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Abstract. 
Assume that in one unit of time a node is stored in the stack or is removed from the top 

of the stack during postorder-traversing of a binary tree. If all binary trees are equally likely 
the average stack size after t units of time and the variance is computed as a function of the 
proportion Q = t/n. 

1. Introduction. 

Let T(n), n e N, be the set of all extended binary trees ([6]) with n leaves and 
T ~ T(n). The stack size S(T) is recursively defined by 

S(T) :=  IF t T I = I  T H E N  1 ELSE IF S(T1)>S(T2) 
T H E N  S(T1) ELSE S(T2)+I ;  

where I TI is the number of nodes of the tree T and T 1 (T2) is the left (right) subtree 
of T. S(T) is the maximum number of nodes stored in the stack during postorder- 
traversing of T ~ T(n). In [4] it is implicitly shown that the average stack size of a 

binary tree T ~ T(n) is asymptotically given by l/(nn) - 1/2 + O(ln n/l/n ) assuming 
that all n-node trees are equally likely. The variance is computed in [5] and is 
asymptotically given by 

(re~3- 1)nn+ ~2-~-n2 +-~2n +O(lnn/n ~-~) for all ~ > 0 .  

In this paper we consider an analogous problem. Evaluating a binary tree 
T ~ T(n) in postorder we assume that in one unit of time a node is stored in the 
stack or is removed from the top of the stack. Considering all trees T e T(n)" 
equally likely we shall compute the average number of nodes R 1 (n, t) stored in the 
stack after t units of time as a function of the proportion 0 = t/n. Moreover, we 
give an asymptotic equivalent for the sth moment  Rs(n,t) with respect to the 

origin, and for the variance. 

2. The average stack size after t units of time. 

Obviously, each path from (t, k) = (1, 1) to (t, k) = ( 2 n -  1, I) in Figure 1 

corresponds to the evaluation of a binary tree T ~ T(n) in postorder ([6; p. 316]); 
for example, the marked path in Figure 1 corresponds to the following tree 

T ~ T(6). 

Part of this paper was presented at the 6th Colloquium on Automata, Languages and 
Programming, ICALP' 79, July 1979. 
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If we reach the point (i,j) then we have exactly j nodes in the stack after i units 
o f  t ime .  
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Fig. 1. Path diagram corresponding to the trees T ~  T(n). tu.e) 

Now, let H(n,k,t) be the number of binary trees TE T(n) having exactly k 
nodes in the stack after t units of time. An inspection of Figure 1 shows that this 
number is the product of 

(a) the number of paths from (1, 1) to (t,k), which is 

t (t + k)/2 and 

(b) the number of paths from (t, k) to (2n-  1, 1), which is 

k ( 2n - t "~ 
2 n -  t \ n -  (t + k)/2/" 

These enumeration results of the number of paths are well-known ([3]). Hence 

(1) n(n,k , t )  = t(2n-t~----) (t+k)/2 \ n - ( t + k ) / 2 / "  

Obviously, we have the conditions k < t < 2 n -  1 and (k + t) = 0 mod 2. Now, let 
IT(n)l=t(n). It is well-known ([6]) that 

(2) t(n]t = 1 (2n-2"~ . 
n \ , 7 - 1  / 

Considering all binary trees T ~  T(n) equally likely t he  quotient p(n,k) 
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= H (n, k, t)/t(n) is the probability that there are k nodes in the stack after t units of 
time during postorder-traversing of a binary tree T ~  T(n). Therefore, the sth 
moment  is given by 

(3) R~(n,t) = t(n) -1 k k~H(n,k,t) • 
k=l  

Supposing b ~ Z and using the explicit expression for H(n,k , t )  given in (1) we 
obtain by a simple calculation 

(4) R~(n,2t+b) 

= 2 ( 2 t + b ) ( 2 n - 2 t - b )  ~" (2k k>=o \ t - k J \  n - t + k  ] / \ n ]  

where b e [0, 1). In order to compute R~(n, t) as a function of the proportion of the 
units of time t to the whole number of units of time 2n we have to compute an 
asymptotic equivalent for the sum 

, ,  _ / s>O 
k>=o \ n - t + k  ) \ n / - 

because 

~=o 2Ub Uhb, u(n,t ) . (6) R~(n, 2 t+b)  = 2 ( 2 t + b ) ( 2 n - 2 t - b )  ~= t~ 

In [5] a method is given for the computation of a closed expression for ho. 3 (n, t); 
this method works also for ho.~(n,t) where s is odd, but not for even s. In this 
paper we shall give another procedure for the computation of an asymptotic 
equivalent to hb.~(n,t) effective for all s > 0 .  

Let ~b = (t + b/2j/n, x = (k + b/2)/(Qbn ) and for i > 1 

[ ( '_[,+( Y'l _ Qb 1 + b i = 
ai i(2i-- 1) \1 --Qb/ j '  i k \ \ /  _]" 

c o = ~  1 ~b(1-_@b) C i = - -  1+ 6Qb \1 --Qb) J 

For ~o b = const, we have by Stirling's approximation 

+~(bl.~2[_b2x4+...)+1 (Co.{_c1x2 J_c2x4 + . . .)_~_ O ( x 2 n _ 3 )  ) 
tl 

when - l < x < + l ,  and \ t - k )  n - t + k  )/\n)= O(n-*exp(-n2':)) 
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when k > V{Ob(1 - Oh)} n" + ~ -  b/2, for all fixed e > 0. Therefore the sum of all terms 
for k>l'/{Ob(1--Ob)}n~+½--b/2 in (5) is negligible, being O(n-")  for all m > 0 .  
Hence we may take x=O(n-¢+O in (5). Therefore 

= (rcnob ( i . -  Oh)) -~ exp ( -- n (al x 2 + a2x 4) 4-½b 1 x 2 + co/n + 0 (n - 2 + 0).  

Using the definition of x, Ob and the above explicit expressions for al, a 2, b~, Co we 
obtain by an elementary computat ion 

(2n+b'~(2n-2t-b'~/f2n'~ = (rmOb( 1_Ob))_t,exp((k+b/2) 2 ) (7) 
\ t - k  J \  n - t + k  l i t ,  n /  --n0b(1--0b) +A"'k'b 

where 

1 I ( l -oh)2  +O 2 (k+½b)2_ 
A n ' k ' b  = 8n 8nOb(1--Ob) } 2 n 2 o 2 ( 1 - - O b )  2 

(1 - 0b)3 -1- 03 (k+½b)4+O(n-l.5+O. 
6n30~ (1 -- Oh) a 

We now consider the function 

gl,b(n,t) = ~ k'exp(--k2/(nob(1--Ob))), I f ixed.  
k > l  

Again the terms for k >_-]/{0b(1- 0b)} n '+~-b/2  are negligible. Hence, we can use 
(7) to express hb,,(n, t) in terms of gl, b(n, t): 

(8) hb,,(n, t) = OZnOb (1-- Ob))- ~ [ (1 

b 
nob (1 - Oh) g, + 1, b (n, t) -t 

02 --Qb +2b2 + 1 t 
8nob(1 -- Oh) : gs, b( n, t)-- 

202 -- 20b + b 2 + 1 
2n202(1 _Qb)2 g~+2, b(n, t ) -  

3Q 2 - 30b + 1 t)n- 1.5 +~)1 6n~b (~_ Qb~S gs+ 4, b( n, t)+ 0 (gs, b( n, 

Now we 
formula 

compute the asymptotic behavior of gs, b(n,t). With the wellknown 

f 
c+ioo  

exp ( - x )  = (27ri) -1 F(z)x-~dz, x > 0 ,  c > 0 ,  
c - i o ~  

where F(z) is the complete gamma function, we find 

f 
c+ic¢  

gl, b( n, t) = (27ri)- 1 F(z)nZo~(1 - 0b)z((2z- l)dz 
c -  ioo 
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with c>  (l+ 1)/2. Here, ((z) is the Riemann zeta function. It can be shown by a 
well-known method that we can shift the integration line to the left as far as 
we ptease if we only take the residues into account. There are simple poles at 
z=(l+1)/2  and possibly at z = - k ,  k e N 0. A computation of these residues 
leads to 

gz, b(n,t) = ½F(½(I+ 1))[nob(t --Ob)] (1+1)[2 +~(- - I )  ( ( - - 2 - l )  + O ( n _ 2 )  " 

nob( 1 --Oh) 

Therefore we get from (8) by an elementary calculation for all e, > 0: 

hb, s (n, t) = ½~- ~ [ply s/2 + pEy (s - 1)/2 + paytS - 2)/2 "t- P4Y- ~ + 

+ 0 (n (~- 3)/2 + ~)] 

where y = nob(1 - Oh) and: 

p~ = r ( ½ ( s + 2 ) ) ,  

02 = - b r ( ½ ( s  + 2)), 

P3 = -~F(½(s + 2))[02 - Qb + 2b2 + 1] +½F(½(s + 3))[202 - 2pb + b z + 2] - 

- ~F(½(s + 5))[302 - 30b + 1], 

P4 = 2~ ( - s ) .  

Returning to (6) we obtain with this approximation the following 

LEMMA. Let b c {0, 2} and Oh= (t +½b)/n. The sth moment is given jbr all e > 0  by 

[ 502-50b+2 h.O(n-3/2+e)] 
(a) R~(n, 2t +b) = ]/(n/n) 4]/{0b(1--0b)}-- 2nl/{0b( l_0b)} 

[ 1(902-90b+ 2,+ O(n -3/2 +')] (b) R2(n,2t÷b) = n 60b(2--¢b)-- n 

(C) Rs(n,2t + b) = rc-~2"+ ~ r(½(s + 3))[nob(1-OO]*/z + 

+ O ( n  t s - I ) /2 )  for s> 3 . 

Since Rl(n,t) is the average number of nodes in the stack after t units of time 
during postorder-traversing of a tree T ~ T(n) and the variance tr2(n) is given by 
R2(n,t)-R2(n,  t) we get with the preceding Lemma the following 

THEOREM. Assuming that all binary trees with n leaves are equally likely the 
average number of nodes Rx(n,t) stored in the stack after t units of time during 
postorder-traversing of T ~ T(n) is given for all e > 0 by 

502- 50 + 1 1 +5) 
Rl(n , t )  = 41/{no(1-O)/z} 2]/{rmQ(1-e)} e O ( n -  
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where  ~ = t /2n  = c o n s t .  F o r  all c .>0  the  var iance  is 

trZ(n,t) = (6-16/~z)O(1 - ~ o ) n +  ( 9 -  20/~z)Lo(1 - ~ o ) -  ( 2 - 4 / T z ) + O ( n  -~+~') . 

F i g u r e  2 shows  the g r aph  of  R~ (n, t) and  a(n,  t) as f u n c t i o n s  of  the  p r o p o r t i o n  of  

the  uni ts  of  t ime  t to  the  w h o l e  n u m b e r  of  uni ts  of  t ime  2n needed  to t raverse  a 

t ree  T e  T(n). 

..L,rffn 
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Figure 2. The average stack size and the standard deviation as functions of c~=t/2n. 
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