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ON THE NUMERICAL STABILITY OF SPLINE
FUNCTION APPROXIMATIONS TO SOLUTIONS OF
VOLTERRA INTEGRAL EQUATIONS OF THE
SECOND KIND

M.E.A. EL TOM

Abstract.

A procedure, using spline functions of degree m, deficiency k — 1, for obtaining
approximate solutions to nonlinear Volterra integral equations of the second kind
is presented. The paper is an investigation of the numerical stability of the proce-
dure for various values of m and k.

1. Introduction.

Recently, we presented in [3] and [4] a method for the construction
of a continuous approximation to solutions of nonlinear Volterra integral
equations of the second kind. The constructed approximation is a spline
of degree m in the continuity class C™-1, (1 in [3] and [4], respectively.
Tt is observed in [3] that the method is divergent for m > 2. On the other
hand, it is observed in [4] that by relaxing the spline continuity require-
ments an apparently stable method is obtained. The present paper is a
study of these observations. Specifically, we discuss the numerical sta-
bility of the method for a spline of degree m, deficiency k— 1.

The method is described in the next section, In section 3, where the
stability problem is discussed, it is shown, among other things, that the
method for splines with full continuity is divergent for all m > 2, Finally,
in section 4, we give several numerical results illustrating some of the
main conclusions of the paper.

2. Description of the method.
Consider the Volterra integral equation

(1) f@) = g@)+ \ K@y f(y))dy, 05z<5Q.
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Given two positive integers k and N, we subdivide (0, §) into subintervals
of equal length

(@) h = QkN .

Choose a quadrature formula

1
(3) S w(e)yde= > wulz); 0=z, 51, forall 3,
i=1
0

of degree =m. Further, denote by K, (u) the repeated rule arising out
of (8), viz.,

n p-1
(4) Ry(u) = b3 3 wuljh+hz;) .

1=1 5=0

Now for z in [krh, k{r + 1)k}, r=0(1)N — 1, define the function 8(z) by

m-k 1 . k
S@) = 3 —(@-krhySY + 3 (w—krhyrk+ial,
j=0 J- j=1

(5)

& .
D e | = £ - -
sc(a)_.[dxj,s(x)] = G= 0L mk,

=

where the parameters o, are determined according to the relations

(6) Skr+j = gkr-t—j+er+j(K((kr+j)h’yas(y)))’ .7 =12,.. "k .

It is not difficult to show that the above construction defines S(x)
uniquely as a spline function of degree m, deficiency (k— 1) (see [1] for a
definition of deficient splines). An outline of the proof may be found in
3] and [4]. Observe that S(x) is in the continuity class O™k,

Henceforward, we shall refer to an m - spline deficiency (£ — 1) method
simply as an (m, k) method.

3. Numerical Stability.

In this section we study the behaviour of the method as applied to
the integral equation

) f@ = 1+2{way,
0

A being a constant with negative real part.
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DerintrioN 1. An (m, k) —method is said to be stable if all solutions
{8},} remain bounded, as r — oo, & — 0 while &, =krh remains fixed.

Some of the methods we discuss below however, possess an even stron-
ger property which, in the terminology of Dahlquist [2] for ordinary
differential equations, is called 4 —stability.

DEermxrrion 2. An (m, k) —method is called A —stable if all solutions
{8y,} tend to zero, as r - oo, when the method is applied with fixed
positive & to any integral equation of the form (7).

It is convenient at this stage to introduce some more notations. We
write for r=0{1)N -1

a, = (hm—k-(»lal(r), hm—k-(-zaz(r), . h’"ak('))T,

(8) l 3 Fom—k
— — Q)  Qm—InT .
Sr_ (Skw I!Skw"'s(m_k)zskr ) ’

and we further denote by B the k x £ matrix whose (4,j) — element is

Ahi
9 by = (1= ———— Y-k, 4 4 = 1(1)k,
(9) i = ( m-—k-«l—j—}—l)@ L2 (1)
and by C the k x (m — %+ 1) matrix whose (¢,5) —element is
A § = 1; ¢ = 1(1)k;
(10) ¢ =% [Ahi
i (%;_1),65_1;.7: 2Wym—k+1;1 = (k.
J

In this notation, we find from (6), (4), (5) and in view of the fact that
the quadrature rule (3) is of degree 2m

(11) Ba,=0CS, r=20]1,...N.
Also direct differentiation of the first of relations (5) gives
(12) 8, = DS, +Ea,

where D is the (m—k+1)x (m—k+1) upper triangular matrix whose
(¢,7) —element is

(z) B, 5= 0,1, . m—k jZi,

(13) dﬁz{
0, j <1,

and E is the {m —k+ 1) x & matrix with (4,7) — element is
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(14) e = (m"ik“) Fmoksi-i = 0,1,...m—k;j = 1,2,...,k.
Elimination of @, between (11) and (12) yields

(15) S, = 4S8,

where

(186) A = D+EB-0.

We now investigate seven special cases.

I. k=1. This choice of k corresponds to m-splines with full con-
tinuity, i.e., S(z) € C"}[0,Q]. We denote by 4, the matrix 4 with % =0,
and by p© and p the eigenvalues of 4, and A respectively. It then follows
that

(17) u=pO+00).

Concerning u® we have the following simple result.

LrevmMa 1. For m 2 3, there is at least one ' with

(18) WO > 1.

Proor. Using the binomial expansion we find the trace
(19) tr(d,) = m+2-2m,
and the result follows since (see [5])
(20) w Q4 @ = tr(d4y),
and since y=1 is an eigenvalue of 4, for all m.
We have thus established

THEEOREM 1. The (m,1)-method is divergent for m = 3.

I1. k= 2. Denoting by a,, the diagonal elements of 4,, we find

ay = 1,
m—1 . m-+1—1 .
Gy = 1+( ) )(2’”"“1————'-—, ), i=21m~1.
t—2 1—1
Hence
tr(dg) = 3m1-8.2m 142,

in view of which we have
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THEOREM 2. The (m,2)-method is divergent for m = 4.

III. k=3. Here, we find
tr(dy) = m—4m-248(5/2)m-2—5-2m-1 42,
thus proving
TrEOREM 3. The (m, 3)-method is divergent for m = 5.
IV. k=m. This is the other extreme of case I above and §(z) is only
in the continuity class C. In order to deal with this case, we start by ef-

fecting a slight change in notation. We shall now understand by S,
the m x 1 column. vector

Sr-i—l = (Smr-l-li Smr+2r' . "Sm(r+l))T> = O(I)N’— 1,
whence (12) is now replaced by
(21) S, = (L,1,...,1)78,, +Fa,

where the elements of B are given by

(22) by =115 4§ =1Lm.
We further find
-gar = ésmr’
(23) S\r-ﬂ = A8y, .
4=,1,.. 1)+8EB0,

where the elements of B and C are, in terms of those of B and C, (9)
and (10}, given by

(24) {gij = ?bi:l’ i’j = 1(L)m,

6" = ?/C,tj, 'i = l(l)m; j =1,

Note that C is an m x 1 matrix in this case.
Observing that

and hence

~

A=, ., )+C+00m),
we obtain from (24), (10) and (23)
(25) Sprst = (1 +tAh+0(A2h2))8,,,, ¢ = 1(L)ym .

In particular, for m=1,2,3 we find
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1+ Ahf2 .
1 _am P33 m = 3
1+ Ah+ A%R%/3
(26) Sm(r+1} = / m = 2,

1—2h+A2h%3 2"

1+ 3AR/2 + 1142h%/12 + A3h3/4
1—32h/2 + 1142h2[12 — 23R3[4 °7

m = 3.

The rational functions are regular in the left half plane and since the
absolute value is 1 on the imaginary axis it is <1 to the left of it by
the maximum principle. Hence we have established

TraroreM 4. The (m,m)-method is stable for all m. In particular, it is
A-stable for m < 3.

V. The (2,1)-method. We proposed in [3] the application of quadratic
splines in conjunction with the trapezoidal rule. Here the degree of the
quadrature is 1 and we can not therefore use (11). However, direct com-

putation yields 1+ k|2
S T 7Y e

as a consequence of which we have

TrEOREM 5. The (2,1)-method, where the gquadrature rule (3) is the
trapezoidal rule, is A-stable.

Observe that the use of the trapezoidal rule here is essential. For,
using the mid-point rule, for instance, gives

1 /1434 k4
Sr+1 = %__( )Sra
1 -}J&/4 24k 3}]&/4-— 1

and although the method is stable, we no longer have A4-stability. The
reason why the choice of the quadrature rule affects the stability beha-
viour in the case of theorem 5 and not in theorem 4 is the more stringent
continuity condition in the former.

VI. k=m—1. For m=3 (the cubic spline-deficiency —1 method pro-
posed in 4 in conjunction with Simpson’s rule) we find for the matrix
A of (15)

252 252
(27) A= (1+22h+22h A%h?[8

373
512 1— k)2 +/12k2/8) +OWH) -

For general m, we have from (9)
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B = B*+40(Ahk)
where
by* = i,

and if we denote by e, the first row of B, we eagily find in view of (14) that
e, Bt = (0,0,...,0,m—1)+0(Ah) .
This result together with (10) yields
e, B0 = [(m—1}Ah+O(2%h%) —(m~—1)+O(ih)]
which, in view of (13), gives for the first row of 4
(1+(m—1)Ah+O(2%h%) O(2R)) ;
and on invoking (15) and (8) we immediately obtain
(28) Sem-vrn = (1+ (m —1)2h+ O(22h2))8,,_yy, + O(A%R2) .
We have thus established

THEOREM 6. The (m,m — 1)-method is stable for all m >1.

VII. The remaining cases: a conjecture. In view of the results presented
above in I-VI, we are led to conjecture that the (m,k)-method is

(i) A-stable, for & = m, for all m;
(if) divergent, for k < m—2,forallm > 2.

4. Numerical illustrations.

We give below the results of applying various (m,k)-methods to the
following two examples.

1. flz) = 2—¢*+ Sew"?/f(y)dy, 0z =4
0

2. flx) = e*— Se‘“—yf(y)dy, 0sx=4
0

Both equations have f(x)=1 for their solution; and while the first has
a positive kernel the second has a negetive one.

The results of Tables 1, 2 and 3 are illustrations of theorems 1, 4 and 6,
respectively. The entries of Table 2 and 3 give maximum absolute error
over [0,4].
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Table 1. Absolute error in solution of example 2 by a (3,1)-method.

x
& oe 1.6 2.8 4

04 | 5x10-2 | 3x101 | 20 1x103
0.2 | 8x10-8 | 7 2 %104 8 x 107
0.1 1x107% | 3x104 3x101 | 3 x10

Table 2. Maximum absolute error in solution of examples 1 and 2
by a (2,2)-method.

h 0.8 0.4 0.2

Example 1 | 9x10-2 | 1x10-2 | 8x10~¢
Example 2 | 6x10~4 | 4x10-5 | 2x10-¢

Table 3. Maximum absolute error in solution of examples 1 and 2
by a (4,3)-method.

h 0.8 0.4 0.2

Example 1 | 2x10-3 | 3x10¢ | 6x10-8
Example 2 | 6x10-7 | 9x10-? | 1x10-®

The application of a (4,1)- and a (4,2)-method give results similar to
those of Table 1 and we therefore do not report them here.
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