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A NOTE ON THE STACK SIZE
OF REGULARLY DISTRIBUTED BINARY TREES

R. KEMP
Abstract.

Assume that in one unit of time a node is stored in the stack or is removed from the top
of the stack during postorder-traversing of a binary tree. If all binary trees are equally likely
the average stack size after 1 units of time and the variance is computed as a function of the
proportion g=t/n.

1. Introduction.

Let T{n), n € N, be the set of all extended binary trees ([6]) with n leaves and
T e T(n). The stack size S{T) is recursively defined by

S(T) := IF |T{=1 THEN 1 ELSE IF S(T,)>S5(T,)
THEN S(T,) ELSE S(Ty)+1;

where | T is the number of nodes of the tree Tand T, (T,) is the left (right) subtree
of T. S(T) is the maximum number of nodes stored in the stack during postorder-
traversing of T € T(n). In [4] it is implicitly shown that the average stack size of a
binary tree T € T(n) is asymptotically given by [/(nn) —1/2+ O(Inn/}/n) assuming
that all n-node trees are equally likely. The variance is computed in [5] and is
asymptotically given by

(m/3—Vmn+i5—Fsn +i5n+O0(nn/n? %) for all £>0.

In this paper we consider an analogous problem. Evaluating a binary tree
T e T(n) in postorder we assume that in one unit of time a node is stored in the
stack or is removed from the top of the stack. Considering all trees T e T(n)
equally likely we shall compute the average number of nodes R, (n, f) stored in the
stack after ¢ units of time as a function of the proportion ¢=t/n. Moreover, we
give an asymptotic equivalent for the sth moment R (n,t) with respect to the
origin, and for the variance.

2. The average stack size after ¢ units of time.
Obviously, each path from (t,k)=(1,1) to (t,k)=(2n—1,1} in Figure 1
corresponds to the evaluation of a binary tree T € T'(n) in postorder ([6; p. 316]};

for example, the marked path in Figure 1 corresponds to the following tree
Te T(6).
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If we reach the point (i,j) then we have exactly j nodes in the stack after / units
of time.

k {number of nodes in the stack) t Inodes in stack
1 0
2 DE
' 3 8
H i BH
5 8H1
6 61 or
7 BFJ
5 8 BFJK
“ 9 BFG
3 10 BC
b 1" A
3.
2
1
r i ¢
0 1 2 3 4 5 [ 7 8 9 10 11 2n-2 2n-1 {units of
time)

Fig. 1. Path diagram corresponding to the trees T € T{(n}.

Now, let H{(n,k,1) be the number of binary trees T € T(n) having exactly k
nodes in the stack after ¢ units of time. An inspection of Figure 1 shows that this
number is the product of

(a) the number of paths from (1,1) to (¢, k), which is

k({ t
?((Hk)/z)’ and

(b) the number of paths from (1,k) to (2n—1, 1), which is

k 2n—t
2n—t \n—{t+ky2)’

These enumeration results of the number of paths are well-known ([3]). Hence

) Honk.1) = k? ( t ( 2n—t
) .k, T t@n-n \(t+k)2) \n—t+k)2)"

Obviously, we have the conditions k<t<2n—1 and (k+t)=0mod 2. Now, let
|T(n)|=t(n). It is well-known ([6]) that

(2) tn) = 1(2”_2).

n

Considering all binary trees Te T(n) equally likely the quotient p(n, k)
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= H (n, k,t)/t{n) is the probability that there are k nodes in the stack after ¢ units of
time during postorder-traversing of a binary tree T e T(n). Therefore, the sth
moment is given by

(3) Rym1) = tm)™1 Y K*Hin,k,1).
k=1
Supposing b € Z and using the explicit expression for H(n, k,t) given in (1) we

obtain by a simple calculation

4) R,(n,2t+b)

_ 2n—1 sip [2t+DY (2n—=2t—b 2n
a 2(2t+b)(2n—21—b) k;) (2k+b) <z—k)< n—t+k )/(n)

where b € [0,1]. In order to compute R (n, ) as a function of the proportion of the
units of time ¢ to the whole number of units of time 2n we have to compute an
asymptotic equivalent for the sum

2t+b\ {2n—2t—b 2n
= E - =
(5) ., 1) ,\gok (t—k)( n—t+k >/<n>’ 520

because
2n—1 s¥2 (542
A =2 2572y (1)
(6) Ry(n.21+b) (2t+b)2n—2t—b) ;‘:0 ( u ) . u(n:)

In [5] a method is given for the computation of a closed expression for hy 3(n,1);
this method works also for hq ((n,t) where s is odd, but not for even s. In this
paper we shall give another procedure for the computation of an asymptotic
equivalent to h, .(n,t) effective for all s>0.

Let g, = (t+b/2)/n, x=(k+b/2)/(g,n) and for i=1

2i-1 2i
Qs @y 1 ( @
= 1 . b,o=-11 ,
“ f(2f—l>[ +(1—9b) } ‘ i[ " \1"91) ]
1 1 1 0 2s+1]
Cog = = 1_ " (S 1+< ) :
0 8[ Qb(l_Qb)_J ! 6Qb[ 1—-9,

For g,=const. we have by Stirling’s approximation

<2t‘+b) (2;1—21—b)/(2nn) = (nng,(1—g,) " *exp (—nla;x*+ax*+...)+

t—k n—t+k

1
+3(bx2+byx* + .. ')+;z (cotex®+ex*+...)+0(x*n"?)

2t+b\(2n—2t—b 2n
h —1 < 1, and _ -% —nlt
when <x<+1, an (r—k)(an—k )/(n) O(n~*exp (—n*))
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when k>]/{0,(1 —g,)}n***—b/2, for all fixed &> 0. Therefore the sum of all terms
for k2]/{0,(1—g)}n***—b/2 in (5) is negligible, being O(n™™) for all m>0.
Hence we may take x=0(n"*%%) in (5). Therefore

2t+b\ (2n—2t~b n
t—k n—t+k n
= (rng,(1—0,)) *exp (—n(ayx® +ax*) +3b,x2 +co/n+ 0(n~2*9)

Using the definition of x, g, and the above explicit expressions for ay, a,, by, cq we
obtain by an elementary computation

b\(2n—2t—b\ /{2 k+b/2)?
0 (L) = oo e (G o)

where
1 1 (1—gp’+0p
8n  8ng,(1—gp) 2’129% (1- Qb)2

_(1-g)+g}
6"3Q§ (1— Qb)3

Ap iy = (k+3b)* —

(k+ib)*+0(n~13%9
We now consider the function
Bo0n) = T Kexp (= K*/(nes(1-en)) ! fixed
>

Again the terms for k2]/{g,(1—g,)}n***—b/2 are negligible. Hence, we can use
(7) to express h, ((n,t) in terms of g, ,(n,t):

F—0,+2b%+1
- 1— -4 _Qb 2y + _
(8) hb,s(n’ t) (anb( Qb)) [(1 8nQb(1 _ Qb) gs,b("? t)
b 208 —20,+ b2 +1

g1, 0+ gs+2,p(m )~

" ngy(1—-0y) 2%k (1 —g,)°

305 — 3¢, +1 ]
_mgs+4,b(n,t)+0(gs’b(n’t)n 1.5+£) )

Now we compute the asymptotic behavior of g, ,(n,t). With the wellknown
formula
¢+ ioo

exp{—x} = (Zm')_lj I'(zx"%*dz, x>0, ¢>0,

e—ioo

where I'(z) is the complete gamma function, we find

c+ioo

gp(n 1) = (2mi)~* j I(2n*ey(1— @)L (2z - Ddz

c—ioo
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with ¢> (I+1)/2. Here, {(z) is the Riemann zeta function. It can be shown by a
well-known method that we can shift the integration line to the left as far as
we please if we only take the residues into account. There are simple poles at
z={l+1)/2 and possibly at z=—%k, k € N,. A computation of these residues

leads to

_l(=2-)
ngy(1 —gy)

Therefore we get from (8) by an elementary calculation for all ¢>0:

g ) = TG0+ D)ng,(1— 01" V2 + (=D +0(n™?%.

hy o(n,t) = 3n 73 [pyy %+ py® P 4 pyy© T 4 pyTE
+ 0 (n(s- /2 +e)]

where y=ng,(1 —g,) and:
Py = F(‘%(S + 1)))
p, = —bI'(z(s+2),

ps = —5G(s+ D)0} —0p+2b* + 11+37 (3(s+3)[205 — 20, + 6% + 11—
— &7 (5(s+5)[30f — 30, +11,

pe = 2(—3).

Returning to (6) we obtain with this approximation the following

i

LeEMMA. Let b € {0,1} and g, = (¢ +3b)/n. The sth moment is given for all ¢>0 by

505 — Sy +1
Z"V{Qb(l -0y}

(b) Ry(n2t+b) = n[%(l—eb)—i(995—9Qb+2)+0(n‘3/2”)]

(@ Ry(n2t+b) = l/("/n)[4V{eb(1—eb)}— +0(n'3/2+‘)]

(© Ry(m2t+b) = n 32" I (3(s+3)) [ng, (1 — )17 +
+0(ns 2y for s=3 .,

Since R,(n,1) is the average number of nodes in the stack after ¢ units of time
during postorder-traversing of a tree T € T(n) and the variance o%(n) is given by
R,(n,t)— R3(n,t) we get with the preceding Lemma the following

THEOREM. Assuming that all binary trees with n leaves are equally likely the
average number of nodes R,(n,t) stored in the stack after t units of time during
postorder-traversing of T € T(n) is given for all £>0 by

502 —50+1

R,(n1) = 4V{n9(1—e)/n}—m

+0(n 19

BIT20 — 11
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where g =1t/2n=const. For all ¢>0 the variance is
a*(n1) = (6—16/mo(1 —gn+(9~20/mo(1 —@) — 2~ 4/m) +O(n™+*9).

Figure 2 shows the graph of R, {n, 1) and ¢(n, t) as functions of the proportion of
the units of time t to the whole number of units of time 2n needed to traverse a
tree Te T{n).

2/
7

Ry(n,t)

mm B oln,t)
2/7

T T T T T T T T T 1 2
L] 6.t 0.2 0,3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2. The average stack size and the standard deviation as functions of ¢ =t/2n.
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