = l(1)r, where r = 2m + 1. Since the permutation of R is cyclic, it makes no 
difference to exclude one person from the matching. Without loss of generality, 
assume person a2,,+ ~ is excluded from this odd rotation R. We have the following 
theorem. 



A MAXIMUM STABLE MATCHING FOR THE ROOMMATES PROBLEM 639 

THEOREM 3.8. Let R = (al, a2 . . . .  , at)[ (bx, b2 . . . . .  br) be an odd rotation in the final 
table. Suppose that person a2m+ ~ is excluded f rom the matchin O, where r = 2m + 1. 

Then matchin9 M = {{al, a,. +x), {a2, am +2 } . . . . .  {a,., azm}} is stable. 
PROOF. According to the definition of a rotation, we know that all the members of 

{al, a2 . . . . .  a,} in R are distinct. Note that each member of {al, a2,. . . ,  a,,} is matched 
with the first person on his list in the final table, and each member of {a.,+ 1, 
a,,+z ... .  a2,,} is matched with the second person on his list. It is obvious that 
M = {{al, a,, +1 }, {az, a ,+  z} . . . . .  {a,,, a2,,}} is a matching. By theorem 3.6, we know 
that a2,,+~, a~, a2 . . . . .  a,,_~ are the first persons on the lists of a,,+~, am+z, 
am+3 . . . . .  a2,, respectively. Then it is easy to check that M is stable in the final 
table. • 

Consider the example given in Fig, 3, R = (1,2,3,4,5)1(3,4,5,1,2) is an odd 
rotation. Excluding person 5, {{ 1, 3}, {2, 4}} is a stable matching, and we shall see 
soon that it is also a maximum stable matching in the original table (See Fig. 2). 

Before giving the formal description of Phase 2, we give some definitions assuming 
that the initial table of preference lists is symmetric. 

DEFINITION. Let T be the current table at a certain point of the algorithm. The 
preference list of a person is said to be inactive, if 
(i) the list is involved in an odd rotation which has been discovered before; 
(ii) the list has only one person; 
or (iii) the list is empty. 

The preference list of a person is active, if it is not inactive. 

DEFINITION. The  active part of a table Tis thepar t  ofthe table obtained from Tby 
deleting all the inactive lists. 

If there is someone whose preference list is still active, then his list contains more 
than one person. Hence by proposition 3.5, there is an exposed rotation. The Phase 
2 of our algorithm for finding a maximum stable matching can be stated formally as 
follows. 

1. While the active part of the table is not empty, find an exposed rotation. 
(i) If the exposed rotation is odd, then do not eliminate it, and declare inactive the 

lists of all persons involved in this rotation. 
(ii) Otherwise, eliminate this rotation. I fsomel is thasonlyonepersonlef toni tdue 

to the elimination, then declare this list inactive. 
2. If the active part of the table is empty, go to step 3. 
3. Exclude one person from each odd rotation R. Suppose that R = 

(al, a2,. . . ,  a~) l(bl, b2 . . . . .  b,) is an odd rotation, then bi = ai+m (subscript mod. r), 
for i = l(1)r, where r = 2m + 1. If we exclude person a2m+ ~ from the matching, then 
we obtain a stable matching: {{al, am +l }, {a2, a,,+ 2},..-, {a,,, a2,,}}. 

Finally, the resulting table induces one maximum stable matching. 
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The correctness of the algorithm follows from the earlier theorems. As for time 
complexity, since our algorithm is basically Irving's algorithm with some modifica- 
tion and extension, the time bound is exactly the same as in his algorithm, namely, 
O(n2). The analysis is also similar to that of [4] which will not be repeated here. 

4. Conclusions 

A maximum stable matching problem has been defined for the stable roommates  
problem. The motivation of defining this problem is that there are instances of the 
stable roommates  problem for which no complete stable matching exists. In this 
paper, we presented an O(n 2) algorithm for finding a maximum stable matching. At 
the heart of this algorithm is Irving's algorithm with some modification and 
extension. 

There are still some problems worth studying. For  example, in the last step of our 
algorithm, we arbitrarily delete one person from each odd rotation to obtain 
a complete stable matching for the rest of the persons; it is not difficult to construct 
an example in which some persons, other than those in an odd rotation, can also be 
excluded to get a maximum stable matching. We would like to find a characterisa- 
tion of those persons that can be excluded from a maximum stable matching. 
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