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ON THE NUMERICAL STABILITY OF SPLINE 

FUNCTION APPROXIMATIONS TO SOLUTIONS OF 

VOLTERRA INTEGRAL EQUATIONS OF THE 

SECOND KIND 

M. E.  A. E L  TOM 

Abstract. 
A procedure, using spline functions of degree m, deficiency/c - 1, for obtaining 

approximate solutions to nonlinear Volterra integral equations of the second kind 
is presented. The paper is an investigation of the numerical stability of the proce- 
dure for various values of m and k. 

1. Introduction. 

Recently, we presented in [3] and [4] a method for the construction 
of a continuous approximation to solutions of nonlinear Volterra integral 
equations of the second kind. The constructed approximation is a spline 
of degree m in the continuity class C m-l, C 1 in [3] and [4], respectively. 
I t  is observed in [3] tha t  the method is divergent for m > 2. On the other 
hand, it  is observed in [4] tha t  by relaxing the spline continuity require- 
ments an apparently stable method is obtained. The present paper is a 
s tudy of these observations. Specifically, we discuss the numerical sta- 
bility of the method for a spline of degree m, deficiency k -  1. 

The method is described in the next section. In section 3, where the 
stability problem is discussed, it is shown, among other things, tha t  the 
method for splines with full continuity is divergent for all m > 2. Finally, 
in section 4, we give several numerical results illustrating some of the 
main conclusions of the paper. 

2. Description of the method. 

Consider the Volterra integral equation 

(1) f(x) = g(x) + i g(x'Y'f(Y))dY' 
o 
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O S x < Q .  
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Given two positive integers k and N, we subdivide (0, Q) into subintervals 
of equal length 

(2) h = Q/kN.  

Choose a quadrature formula 

1 

(3) f u (x )dx -  ~ wiu(xi); 0 < x~. < 1, for all i ,  
i = 1  

0 

of degree > m. Further,  denote by Rp(u) the repeated rule arising out 
of (3), viz., 

n p - - 1  

(4) Rp(u) = h ~_, ~_, wiu(jh + h~ci) . 
i ~ l  j=O 

Now for x in [krh, k(r+ l)h], r =  0(1)2/-1,  define the function S(x) by 

(5) 

i m-]¢ 1 "(" k S(x) = Z ~. ( x -  ]crh)'S~ -i- Z ( x -  krh)m-k+Ja~r ), 
j=o j=l 

So(/) = ~ S ( x )  j = 0 ,1  . . . . .  m - k ,  
x = O  

where the parameters at (r) are determined according to the relations 

(6) Skr+s = gk,+~+ Rk~+j(K((kr +j)h,y,S(y))), j = 1,2 . . . . .  k .  

I t  is not difficult to show that  the above construction defines S(x) 
uniquely as a spline function of degree m, deficiency ( k -  1) (see [I] for a 
definition of deficient splines). An outline of the proof may be found in 
[3] and [4]. Observe tha t  S(x) is in the continuity class C m-k. 

Henceforward, we shall refer to an m -  spline deficiency ( k -  1) method 
simply as an (m, k ) -  method. 

3. Numerical  Stability. 
In  this section we study the behaviour of the method as applied to 

the integral equation 

(7) f (x)  = 1 +,~ f f ( y ) d y  , 
0 

2 being a constant with negative real part. 
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DEFINITION 1. An (m,/c)- method is said to be stable if all solutions 
(Skr } remain bounded, as r -~ c~, h -~ 0 while Xk, = lcrh remains fixed. 

Some of the methods we discuss below however, possess an even stron- 
ger property which, in the terminology of Dahlquist [2] for ordinary 
differential equations, is called A -  stability. 

D~FINITIO~ 2. An (m, I t ) -  method is called A -  stable if all solutions 
(Skr } tend to zero, as r -~  o% when the method is applied with fixed 
positive h to any integral equation of the form (7). 

I t  is convenient at  this stage to introduce some more notations. We 
write for r =  0 ( 1 ) N -  1 

a r = (hm-k+ l a l  (r), hm-k+2a2 (r) . . . .  , hmak (r)) T,  

h m - k  h ~(1) . , - - - -  S~-k))r. 
(8) Sr = (Sk~' ~.t. " k ' ' ' "  ( m - - k ) !  ' 

and we further denote by  B the k x k matrix whose (i,j) - element is 

~hi 
(9) b~j = (1 )im-~÷~-l; i , j  = i ( i ) lc ,  

m - k + j + l  

and by C the/c x ( m - k +  1) matrix whose ( i , j ) - e l e m e n t  is 

[ 2 h ; j  = 1; i = 1(1)k; 
! 

(10) ctt = l  () 'hi - 1 )  i ' - l ;  j = 2 ( 1 ) m - ] c +  l;  i = l(1)]c. 
J 

In this notation, we find from (6), (4), (5) and in view of the fact that  
the quadrature rule (3) is of degree ->_m 

(11) B a  r = C S  r, r = 0,1 . . . . .  N .  

Also direct differentiation of the first of relations (5) gives 

(12) S~+ 1 = D S  r + E a  r 

where D is the ( m -  k + 1)× ( m - k  + 1) upper triangular matrix whose 
(i ,j)  - element is 

d,t = l (~ )  ]cJ-i, i = O , 1 , . . . , m - ] c ,  j >= i ,  (13) 
I O, j < i ,  

and E is the ( m - k +  1) ×/c matrix with ( i , j ) -  element is 
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(14) eit . . . . . . .  m +3 ]~m-k+]-i i 0,1, . , m - k ;  j = 1,2,. ,k 

El iminat ion of a r between (11) and  (12) yields 

(15) St+  1 = A S  r , 

where 

(16) A = D + E B - 1 C .  

We now investigate seven special eases. 

I.  k =  1. This choice of k corresponds to m-splines wi th  full con- 
t inui ty ,  i.e., S(x) e Cm-I[0,Q]. We denote by  A 0 the  mat r ix  A with  h = 0 ,  
and  by/z  (°) and # the eigenvalues of A o and  A respectively. I t  then  follows 
tha t  

(17) # = /z(°)+O(h). 

Concerning #(o) we have the following simple result. 

LE~MA 1. For m ~ 3, there is at least one #(o) with 

(lS) I~(O)I > 1 .  

PROOF. Using the  binomial expansion we f ind the trace 

(19) tr(Ao) = m + 2 - 2  m, 

and  the result  follows since (see [5]) 

(20) #1(o)+. . .  +/%(o) = tr(Ao) ' 

and  since/~ = 1 is an eigenvalue of A o for all m. 
We have thus  established 

THEOREm: I. The (m, 1)-method is divergent for m > 3. 

I I .  k = 2. Denoting by  all the diagonal  elements o~ Ao, we find 

a l l  = 1~ 

a i i =  1 + i--  2 2m-t+l---- i - -1  ' i = 2(1)m-- 1 . 

Hence 
tr(Ao) = 3 m - l - 3 . 2 m - l + m + 2 ,  

in view of which we have 
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THEOREM 2. The (m, 2)-method is divergent for m > 4. 

I I I .  k = 3. Here,  we f ind 

t r  (Ao) = m -  4 m-2 + 8(5/2) m - 2 -  5 .2  m-1 + 2 , 

thus  proving 

THgOREM 3. The (m, 3)-method is divergent ]br m > 5. 
IV. k = m .  This is the  o ther  ex t r eme  of case I above  and  S(x) is on ly  

in the  con t inu i ty  class C. I n  order  to  deal wi th  this  case, we s t a r t  b y  ef- 
fecting a slight change in nota t ion .  We shah now unders tand  b y  St+ 1 
the  m x 1 column vec tor  

S t +  1 = (Smr+i ,  Smr+2 . . . .  ,Sin(r+1)) T, r = 0 ( 1 ) N - 1 ,  

whence (12) is now replaced b y  

(21) St+ 1 = (1, 1 , . . . ,  1)TSmr+Ear 

where the  elements  of ~ are given by  

~i¢ = if; i , j  = l (1 )m.  (22) 

We fur ther  f ind 

I /~a r = ~Smr, 
(23) • St+ I = ASs, r, 

[.J~. = (1, 1 , . . . ,  1)T ' t -J~B-IO , 

where the  elements  of /} and 0 are, in terms of those of B and  C, (9) 
and  (10), given by  

J l)is = ibo, i , j  = l ( 1 ) m ,  (24) 
I ~il ico, i = l(1)m; j---- 1 .  

Note  t h a t  C is an  m x i mat r ix  in this  case. 
Observing t h a t  

= ~ + O(h), 
0 = O(h), 

and hence 
z~ = ( 1 , . . . , 1 ) T + 0 + O ( h ~ ) ,  

we obta in  f rom (24), (10) and  (23) 

(25) 8mr+t = (1 + t~h + O(22h2))Smr, t = lO)m.  

I n  part icular ,  for  m = 1, 2, 3 we f ind 
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1 + 2h/2 St, 
1_)£12 m = 1, 

1 + 2h + ~h~13 _ 
(26) Sin(r+1) = 1 -~h+22h  /3 ~ ' ,  ~-T~Ti~ ~2~, ra = 2, 

1 + 3~h/2 + 112~h2/12 + 2aha/4 Sat, 
1_3)~h/2+11)~h2/12_2aha/4 m = 3 .  

The rational functions are regular in the left half plane and since the 
absolute value is 1 on the imaginary axis it is < 1 to the left of it by 
the maximum principle. Hence we have established 

THEOREM 4. The (m,m)-method is stable for all m. I n  particular, it is 
A-stable for m < 3. 

V.  The (2,1)-method. We proposed in [3] the application of quadratic 
splines in conjunction with the trapezoidal rule. Here the degree of the 
quadrature is 1 and we can not therefore use (11). However, direct com- 
putation yields 

1 + ~h12 
Sr+I = ---~1 S t '  

as a consequence of which we have 

T~EOREM 5. The (2,1)-method, where the quadrature rule (3) is the 
trapezoidal rule, is A-stable. 

Observe that  the use of the trapezoidal rule here is essential. For, 
using the mid-point rule, for instance, gives 

s , + ,  = i ----~I-~ 2,~.h 3~.h14- I S , ,  

and although the method is stable, we no longer have A-stability. The 
reason why the choice of the quadrature rule affects the stability beha- 
viour in the case of theorem 5 and not in theorem 4 is the more stringent 
continuity condition in the former. 

VI. k =  m - 1 .  ]?or m = 3 (the cubic spline-deficiency-1 method pro- 
posed in 4 in conjunction with Simpson's rule) we find for the matrix 
A of (15) 

A = ( 1 + 2~h + 2~h ~ ~h~/8 
(27) 5~h~/2 1 - ~h/2 + ~h~/S/  + 0(~3h3) . 

For general m, we have from (9) 
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B = B *  + O(~h) 

where 
bij* = i s , 

and if we denote by  e 1 the first row of E, we easily find in view of (14) that  

e l B  -1 = (0,0 . . . . .  O , m -  1)+O(~h).  

This result together with (10) yields 

e l B - 1 C  = [(m - 1)~h + O(22h 2) - (m - 1) + O(2h)] 

which, in view of (13), gives for the first row of A 

( l + ( m -  1)2h+O(22h ~) O(2h)) ; 

and on invoking (15) and (8) we immediately obtain 

(28) S(m_l)(~+~ ) = (1 + ( m -  1)~h+ O(22h2))S(m_~)~+O(2~h ~) . 

We have thus established 

THEOREM 6. The  ( m , m - - 1 ) - m e t h o d  is stable for  all m > 1. 

VII.  The  remain ing  cases: a conjecture. In  view of the results presented 
above in I-VI, we are led to conjecture that  the (m, k)-method is 

(i) A-stable, for k = m, for all m; 
(ii) divergent, for k < m - 2 ,  for all m > 2 .  

4. Numerica l  i l lustrations. 

We give below the results of applying various (m, k)-methods to the 
following two examples. 

1. f ( x )  = 2 -eX+feX-Uf (y )dy ,  0 < x < 4; 
0 

x 

2. f ( x )  = e x -  I e ~ - y f ( y ) d y '  0 < x < 4 

0 

Both equations have f ( x ) =  1 for their solution; and while the first has 
a positive kernel the second has a negetive one. 

The results of Tables 1, 2 and 3 are illustrations of theorems 1, 4 and 6, 
respectively. The entries of Table 2 and 3 give maximum absolute error 
over [0, 4]. 
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Table 1. Absolute error in solution of example 2 by a (3,1)-method. 

h ~  0 .4  1.6 2 .8  4 
] 

0.4  I 5 × 1 0  -2 3 x 1 0  -1 20 l x 1 0 3  

0 .2  I 8 x 1 0  -3 7 2 x 1 0 4  8 x 1 0 7  
0.1 1 × 10-a 3 x 104 3 x 1011 3 x 10 TM 

Table 2. Maximum absolute error in solution of examples 1 and 2 

by a (2,2)-method. 

h O.8 0 .4  0 .2  

Example 1 9 x 10 -2 1 x 10 -2 8 × 10 -4 

E x a m p l e  2 6 x 10 -4 4 x 10 - s  2 x 10-o 

Table 3. Maximum absolute error in solution of examples 1 and 2 

by a (4,3)-methocl. 

h 0.8  0 .4  0.2 

E x a m p l e  1 2 x 10-3 3 x 10 -8 6 x 10 -8 

E x a m p l e  2 6 x 10 -7 9 × 10 -~ 1 × 10-~ 

The application of a (4,1)- and a (4, 2)-method give results similar to 
those of Table 1 and we therefore do not  report  them here. 
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