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A M O D I F I C A T I O N  O F  

MILLER'S RECURRENCE A L G O R I T H M  

R .  E .  S C R A T O N  

Abstract .  
Miller's recurrence algorithm for tabulating the subdominant solution of a 

second-order difference equation is modified so as to take the asymptotic behaviour 
of the solution into account. The asymptotic solutions of various types of equations 
are listed, and a method is given for estimating the error in the tabulated solution. 

1. In troduct ion .  

The  genera l  homogeneous  l inear  difference equa t ion  of the  second 
order  m a y  be w r i t t e n  as 

(1) Anun_  1 + Bnu  n + Cnun+ 1 = 0 ,  

where A n, B n, C n are  k n o w n  funct ions  of n. I f  the  difference equa t ion  
has  two independen t  solut ions un = O n, u n = ~ ,  ne i ther  being ident ical ly  
zero, such t h a t  

On (2) - - - ~  a s n - ~ ,  
~vn 

then  0 n is said to  be  a dominant  solut ion and  ~ a subdominant  or m i n i m a l  

solution. This  p a p e r  is concerned wi th  the  numer ica l  t abu l a t i on  of sub-  

dominan t  solutions.  
We  suppose  t h a t  9~ is normal i sed  so t h a t  90 = 1. (This would not  be 

possible if ~0 = 0; in th is  case we consider the  equivalent,  p rob lem ob- 

t a ined  b y  replacing A~, Bn, Cn b y  An+ 1, B~+I, Cn+l.) We  m a y  t ake  O n 
as a n y  o ther  solut ion of the  difference equat ion,  and  we t ake  it  as the  
solut ion sat is fying the  ini t ial  condit ions 

(3) 0 o = 0, 01 = 1 .  

I t  is wel l - lmown t h a t  t a b u l a t i o n  of qn b y  fo rward  recurrence is un-  
successful, owing to  the  inev i tab le  in t rus ion of a mul t ip le  of O n. The  
procedure  for  t a b u l a t i n g  ~n b y  b a c k w a r d  recurrence was fo rmu la t ed  b y  
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Miller [1] and has been studied in detail by  subsequent authors, notably 
Olver [2, 3, 4], 0liver [5, 6, 7], Gautschi [8, 9] and Shintani [10]. Basic- 
ally the procedure is to take 

(4) V N =  1, v~+ 1 = 0  

1 
(5) vn_ 1 ------ ~ ( - B n v n - C n v n + l )  , N - 1  >= n >= 1 . 

An approximation f~ to T, is then given by  

Vn 
(6) fn  = - - .  

vo 

Error analyses of this method are given by  the authors cited above, 
and the method has been successfully used in many circumstances, e.g. 
in the tabulation of Bessel functions. 

2. M o d i f i c a t i o n  of  t h e  method. 

Sometimes--particularly when the ratio 0n/~n increases slowly as n 
increases--the method can be improved. This is best illustrated by  means 
of an example. Consider the integral 

1 o~ tn_~ 
e-t (7) I n  = F(½) ( t ÷ ½ )  n d t  ' ) 

0 

which occurs in a previous paper by  the present author [11]. I t  is easily 
shown that  I n is the subdominant solution of the difference equation 

(8) ( n -  ½)u~_1-  2nun + nu~+l = O . 

The errors (rounded to 8 decimal places) in the values of 11, I S, In, In, 
15 when I n is tabulated using Miller's algorithm with N =  10(5)30 are 
shown in the upper half of Table 1. I t  can be shown that,  for large n, 

(9) I n = K exp [ -  (2n)½ + O(n-½)] , 

and hence that  
In 

( lO)  
In+l 

1 1 
- -  = 1 + ~ + - - + O ( n - a / ~ ) .  

'* " " (2n) 4~ 

We propose therefore to replace equations (4) above by  

1 1 
(11)  = l v ÷l = 1 ,  
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Tab le  1. Error  in  the tabulation o f  I n by Mil ler ' s  algorithm (upper  part) 

and the modif ied algorithm (lower part).  

10 
15 

N 20 
25 
30 

Error x l0 s 

n = l  n = 2  n = 3  n = 4  n = 5  

-38060 -76120 - 1  23695 - 1  83957 - 2  59680 
-5427 --10854 - 17638 --26230 -37028 
-1035 -2070 - 3364 -5002 -7062 

-239 -477 -776  - 1153 - 1628 
- 6 3  - 126 -205  --305 -430  

10 
15 

N 20 
25 
30 

--206 --412 --669 --995 - 1404 
- -  18 --36 --58 --87 - - 1 2 3  

- - 2  - - 5  - - 8  - -  1 2  - 17 
0 -- 1 - 1 --2 --3 
o o o o - 1 

a n d  then  to  t abu l a t e  v~ and  fn  using equat ions  (5) a n d  (6) as before.  
The  errors  in the  t a b u l a t i o n  when  this modif ied  app roach  is used are  
shown in the  lower half  of Tab le  1, and  there  is c lear ly  a subs tan t i a l  
i m p r o v e m e n t  in accuracy .  

The idea of choosing v N and  VN+ x SO t h a t  VN/VN+ 1 is a p p r o x i m a t e l y  
equal  to  ~ / q y + 1  was suggested b y  Gautschi  [9, pp.  38-40], who showed 
tha t ,  in general ,  th is  leads to  an  i m p r o v e m e n t  in accuracy .  I n  the  above  
example ,  our  knowledge  of the  a s y m p t o t i c  fo rm of the  solution, g iven b y  
(9), enab led  us to  a p p r o x i m a t e  the  ra t io  qN/%V+1 to a r easonab ly  good 
degree of accuracy .  I n  general  if we can f ind an  express ion k n which 
a p p r o x i m a t e s  ~%/qn+l we propose  to  replace equa t ions  (4) b y  

(12) v N --- I~N, VN+ 1 = 1 , 

a n d  then  proceed  as before.  The  ma in  purpose  of the  present  pape r  is 
to  indicate  a sui table  express ion for  k n for  var ious  types  of equat ion;  
a n d  to show how, wi th  this  choice of kn, the  errors  in the  t abu la t ion  m a y  

be  es t imated .  

3. A s y m p t o t i c  f o r m  of s o l u t i o n s .  

We assume tha t ,  a f te r  sui table  manipu la t ion ,  the  difference equat ion  
(1) can be wr i t t en  in the  fo rm 

(13) ( a o + a l n - l + a 2 n - 2 + . . . ) u n _ l + ( b o + b l n - X + b ~ n - 2 +  . . . ) u n  

+ (% + cln - I  + c2n -~ + . . . )un+ 1 = 0 , 
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in which at  least one of a0, b0, c o is non-zero. This is possible if An,  B n, 
Cn, considered as funct ions of a complex variable n, are regular  or have 
poles of f ini te order  a t  infini ty.  I f  a o :~0, the  equa t ion  is known as a 
'To inca r6  difference equa t ion" ;  the principal  theorems relat ing to such 
equat ions  are summar ized  by  Gautschi  [9, p. 33 et 8eq.], who also gives 
a comprehensive  b ib l iography of the  original papers  on the  subject,. 

The  asympto t ic  forms of bo th  ~n and  On (apar t  f rom cons tant  mult i-  
pliers K and  L) are given for various types  of equa t ion  in the  list below. 
These are der ived b y  assuming expansions for  Un+l/Un, Un_I/U n in de- 
scending powers of n and subst i tu t ing into (13); the work is e l emen ta ry  
bu t  tedious. I t  is assumed t ha t  ai, b i, c t are real ;  if this is no t  the case, 
the  solutions are still of the  same form,  bu t  Tn is no t  necessari ly sub- 
dominant .  Fo r  each type  of equat ion,  an  expression for  k n is suggested, 
such t h a t  

k~= ~n [l+O(n-~)], 
~ n + l  

where h = 2 for an equa t ion  of Type  1, 3, 4, 5 or 6 and  h = -~ for an equa-  
t ion  of Ty pe  2, 7 or 8. For  the  sake of convenience we also list here a 
quan t i t y  QN which is required for the  error  es t imate  described in the 
n e x t  section. 

T y p e  1 : a o ~:0, c o 4 0 ;  the equat ion  cox2+ box + a o = 0 has separate  roots  
~,fl  with  lat < t,6t. 

q~n = K~n[  n p +  O(n~-1)], 

O n = Zf ln[nq÷ O(nq-1)],  
where 

Take  

al + blo~ + G1 ~2 al  + bl fl + elfi2 
p - -  , q -  

a0 - co ~ a0  - c0~  2 

]~n = -  I - -  , QN = - - "  

I f  ~ and fl are complex conjugates,  there  is no subdominant  solution. 

T y p e  2: a o ~=0, c o ~:0; the  equa t ion  co x~ + box + a o = 0 has a double root  
such t ha t  cl~2 + b l ~  + a l  4-0. 

~n = K~n exp ( - An½)[nv + 0(np-½)] , 

O n -- L~ n exp (Ani)[nV + 0(nV-½)] , 
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where 

Take  

where 
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A -- 2 V(a l -} -b lg J -C l °¢2 ) ,  P ---" ~:'+1 al-ClO~2 
ao 2ao 

, ( .  . :  
k,~ = - 1 + + QN = , 

0; ~ ' A 

B = b: a :  1 

b o a o 4" 

There  is no subdominan t  solut ion unless A is real. 

T y p e  3: a o 40 ,  c o 4 0 ;  the equat ion  C o X 2 + b o x + a o = O  has a double root  
such t ha t  c:a 2 + b:a + a: = 0. 

r(n)  
~ = K~"  [1 + O ( n - : ) ] ,  

F(Tb "+" .11) 

r(n)  
O n = L~x n [1 + O(n- : ) ] ,  

F ( n  + ,t2) 

where *ix > 2~ are the  roots  of 

ao 22 + (% + a :  - c:~2)2 + (a~ + b2~ + c2~ 2) = 0 .  

Take  

. .°o k , , = -  1+  , Q~ ,=  
c¢ a:  --  c :~  2 + 2%(1 + ~:) 

The  asympto t ic  form for 0 n fails if .11 =.12 or if )t 1 and .12 differ b y  an inte-  
ger, bu t  the  expressions for k~ and  QN still apply.  

T y p e  4: a o # O ,  b e # 0 ;  co=0,  c I ::l:0, 

where 

cpn = K a ~ [ n  v + O ( n v - : ) ]  , 

O n = L f l ~ ( n -  1)! [nq + O(nq-1)] , 

ao be 

be'  fl = c l ,  

a :  + b :~  + c: o~ ~ ao + b:~ + c2fl ~ 

P ao boil 
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Take 

k ~ = -  - , Q N = ~ "  

where 

Take  

T y p e  5: bo#0 ,  Co#0; ao=0 ,  a x # 0 .  

Z o t  ~ 
,p,~ = ~ [n~ + 0 (~-~) ] ,  

0 n = L ~ n [ T b  q 2 c O(nq-1)]  , 

a l '  bo 
bo fi Co 

a~ + bI~ + Co ~2 a : + b l f l + C l f i  2 

a l  boil 

k~ n + l ( 1  P ) ,  QN ~ 
cu 2V" 

T y p e  6: b o # 0 ;  the first  non-zero terms in the sequences (ao, al ,  a 2 , . . .  ), 

(Co, el, % . . . .  ) are at, c 8 respectively,  where r + s  > 2. (Ei ther  r or  s m a y  
be zero.) 

K~x n 
~ = ~ [n~ + 0(n~-l)] ,  

where 

Take  

O n = L f i n [ ( n -  1)!]s[nq + O(na-1)], 

ar bo a r + l + b l ~  
= - - - ,  fl = - - - ,  p -  

bo cs  ar  

b1+c,+15 

q = bo 

k~=--(n+~l)~ 1 -  , QN=N~.-- 

T y p e  7: a o 4=0, b o = c o = O ,  c 1 4=0. 

~n = K ( n  !)~( - ~)n exp ( - An½)[n~ + O(np-½)], 

O n = L ( n  !)i~n exp (An½)[n v + 0(nV-i)] , 
where 

a ~ a° A b l~  1 a 1 c 2 = - - - ,  = - - ,  p = + , 
c 1 a o 4 2a o 2c 1 
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the  sign of ~ being chosen so t h a t  A > 0. (There is no s u b d o m i n a n t  solu- 
t ion  unless ~ is real.) 

Take  

k n =  - 1 + ~ - ~  - -  • , Q ~ v ; - ½ ~ N ~ -  
(X (~rb "-~- 1) ½ 

where 

Type 8: c o 4=0; ao=bo=O, al 40. 

K(-~)n 
q~n = (n!)t exp(-An½)[nP +O(nv-½)] ' 

i o ~  n 
On  ~ m 

(n!)~ 
exp  (An~)[nV + O(nv-t)] , 

bl~ I a 2 e 1 
~ =  a l  A = ~ ,  p = ~ - ~  

c o a l  2a 1 2% 

the  sign of c~ being chosen so t h a t  A > 0 (there is no s u b d o m i n a n t  solut ion 
unless ~ is real). 

Take  
( n + i ) +  

~n= l + ~ +  , Q~ 
2_N'½" 

Type 9: a o 40, bo=co=cl=O or c o 40, ao=a1=bo=O. 
The equa t ion  can  be t r a n s f o r m e d  into one of the  above  eight  types  b y  

pu t t i ng  un= (n!)VUn for some posi t ive  or nega t ive  in teger  p. (Some of 
the  above  types  can  also be  t r a n s f o r m e d  into one ano the r  b y  the  s ame  

means. )  

4. E r r o r  analys i s .  

Once fn has been  t a b u l a t e d  i t  is necessary  to  have  some es t imate  of 

the  er ror  E n def ined b y  

(14) En = f ~ - ~ n .  

:Now E~ is a solut ion of the  difference equa t ion  (1), and  also En = 0 since 

f0 = ~o = 1. I t  follows t h a t  

(15) En = ElOn. 

Since 0 n is easi ly t a b u l a t e d  b y  fo rward  recurrence  the  er ror  in a n y  fn 
can be found  once the  error  in f l  is known.  Thus  for  the  difference equa-  
t ion  (8) we have  
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01 1, 02 2, 0 a =~a-, 04 = ~,  05 655 

and  it  will be seen t h a t  the entries in each row of Table 1 are in the  
.~3_.~9.65~ So our  problem is to f ind an es t imate  of E 1. rat ios  1 :_.  4 • 6 • 96. 

Such an est imate  can be ob ta ined  by  a me thod  similar to  t h a t  used b y  
Gautschi  [9, p. 40]. I f  we define PN by  

1 BN ] ¢ (1 CN_I+~N_I ) 
(16) PN ~N - -  = ~ N  -[- N-I  -}- 

w h e r e  

1, 
e n = ]~n~)n+l  

and  w~ b y  

C~ 
(17) w 0 = 1, w n = ~ W n _ l ,  

t hen  it  can be shown tha t  

(18) E 1 = WNPNq~N+I(fN_I--fNkN_,). 

Eq ua t i o n  (18) is an exact  expression for E l ;  i t  cannot  be eva lua ted  
since ~Y+l and PN are unknown.  Bu t  the  unknown par t  of PN consists 
of t e rms  of small order,  and  PN can be approx ima ted  b y  QN, where QN 
is l isted for each type  of equa t ion  in Section 3; the  approx imat ion  is 
such t h a t  the  rat io  PN/QN is Of the  form 1 + O(N -1) for  an equa t ion  of 
Tyl~e 1, 3, 4, 5, 6 or of the  form 1 -+- O(N-½) for an equa t ion  of Ty p e  2, 7, 8. 
In  order  to  es t imate  E 1 using equa t ion  (18) we replace PN b y  QN and 
~Vy+ 1 by  its approx imate  value  fN+l, and so obta in  the error  es t imate  e 1 
defined b y  

(19) e 1 = WNQNfN+I(fN_I--fNkN_I). 

This er ror  es t imate  is believed to  be new. I t  will be  seen in the  numerical  
examples  below t h a t  it  gives a good indicat ion of the  accuracy  of the 
tabula t ion .  

5. Numerical  examples.  

In  Tables 2, 3, 4 we give the  error  E 1 (rounded to  10 decimal places) 
for  the  difference equat ions in the  examples  below. We also give the 
error  es t imate  e 1 and,  for  the  sake of comparison,  the  error  when the  un- 
modif ied form of Miller's a lgor i thm is used. 



250  R.E.  SCRATON 

EXAMPLE 1 (see  T a b l e  2) 

(20) ( n -  ½)u~_ 1 -  2 n u ~  + nu~+ 1 = 0 . 

T h i s  e q u a t i o n  h a s  a l r e a d y  b e e n  c o n s i d e r e d  i n  S e c t i o n  2. I t  i s  o f  T y p e  2, 

so  t h a t  

Table 2. Errors in the value o f f  1 for equation (20). 

E r r o r  x 10 TM 

N Miller Modif ied Er ro r  E s t i m a t e  

- 1 0  5 
10 
15 
20 
25 
30 
35 

- 4 5 6  
- 3 8  

- 5  
- 1  

25015 
05999 
42694 
03498 

- 2 3 8 6 5  
- 6 3 0 8  
- 1850 

- 5 81348 
- 2 0 5 7 8  

- 1799 
- 244 

- 4 3  
- 9  
- 2  

92759 
- 2 9 8 5 5  

- 2 3 7 9  
- 3 0 7  

- 5 3  
- 1 ]  

- 3 

EXAMPL~ 2 (see Table 3) 

(21) Un_ 1 -  2 +  U n + U n +  1 ---- 0 .  

This equation is of Type 3, giving 

~/5- 1 
k n = 1 + - - ,  QN = ¼(V5-- 1)N. 

2 n  

Table 3. Errors in the value o f f  l for equation (21). 

E r r o r  x 10 TM 

N Miller Modif ied Er ro r  E s t i m a t e  

5 
10 
20 
50 

100 
200 

--867 03162 
- 2 2 4  19867 

- 5 2  85415 
--7 27004 
- 1 57761 

- 33861 

- 1 2  74731 
--1 42322 

--15379 
-- 799 

--85 
- 9  

- - 1 7  62488 
--1 65878 

- 16568 
--823 

--86 
- -9  
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EXAMPLE 3 (see  T a b l e  4) 

(22) un_  1 -  2u  n - 2nUn+ 1 = 0 . 

This equation is of Type 8, giving 

kn = ( 2 n + 2 ) ~  1 +  , ON = (aX)~" 

This is one of a class of difference equations which arise in the tabulation 
of repeated integrals of the error function (ef. Gautsehi [8]). 

Table 4. Errors in the value of f l  for equation (22). 

Er ro r  × 101o 

N Miller Modif ied Er ro r  E s t i m a t e  

5 
10 
15 
20 
25 
30 
35 

+567  93065 
--46 66301 

+ 6  60233 
- 1 25273 

+28781 
--7586 
+2221 

+ 4 02462 
- -  11922 

+928 
--115 

+ 1 9  
- -4  
+1  

+ 5 06241 
- -  13154 

+ 987 
--121 

+ 2 0  
- -4  
+1  
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