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A MODIFICATION OF
MILLER’S RECURRENCE ALGORITHM

R.E.SCRATON

Abstract.

Miller’s recurrence algorithm for tabulating the subdominant solution of a
second-order difference equation is modified so as to take the asymptotic behaviour
of the solution into account. The asymptotic solutions of various types of equations
are listed, and a method is given for estimating the error in the tabulated solution.

1. Introduction.

The general homogeneous linear difference equation of the second
order may be written as

(1) Anun«1+Bnun+ Onun+1 =0,

where 4,, B,, C, are known functions of n. If the difference equation
has two independent solutions w,=0,, u, =g, neither being identically
zero, such that

0,,
(2) — > 00 a8 M -» 00,

P
then 6, is said to be a dominant solution and ¢, a subdominant or minimal
solution. This paper is concerned with the numerical tabulation of sub-
dominant solutions.

We suppose that ¢, is normalised so that ¢,=1. (This would not be
possible if @,=0; in this case we consider the equivalent problem ob-
tained by replacing 4, B,, C, by 4,1, B,.1, Cpi1.) We may take 6,
as any other solution of the difference equation, and we take it as the
golution satisfying the initial conditions

(3) ,=0, 6, =1.

It is well-known that tabulation of ¢, by forward recurrence is un-
successful, owing to the inevitable intrusion of a multiple of 6,. The
procedure for tabulating ¢, by backward recurrence was formulated by
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Miller [1] and has been studied in detail by subsequent authors, notably
Olver [2, 3, 4], Oliver [5, 6, 7], Gautschi [8, 9] and Shintani [10]. Basic-
ally the procedure is to take

(4) oy =1 oy =0

1
(5) Vg1 = Z" (“ann_onvn+1)’ N-1znzl.

n

An approximation f, to ¢, is then given by
(6) fn=—.

Error analyses of this method are given by the authors cited above,
and the method has been successfully used in many circumstances, e.g.
in the tabulation of Bessel functions.

2. Modification of the method.

Sometimes—particularly when the ratio 0,/p, increases slowly as =
increases—the method can be improved. This is best illustrated by means
of an example. Consider the integral

7 I, =— °§ LA
n = e”
T v

b

which occurs in a previous paper by the present author [11]. It is easily
shown that I, is the subdominant solution of the difference equation

(8) (n - %)un-—l - 27%6% T Uy = 0.

The errors (rounded to 8 decimal places) in the values of Iy, I,, I3, I,
I, when I, is tabulated using Miller’s algorithm with N =10(5)30 are
shown in the upper half of Table 1. It can be shown that, for large 7,

(9) 1, = K exp[— (2n)t + 0(n~H)] ,
and hence that

I 1 1
10 L= 14—t —+0(n32),
(10 T~ T w0

We propose therefore to replace equations (4) above by

1

1
(11) Yy = l+m+2ﬁ’ Uy = }.,
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Table 1. Error in the tabulation of I, by Miller's algorithm (upper part)
and the modified algorithm (lower part).

Error x 108
10 —38060 —176120 —1 23695 ~1 83957 —2 59680
5 15 —5427  —10854 —~ 17638 —26230 —37028
= | N 2 —1035  —2070 —3364 — 5002 ~17062
= 25 —239 —477 —776 ~1153 ~1628
30 -63 —126 —205 —305 —430
10 —206 —412 —669 —995 —~1404
ki 15 —18 —36 - 58 —87 -123
Z| N 2 -2 -5 -8 —-12 -17
gc’ 25 0 -1 -1 -2 -3
30 0 0 0 0 -1

and then to tabulate v, and f, using equations (5) and (8) as before.
The errors in the tabulation when this modified approach is used are
shown in the lower half of Table 1, and there is clearly a substantial
improvement in accuracy.

The idea of choosing vy and vy, so that vyfvy,, is approximately
equal to gy/py.; was suggested by Gautschi [9, pp. 38-40], who showed
that, in general, this leads to an improvement in accuracy. In the above
example, our knowledge of the asymptotic form of the solution, given by
(9), enabled us to approximate the ratio gy/py.; to a reasonably good
degree of accuracy. In general if we can find an expression k, which
approximates ¢,/p,,; We propose to replace equations (4) by

(12) oy =ky, vyn=1,

and then proceed as before. The main purpose of the present paper is
to indicate a suitable expression for k, for various types of equation;
and to show how, with this choice of k,, the errors in the tabulation may
be estimated.

3. Asymptotic form of solutions.

We assume that, after suitable manipulation, the difference equation
(1) can be written in the form

(13) (@g+amt+amn=2+. .. ), g+ (bg+bn1+bn "2+ .. Ju,

F{ogton o2 N,y =0,



A MODIFICATION OF MILLER’S RECURRENCE ALGORITHM 245

in which at least one of a,, b,, ¢, is non-zero. This is possible if 4,, B,
C,, considered as functions of a complex variable n, are regular or have
poles of finite order at infinity. If ¢, =0, the equation is known as a
“Poincaré difference equation’; the principal theorems relating to such
equations are summarized by Gautschi [9, p. 33 et seq.], who also gives
a comprehensive bibliography of the original papers on the subject.

The asymptotic forms of both ¢, and 0, (apart from constant multi-
pliers K and L) are given for various types of equation in the list below.
These are derived by assuming expansions for u, ,/u,, %, ,/%, in de-
scending powers of n» and substituting into (13); the work is elementary
but tedious. It is assumed that a,, b;, ¢, are real; if this is not the case,
the solutions are still of the same form, but ¢, is not necessarily sub-
dominant. For each type of equation, an expression for %k, is suggested,
such that

by = " [14+0(nM],
(pn+1

where k=2 for an equation of Type 1, 3, 4, 5 or 6 and A=} for an equa-
tion of Type 2, 7 or 8. For the sake of convenience we also list here a
quantity @, which is required for the error estimate described in the
next section.

Type 1: ay £0, ¢, +=0; the equation cyx? + byr + @, = 0 has separate roots
o, B with |af < |B].

@n = Ka[n? +O0(m?-1)],
0, = Lp"[n?+0(nt1)],

where
_ @y t+bx+e, 0P 0 +b Bty
T gy—cea? T ag—cef?
Take
kn=}_(1_?_), QNm_‘x_ﬁ_.
& 7 B—u

If « and B are complex conjugates, there is no subdominant solution.

Type 2: a4 %0, ¢, +0; the equation ¢s2?+ byr + ay=0 has a double root
o such that ¢+ by +a, #+0.

@n = Kam exp(—An?)[nP +O(n?-1)],
0, = Lo™ exp(Ant)[n? +O0(nP-1)],
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where
A= 2V(__i”_+_) p = L tmoe?
g 4 20
Take
1 A4 B N
;ﬂ =—{1 — T 7R e
» ex( +2n5+n)’ On A
where
B = bl_.f}.__l.
by a, 4

There is no subdominant solution unless 4 is real.

Type 3: ay+0, ¢y +0; the equation cyz?+byx + a4=0 has a double root
& such that ¢;02+ b +a,=0.

— x" F(n) -1
P = Kot fomms (14 0()]
_ o T )

0, = Lx T+ i) [1+O0(n-1)],

where A, > A, are the roots of

A%+ (g + 1 — 1%V A+ (g -+ Dok + €o0x2) = 0.
Take

1 A N
;an—(l—f———%), QN= 2“ % R
& n Oy — €0+ 2a0{1 + Ay)

The asymptotic form for 6, fails if 4, =2, or if 4, and 4, differ by an inte-
ger, but the expressions for &, and Q, still apply.

Type 4: ay =0, by +0; ¢,=0, ¢; *0.

¢n = Ko[n? +0mP~1)],
0, = Lf*(n—1)![n?+0(n?-1)],

where
Qy b,
& = = -—, 18 T,
by G
ay+bja+cy0? G+ b+
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Take
1
b=~ (1-5). Qv =a.

[22 n

Type 5: by =0, ¢ +=0; =0, a, 0.

K n
§n =~ 2+ O(np1)]

n

0, = Lp"[n?+O0(nt1)],

where
ay by
X = bo b }8 - CO H
_ Gytbixtca® 0y +b Bt

1% ’ boB )
Take

n+1 P o

=" (100), g, - 2.
n o ( n QN N

Type 6: b, +0; the first non-zero terms in the sequences (g, a,,0,,. . .),
(Cgs€1,Cg5- - -} aTE @,, C, respectively, where r+s= 2. (Either  or s may

be zero.)
“n
iy [n? +O(nP~1)],

0, = Lp"(n— 1)1]¥[n?+O(na1)] ,

Pn =

where

= jbl, pm b, polthe htoenl
o Cs @, by

Take

b, = (n+1)r (1__2), QN='§-'

& n

Type T: ay+0, by=cy=0, ¢, =0,

Pn = K0} —x)" exp(—Ant)[n? + O(nP-H)] ,
6, = L(n!)bam exp(dn?)[n? +Onr-1)],
where
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the sign of « being chosen so that A > 0. (There is no subdominant solu-
tion unless « is real.)

Take

n

1 A pAr-
(+__% P

—m + ), Qn = —halNE,

2nt

Type 8: ¢4 +0; ay=>by=0, a; +0.

K —_ Y3
@, = (=) exp(— An¥)[n? + OnP-1)],
(n!)
L n
= o exp(dnt)[n? + O(n#4)] ,
(nh)
where
0‘22 _g}:’ A =%}3‘.’ p:}.ﬁ..@—f}_’
Co a, 4 2a, 2c,

the sign of « being chosen so that 4 > 0 (there is no subdominant solution
unless « ig real).

Take

[o2

2N#

ky = —

.

1) A Az —
1y A
2nt

), Ov = —

[

Type 9: ay +£0, by=co=0,=0 or ¢4 =0, gg=a,="5by=0.

The equation can be transformed into one of the above eight types by
putting u, = (n!)?U, for some positive or negative integer p. (Some of
the above types can also be transformed into one another by the same
means.)

4. Error analysis.

Once f, has been tabulated it is necessary to have some estimate of
the error K, defined by

(14) En =fn_<pn'

Now E, is a solution of the difference equation (1), and also £, =0 since
fo=@p=1. It follows that

(15) E, = E0,.

Since 8, is easily tabulated by forward recurrence the error in any f,

can be found once the error in f; is known. Thus for the difference equa-
tion (8) we have
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6=10,=20,=% 6,=%, 0, =%
and it will be seen that the entries in each row of Table 1 are in the
ratios 1:2:12:22:8% 8o our problem is to find an estimate of K,.
Such an estimate can be obtained by a method similar to that used by
Gautschi [9, p. 40]. If we define Py by

1 By en-1
16 —=——+k_(1—|—~—+ _),
(16) Py 4, N-1 ex EN-1
where
Pn

g, = -1,

" kn¢n+1
and w, by

C,

(17) wy =1, w, =—w, 1,

then it can be shown that
(18) E, = wyPyoya(fy-1—Fnkn-a) -

Equation (18) is an exact expression for E;; it cannot be evaluated
since @y, and Py are unknown. But the unknown part of Py consists
of terms of small order, and P, can be approximated by ¢, where @y
is listed for each type of equation in Section 3; the approximation is
such that the ratio Py/Qy is of the form 1+O(N-!) for an equation of
Type 1, 3, 4, 5, 6 or of the form 1+ O(N—*) for an equation of Type 2, 7, 8.
In order to estimate E, using equation (18) we replace Py by @y and
@n41 Dy its approximate value fy.,, and so obtain the error estimate e,
defined by

(19) ey = WyQnfyalfy-1—Fnkn-1) -

This error estimate is believed to be new. It will be seen in the numerical
examples below that it gives a good indication of the accuracy of the
tabulation.

5. Numerical examples.

In Tables 2, 3, 4 we give the error E, (rounded to 10 decimal places)
for the difference equations in the examples below. We also give the
error estimate ¢, and, for the sake of comparison, the error when the un-
modified form of Miller’s algorithm is used.



250 R. E. SCRATON
ExampLE 1 (see Table 2)
(20) (n—%,_1—2nu, +nu, . = 0.
This equation has already been considered in Section 2. It is of Type 2,

g0 that
1 A%
= ]. —_ = —_— .
= e T Qv (2)

Table 2. Errors in the value of f; for equation (20).

Error x 1010
N Miller Modified ’ Error Estimate
5| —456 25015 | —5 81348 —10 92759
10 —38 05999 — 20578 — 29855
15 —5 42694 —1799 —-2379
20 —1 03498 —244 —307
25 - 23865 —43 —-53
30 — 6308 -9 -11]
35 —1850 -2 -3
ExaMPLE 2 (see Table 3)
1
(21) un—l"(2+;”_2) Up+Upyy = 0.

This equation is of Type 3, giving

51
k, = 1+K——-—,

S Qv = H/5-IN.
n

Table 3. Errors in the value of f; for equation (21).

Error x 1010
N Miller ‘ Modified | Error Estimate
5| —867 03162 | —12 74731 | —17 62488
10 | —224 19867 | —1 42322 | —1 65878
20 | —52 85415 —15379 — 16568
50 —7 27004 —1799 —823
100 -1 57761 -85 —-86
200 — 33861 -9 -9
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ExamprLE 3 (see Table 4)
(22) Uy q— 28, — 20U, 1 = 0
This equation is of Type 8, giving
oy = (2n+2)*(1+—-1—->, O = —.
(2n)t (8N)
This is one of a class of difference equations which arise in the tabulation

of repeated integrals of the error function (cf. Gautschi [8]).

Table 4. Errors in the value of f, for equation (22).

Error x 1010

N Miller I Modified Error Estimate
5| 4567 93065 +4 02462 +5 06241
10 —46 66301 - 11922 —13154
15 +6 60233 +928 + 987
20 -1 25273 - 115 --121
25 +28781 +19 +20
30 — 7586 —4 —4
35 +2221 +1 +1
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